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Chaos/butterfly effect: exponential sensitivity to initial perturbation

∂qi(t)
∂qj(0)

∼ eλ1t λ1 (largest) Lyapunov exponent

( ∂qi(t)
∂qj(0) )

ij

SVD λ1, λ2, …, λ2N Lyapunov Spectrum

More generally, in a � -dimensional phase space,2N



( ∂qi(t)
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ij

SVD λ1, λ2, …, λ2N
dS
dt

= ∑
λi>0

λi =: Λ+

Chaos/butterfly effect Thermalization 
(Entropy growth)

�t = 0 �t > 0

∼
eΛ+t

e−Λ+t

Liouville theorem � ⇒ ∑
i

λi = 0

With fixed resolution, 
�  V ∼ eΛ+t ⇒ S ∼ Λ+t

phase space 
distribution

[Latora,Baranger, PRL 99]



Butterfly effect as (numerical) diagnostics of integrability

∂qi(t)
∂qj(0)

∼ tα , λL = 0
∂qi(t)
∂qj(0)

∼ eλLt , λL > 0

Non-integrable Integrable

(Regular motion on invariant tori)

Note: a saddle point is not chaotic!

[exponential sensitivity only for � ]t ≤ 𝒪(1)



“Old-school” quantum chaos

Casati, Berry-Tabor, Bohigas-Giannoni-Schmit

Integrable

Level statistics

�H |n⟩ = En |n⟩

�En − En−1

Poisson statistics

Non-integrable

Random matrix theory

related: spectral form factor

Powerful diagnostics 
But: no �  (different time-scale)λL



Defining quantum �   (butterfly effect)λL

Out-of-time-order correlators

C(t) := ⟨[V(t), W]†[V(t), W]⟩

Semiclassical intuition:


�∂q(t)/∂q(0) = {q(t), p}P.B. ≈
1
iℏ

[q(t), p]

Larkin, Ovchinnikov 
Maldacena, Shenker, Stanford

⟨…⟩
Some 
expectation 
value



C(t) := ⟨[V(t), W]†[V(t), W]⟩ ∼ eλLt

In this talk, “scrambling” means 
exponential growth of OTOCs

Does scrambling equal chaos?

I. In the classical limit (w/ Xu, Scaffidi) 

II. In the large-N limit (w/ Kim, Altman) 

III. Away from any limits?

(and does it have similar diagnostics power?)



Classical limit: Scrambling �  chaos⊋

C(t) = ⟨[q(t), p][q(t), p]†⟩ = ∫ ( ∂q(t)
∂q )

2

ρ(q) �ℏ = 1

= ∫ ρ(q)eλL(q)t ≥ e⟨λL⟩t = e2λ1t [Galitski et. al.]

Chaos phase-space-averages over the log.


Scrambling averages before taking the log.
λL ≥ 2λ1

Quantitative detail?



Qualitative difference!

Scrambling can result from mechanisms 
other than chaos, e.g., saddle points.

q±(t) = e±μtq± (locally near a saddle)

�q+

�q−

C(t) ≥ ∫q+≤ϵ
e2μtdq+dq− ∼ ϵe2μt = eμt

ϵ ∼ e−μt

So that the trajectory stay close at time � .t

Demo (2d phase space)

Hence, �  without chaos!λL ≥ μ
Finite T: [Hashimoto, Huh, Kim, Wanatabe]



H = x + 2z2 , {x, y} = z, …

2d phase space, trivially integrable, 
but has a saddle with � .μ = 3

Example: Lipkin-Meshkov-Glick model

Microcanonical OTOCsInfinite T OTOC

OTOCs are computed in 
quantized model, with 

� The exponential 
growth saturates at Ehrenfest 

time � .

ℏ = 1/S .

tE ∼ ln S

Saddle-dominated scrambling  
�λL = μ



Example: Kicked rotor

x, p ↦ x + p, p + K sin(x) (x = x + 2π)

[Rozenbaum,Ganeshan,Galitski, PRL17]

K

�  
(scrambling)

λL

�  
(chaos)

2λ1

λL = μ
Saddle (� )-dominated scrambling  x, p = 0,0

� : scrambling without classical chaosK ≲ 1



Remark
Saddle-dominated scrambling can occur


In higher dimension/many-body phase space;


In presence of chaos.


It remains unclear how generally that happens.



Scrambling in large- ! , low- !N T
Example: Sachdev-Ye-Kitaev

H =
N

∑
ijkl=1

Jijklγiγjγkγl C(t) = ⟨{γi(t), γj}{γi(t), γj}⟩T
∼ eλLt , t ≲ ln N

� : � , “fast scrambling”T ≪ J λL = 2πT

[Kitaev][Maldacena,Shenker,Stanford], …

What are some other behaviors? How do !   depend on 
the IR fixed point?

λL(T)

γiγj + γjγi = δij , JijklJi′�j′�k′�l′� =
J2

N3
δijkl,i′�j′�k′ �l′ �



Another example: mass-deformed SYK

H =
N

∑
ij=1

κij iγiγj +
N

∑
ijkl=1

Jijklγiγjγkγl
Relevant perturbation, 
resulting in weakly-coupled IR 
fixed point 
(� )Δγ = 1/2 ≠ Δγ,SYK = 1/4

λL(T) = ?

García-García, Loureiro, Romero-Bermúdez, Tezuka (PRL 18) 
� , �  [transition to no scrambling]λL = 0 T < Tc

Can we have a more general understanding by 
interpolating between IR fixed points?

Banerjee, Altman (PRB 17, similar model)
�  [� , but non-vanishing]λL ∝ T2 ≪ T



Jij,kl =
γN

∑
n=1

λnuij,nukl,n

ρ(λ) = ∑
n

δ(λ − λn)

ex: graphene flake  
[Franz, etc., PRL 18]

Fermi Liquid Non Fermi liquid Fast scramblerFast scrambler

[Kim, XC, Altman PRB 2020, preprint 2006.02485, Kim, XC, 2004.05313 ] [Phys. Rev. Lett. 120, 241603 (2017)]

λL ∝ T 2πT≪ T , ∝ g

Low-rank/Yukawa SYK
γ

# of mediating bosons per 
fermion

https://arxiv.org/abs/2004.05313
https://arxiv.org/abs/2004.05313


Fast scramblers (class III and IV)

qSYK-like with tunable scaling dimension 

� , conformal invariance 
Maximal Lyapunov exponent �  (like SYK)
G(τ) ∼ |τ |−2Δ

λL = 2πT
R/N (at the delta peak for class III)

Class IV: contains SUSY SYK 
Class III: applications to superconductivity

Class III: Esterlis and Schmalian PRB 2019, 
                Yuxuan Wang PRL 2019 
Class IV: Zhen Bi et. al. PRB 2017

λmax < 0
ρ ∝ δ(λ − λmax) + …

III IV



Fermi and non-Fermi liquids (class I & II)

Fermi liquid �η > 0

Non- Fermi liquid �η < 0

G(ω) ∼ sign(ω) , |Σ(ω) | ∼ |ω |1+η ≪ |ω |

G(ω) ∼ sign(ω) , |Σ(ω) | ∼ |ω |1+η ≫ |ω |

Spectral density

ω

ω

“free-fermion” leading scaling of Green function  
+ sub-leading self-energy �  (“quasiparticle decay”)Σ



� (OTOC) is determined by ladder diagrams 
generated by stacking kernels
λL

∫ K(t1,…,4)F(t1, t2) = F(t3, t4) , F(t1, t2) = f(t2 − t1)eλL(t1+t2)/2

[Kitaev]

i.e., �  solved by requiring the largest eigenvalue be 1.λL



The ladder kernel in class I & II

Class I, II: Perturbation theory in the coupling  γ∼R/N  appearing in 

Conformal (SYK2) Kinetic (*)
Interaction+decay 
(� : dimensionless kernel)K̃

Most positive eigenvalue of �K̃

� : condensate generated SYK2 couplingF0

Class III, IV: Conformal solution gives �  after direct calculation (like SYK4) λL = 2πT

λL = γ
Tη+1

F2η+1
0

k(λL /2πT)

(*): coming from the kinetic term in �G−1 = ∂t − Σ



Because RHS�  we can take k(0) to leading order in �  
�  (scrambling is significantly non-maximal, and perturbative in coupling constant)

∼ Tη+1 ≪ T T
λL ≪ T, λ ∝ γ

Fermi liquid (η > 0):

Non-Fermi liquid (η < 0):

The LHS (kinetic term) is negligible compared to the interaction term

More universal. Independent of the coupling constant

λL ∝ γTη+1k(λL/2πT) ∼ γTη+1k(0)

�η

λL = γ
Tη+1

F2η+1
0

k(λL /2πT)

�  Determines �k(λL /2πT) = 0 λL

λL = CηT

�η



Scrambling and quasiparticle decay in low 
rank SYK models

Biased opinion: OTOCs are good 
diagnostics of the IR fixed point’s nature.



∝ κ2 ∝ J2

Back to mass-deformed SYK

Similar to class I, with �  decay rate. 1/τ ∼ T2

⇒ λL ∝ T2

To ensure a positive prefactor requires further 
calculation, which will show

λL =
3T2J2

κ3
, T, J ≪ κ



What about away from large �  or classical limit? N

Web of chaos diagnostic [Kudler-Flama, Nie, Ryu] 

OTOC ∼ eλLt



C(t) = ⟨O(t)O(0)⟩T=∞ Φ(ω) = ∫ C(t)eiωtdt

λL ≤ ω0π
“Theorem” When �  is well-defined, it is bounded by (at � )λL T = ∞

Hypothesis à la Bohigas-Giannoni-Schmit For non integrable systems 
and non-conserved operators � ,


�      


For integrable systems, �  decay faster.


Theorem The above holds for chaotic Ising chain (ZZ+X+Z).

O

Φ(ω) ∼ exp( − |ω | /ω0) , ω → ∞ .

Φ(ω)

e− |ω |
ω0

[w/ Parker, Scaffidi, Advoshkin, Altman, PRX 19] [to appear 2020]

Technical note: there are sub-leading log corrections in 1d.

But, at low temperature, �  is too sensitive to UV details…ω0



Does scrambling equal chaos?

I. In the classical limit: No 

II. In the large-N, low-T limit: works as intended 

III. Generic quantum: I don’t know 

Thank you!



G(z) =
1

z−
b2

1

z−
b2

2

z−
b2

3

z − b2
4…

[H, On] = bnOn−1 + bn+1Qn+1

� : Krylov basis{On}

O(t) = ∑
n

inφn(t)On

(n)t := ∑
n

n |φn(t) |2

“Krylov-complexity”

OTOC ≤ C(n)t

⇒ λL ≤ ω0π

α =
ω0π

2


