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The Mod 2 Anomaly



The Mod 2 Anomaly

A single, quantum mechanical Majorana fermion, A, is inconsistent:
Dtajorana = V2

But there is no problem with two Majorana fermions, or a Dirac fermion:
{Ais Ajt = 04

and ZDirac = Zag = Tr(1) = 2

ajorana



The Mod 2 Anomaly in Boundary Conditions

Consider a massive Majorana fermion y in d=1+1 dimensions in the presence
of a boundary. We have two choices of boundary conditions:

XL =— TXR

One such choice has a localised zero mode; the other does not

XR

X = (XL) = exp (Fmzx) x(0)

The choice with the zero mode has an anomalous boundary theory.

Kitaev 2000; Dijkgraaf and Witten 2018



The Mod 2 Anomaly in Boundary Conditions

Consider a massive Dirac fermion, 1 = x1 + 22, with the following choices
of boundary conditions:

wL:’(pR

Here there are either two zero modes or none.

A
¢L — ¢ R c.f. Andreev reflection

Here there is a single Majorana zero mode.

Note: The anomaly is independent of the mass.



The Mod 2 Anomaly in Boundary Conditions

Ways to cancel the anomaly:

« Put the same boundary condition on each end of an interval
But you can’t put different choices on different ends.

« Add an extra boundary Majorana mode in by hand.

* Anomaly inflow through the Arf SPT phase.

c.f. a beautiful D-brane story: Witten ‘18, Kaidi, Parra-Martinez and Tachikawa, ‘19



Multiple Fermions



Chiral Boundary Conditions

Consider 2N massless Majorana fermions or, equivalently, N Dirac fermions
In d=1+1 dimensions.

Question: + What symmetries can be preserved by boundary conditions?

Answer: * Any that don't suffer a ‘t Hooft anomaly.

e.g. a U(1) symmetry that acts on N Dirac fermions with charges obeying

N N
>0
left-movers — — QZ — QZ —

right-movers



Chiral Boundary States

In general, these boundary conditions cannot be implemented directly on
the fermion fields.

We could introduce new boundary degrees of freedom, but at low energies
the relevant physics is captured by boundary state.

fs_a

Open-closed string duality
] ¥ . < > &J‘/
N |

Boundary conditions captured by states | 4) and | B3)

Cardy ‘89



Chiral Boundary Conditions

We consider boundary conditions that preserve a U(1)N symmetry.

> right-movers = Qm-

Charges:

N N
No ‘t Hooft anomalies <:> Z Qaildpi = Z QaiQm
i=1 i=1

< left-movers = Qm- 1=1,...

= =



Chiral Boundary Conditions

It turns out that the boundary state is specified by a rational, orthogonal matrix

Rij = (@7 )iaQa;

eg. Y =Yg foreach fermion gives R = 1

vy = w}} for each fermion gives R = —1



The Charge Lattice

It turns out that the boundary state is specified by a rational, orthogonal matrix

Rij = (@7 )iaQa;

All our results are expressed in terms of the following charge lattice

A[R]:{)\GZN : RAeZN}:ZNmz—lZN



A Quick Look at the Boundary State

O;R) =gr p VNN = —RA)
AEA[R]

with the Ishibashi states given by

_ >~ 1 _ _
H)\, )\>> — exXPpP ( Z nRijJi,an,n> ‘)\, )\>
n=1

\

ground states labelled by left and right-moving charges

See, e.g. Recknagel and Schomerus, ‘98;
Cho, Shiozaki, Ryu and Ludwig ’16;
Han, Tiwari, Hsieh and Ryu 17



The Boundary Central Charge

The normalization gr = (0,0]6;R) is important. This is the boundary central
charge, first introduced by Affleck and Ludwig in 1991. It captures the boundary
contribution to the free energy.

gr = v/ Vol(A[R])

i.e. the volume of the primitive unit cell of the lattice

e.g. .

R —

Boyle Smith and Tong '19

-1 :>g73:1

« N=2 fermions with charges G+ =40 = gr = \/E

("This same formula arose as the tension of a D-brane in Bachas, Brunner and Roggenkamp ‘“12.)



To Which Z, SPT Phase Does Each State Belong?

Consider imposing a boundary state 7R on one end of an interval, and R’on the other.

The number of ground states of the system is given by

v/ Vol(A[R]) Vol(A[R/
Vol(A[R, R'])

G[R, R = ) Vdet' (1 — RTR/)

It can be shown that,

7 if same class

GIR,R| €
| | { V27  if different class

Boyle Smith and Tong '19



Flows Between Boundary States



Boundary RG Flows

The d=0+1 boundary behaves, in many ways, like any other QFT. Boundary
operators are classified as:

* Irrelevant
« Marginal moves among different boundary conditions.
« Relevant ——> induces an RG flow to a new boundary condition.

4

The g-theorem: the boundary central charge decreases under RG.

Affleck and Ludwig '91, Friedan and Konechny ‘03, Casini, Landea and Torroba ‘16



Relevant Operators

We can use the state-operator map to determine the boundary operators.
They are labelled by:

p € ARJ*

This determines their dimension and charges

If you turn on a relevant operator, where do you flow?



Boundary RG Flows

We turn on a relevant boundary operator, labelled by

p € A[RJ*
This breaks the symmetry:

Uy - um)N!

Assumption:

At the end of the RG flow, we restore a (typically different) U(7)N symmetry




Boundary RG Flows

We turn on a relevant boundary operator, labelled by
p € A[RJ*

Assuming that we land among our general class of boundary states, there is a unique
candidate:

2
(Rir)it = (Ruv )i <5j — ?ﬂj:@c)

One might naively think that the IR central charge is

naive = \/ VOI(A[R;R])

...but this is too quick.



Boundary RG Flows

There are a number of subtleties that we must address:

1. The RG flow can move us from one SPT phase to the other! This is only consistent if
the IR boundary state is accompanied by an extra Majorana mode. This increases
the central charge by v/2 .

2. We could start with an extra Majorana mode and use it to dress a fermionic operator
to initiate an RG flow.

3. The RG flow may preserve a discrete symmetry
ULN - U x z,

Typically the IR boundary state does not. We must then sum over the images. This again
Increases the central charge.



Boundary RG Flows

Once these subtleties are taken into account, we find the following simple result:
We perturb by an operator () . Then the infra-red central charge is

grr = guy Vdim O

Note: this immediately satisfies the g-theorem.



The Zg Classification of d=2+1 SPT Phases



The View from the Edge

We could also view our d=1+1 fermions as the edge of a d=2+1 SPT phase.

There is a Zg classification which means that 8 Majorana fermions in d=1+1 can
be gapped preserving, chiral fermion parity (—1)* x (—1)".

Fidkowski and Kitaev ‘09, Ryu and Zhang ‘12, Qi ‘12

This, in turn, means that it should be possible to construct a boundary condition
for 8 Majorana fermions preserving (—1)* x (=1)% .

The simplest such boundary state was constructed by Maldacena and Ludwig in
1995, and, in addition, preserves an SO(8) symmetry:

1
Rij=0ij — 5

(and recognized as such by Cho, Shiozaki, Ryu and Ludwig ‘16)



The Z4 Classification

Which of our boundary states preserve (—1)* x (—=1)% 2

Can show: (=D)AL A) = (=DM A )

i.e. preservation if the lattice A[R] is even

Claim: This can only happen if the lattice has dimension N = 4k

N
Claim: The stable boundary state with this property has gr = B



An Open Question



't Hooft Lines in Chiral Gauge Theories

't Hooft lines in d=3+1 are defined by boundary conditions for fields
Decompose fermions in angular momentum modes to reduce to d=1+1

The lowest angular momentum modes of chiral fermions require chiral
boundary conditions

Callan '83, Polchinski ‘84
Affleck and Sagi ‘93; Maldacena and Ludwig ‘95



't Hooft Lines in Chiral Gauge Theories

e.g. U(1) gauge theory with Weyl fermions with charges 1, 5, -7, -8, 9

—>  chiral boundary conditions preserving SU(2),,; x U(1) with

Left movers: 17, 95, 99

Right movers: 77, 8g

Boundary state unknown!



Thank you for your attention



