4d gauge theory and 2d CFT from 6d point of view

Tachikawa，Yūji（IPMU\＆IAS）
다치카와 유지 立川裕二 たちかわ ゆうじ तचिकाव，यूजि தசிகாவ，யூஜி
＠5th Winter School on Anything，Jeju

Many interesting phenomena in SUSY gauge theory can be "understood" using 6d $N=(2,0)$ theory,
about which we don't know much.

But somehow, assuming its existence and 6d Lorentz invariance, we can deduce a lot.

Andy's 3rd lecture was about one aspect of this fact.

The most important relation is:
$6=4+2$

Today

Basics of $6 \mathrm{~d} N=(2,0)$ theory. S-duality of $4 \mathrm{~d} N=4$.

Tomorrow

4d $N=2$ as $6 d N=(2,0)$ compactified on C

The day after tomorrow
Relation with 2d CFT

- Non-gravitational theories can at most have 16 supercharges.
- Recall the min. dim. of spinors in each dim:

$$
\begin{aligned}
& \begin{array}{llllllll}
& & 5 & 5 & 7 & 8 & 9 & 10 \\
\operatorname{dim}_{\mathbb{C}} & \frac{2}{2} & 4 & 45 & 4.5 & 8 & 8 & 8
\end{array}(16) \\
& \text { Strictly } \\
& \text { real } \\
& \begin{array}{lllllllll}
\min . \# 1 \\
\text { of } Q & 4 & 8 & 8 & 16 & 16 & 16 & 16
\end{array} \\
& N=4 \leftarrow N=2 \leftarrow \mathcal{N}=(1,1) \leftarrow \mathcal{N}=1 \cdots \\
& N=(2,0)
\end{aligned}
$$

$\mathrm{N}=(\mathrm{I}, \mathrm{I})$ multiplet: R-sym is $\mathrm{Sp}(\mathrm{I}) \times \mathrm{Sp}_{\mathrm{p}}(\mathrm{I}) \sim \mathrm{SO}(4)$

$\mathrm{N}=(2,0)$ multiplet: R -sym is $\mathrm{Sp}(2) \sim \mathrm{SO}(5)$

- $B_{[\mu \nu]} \rightarrow F_{[\mu \nu \rho]}=\partial_{[\mu} B_{v \rho]}$

$$
\text { s.t. } F_{\text {rup }}=\frac{1}{6} \varepsilon_{\mu v \rho}{ }^{\sigma \tau v} F_{\rho \tau v}
$$

$\psi_{\alpha a}=J_{\alpha \beta} J_{a b} \bar{\psi}^{\beta b}$

It's weird.

It's easy to write down an action for $N=(I, I)$ theory:

$$
S=\int d^{b} x \frac{1}{g_{6 d}^{2}} F_{\mu \nu}^{a} F_{\mu \nu}^{a}+\text { supersymmetrizations. }
$$

parameters

- gauge group G
- $g^{2} 6 d:\left[g^{2} 6 d\right]=(\text { length })^{2}$ non-renormalizable!
- θ angle for $\pi_{5}(\mathrm{G})$
$\int \theta \rightarrow r F_{\wedge} F \wedge F \quad \theta$ is dimensionless!

It's not easy to write down an action for $\mathrm{N}=(2,0)$ theory, even for a free theory.

Consider

$$
S=\int d^{6} \times \frac{1}{g^{2}} F_{\mu v \rho} F_{\mu v \rho}+\cdots
$$

where $F_{\mu v \rho}=\partial_{[\mu} B_{v \rho]} . \quad g$ is dimensionless! Good!
We need to impose

$$
F_{\mu v \rho}=\frac{1}{6} \varepsilon_{\mu \nu \rho}^{\sigma \tau v} F_{\sigma \tau v}
$$

Then

$$
F_{\mu \nu \rho} F_{\mu \nu \rho}=F_{\mu \nu \rho} \varepsilon^{\mu \nu \rho \sigma \tau v} F_{\sigma \tau v}=0 .
$$

The action makes no sense.

Free theories can be dealt with.
[Pasti-Sorokin-Tonin '95][Belov-Moore '06]
Recall the case of EM fields in 4d.

$$
S=\int d^{4} x \frac{1}{e^{2}} F_{\mu \nu} F_{\mu \nu}
$$

The dual field is

$$
G_{\mu \nu}=\varepsilon_{\mu \nu \rho \sigma} \frac{\delta S}{\delta F_{\rho \sigma}}=\frac{1}{e^{2}} \varepsilon_{\mu \nu \rho \sigma} F^{\rho \sigma}
$$

The dual action is then

$$
S_{\text {dual }}=\int d^{4} x e^{2} G_{\mu \nu} G_{\mu v} .
$$

Note that the coupling is the inverse.

$$
e^{2} \leftrightarrow 1 / e^{2}
$$

So, to make sense of the equality
 g should be 1 !

OK for a free field, but troublesome for interacting theories.

But what interacting theories?

$$
\left.F_{\mu v}=\partial_{[\mu} A_{v}{ }^{a}\right]+f^{a}{ }_{b c} A_{\mu}{ }^{b} A_{\nu}{ }^{c}
$$

Nobody figured out how to fill the dots in

$$
\left.F_{\mu v \rho}=\partial_{[\mu} B_{v \rho}{ }^{a}\right]+\cdots
$$

Why do we expect to have an interacting $N=(2,0)$ theory anyway?

On an M5-brane, we have a free $\mathrm{N}=(2,0)$ multiplet.

R-symmetry is the $\mathrm{SO}(5)$ rotation.

We should have an interacting theory on K coincident M5-branes.

Let's study its "Coulomb phase".

K free abelian $\mathrm{N}=(2,0)$ theory.

+ strings charged under them.

A particle couples to the potential as

$$
q_{i} \int A_{\mu}^{i} d x^{\mu}
$$

A string couples to the potential as

$$
q_{i} \int \beta_{\mu \nu}^{i} d \sigma^{\mu \nu}
$$

But we have self-duality!

$$
\left(q^{i}, q_{m}^{i}\right)=\left(q^{i}, q^{i}\right)
$$

In 4d, the Dirac-Schwinger-Zwanziger pairing was

$$
\left(q_{e}, q_{m}\right) \circ\left(q_{e^{\prime}}, q_{m}^{\prime}\right)=q_{e} q_{m}^{\prime}-q_{m} q_{e^{\prime}}^{\prime}
$$

In 6d, the pairing is

$$
\left(q_{e}, q_{m}\right) \circ\left(q_{e^{\prime}}, q_{m}^{\prime}\right)=q_{e} q_{m}^{\prime}+q_{m} q_{e^{\prime}}^{\prime}
$$

If you have two "self-dual" strings,

$$
(q, q) \circ\left(q^{\prime}, q^{\prime}\right)=q q^{\prime}
$$

Usual Dirac quantization law requires

$$
\vec{q} \cdot \vec{q}^{\prime} \in \mathbb{Z}
$$

[Henningson '04] also argued

$$
\underbrace{\vec{q} \cdot \vec{q}}_{\text {inflow }}=\underbrace{2}_{\text {anomaly of fermion }}
$$

by the anomaly cancellation on the worldsheet.
So, the charges of the strings look like simply-laced root systems: A, D, E

All $|\alpha|^{2}=2$: Simply-laced

$$
\begin{gathered}
\operatorname{SU}(N)=A_{N-1}, \operatorname{SO}(2 N)=D_{N}, \\
E_{6} E_{7} E_{8}
\end{gathered}
$$

Others: nom-simply-laced

$$
\begin{gathered}
B_{n}=\operatorname{SO}(2 n+1), C_{n}=S_{p}(n), \\
F_{4}, G_{2}
\end{gathered}
$$

Continuous Compact Symmetries are classified !!

How do we make them?
$\mathrm{A}_{\mathrm{K}-1}$
D_{K}
$E_{6,7,8}$

2K M5s
K M5s
$+$
???

M-orientifold

How do we make them?
$\mathrm{A}_{\mathrm{K}-\mathrm{I}}$
D_{K}
$E_{6,7,8}$

Type IIB on

$$
\mathbb{C}^{2} / \mathbb{Z}_{k}
$$

$\mathbb{C}^{2} /$ +etra

$$
\mathbb{T}^{2} / \operatorname{Dih}_{k+1}
$$

$\mathbb{C}^{2} /$ octa
$\mathbb{C}^{2} / i \cos a$
Note: \quad Discrete subgroup of $\operatorname{SU}(2) \sim \mathrm{SO}(3)$

What happens when compactified on S^{\prime} ?

$\mu v \rho=0$ I $234 ; 6$
ijk =01234

What happens when compactified on S^{\prime} ?
bd

A_{k-1} th.

Sd

SU(K) gangeth.

$$
S_{5 d}=\int d^{L^{b} x} \frac{1}{g_{5 d}^{2}} F_{\mu \sim}^{a} F_{\mu^{\mu}}^{a},\left[g_{5 d}^{2}\right]=(\text { length })
$$

The only scale in the setup is R_{6}

$$
\longrightarrow \frac{1}{g_{5 d}^{2}}=\frac{1}{R_{6}}
$$

Compactification of $6 \mathrm{~d} N=(2,0)$ on S^{\prime}

$$
\int d^{5} \times \frac{1}{R_{6}} F_{F^{a}}^{a} F_{m}^{a}
$$

Compare this with S^{1} compactification of $6 \mathrm{~d} N=(I, I)$ theory:

$$
\int d d^{b} x \frac{1}{g_{b d}^{2}} F_{\mu}^{a} F_{\mu \nu}^{a}=\int d^{5} x \int d x \frac{1}{g^{2}} F_{\mu}^{a} F_{\mu \nu}^{a}=\int d^{5} x \frac{R_{b}}{g_{6 d}} F_{\mu}^{a} F_{\mu \nu}^{a}
$$

It's really weird that R_{6} appears in the denominator!

What happens to the strings?

Particles in 5d $\sim W$-bosons

Strings in 5d ~ Monopole-strings
Note: take a monopole solution in 4 d

$$
\phi=\phi\left(x_{1}, x_{2}, x_{3}\right) \text {, bocalized at } x_{1}=x_{2}=x_{3}=0 \text {. }
$$

and let the configuration independent of x^{4}

$$
\phi\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \equiv \phi\left(x_{1}, x_{2}, x_{3}\right)
$$

This is a string.

\square

$$
\begin{aligned}
& \int d^{5} x \frac{1}{R_{6}} F_{\mu v}^{a} F_{\mu \nu}^{a} \\
= & \int d^{4} x \int d x \frac{1}{R_{6}} F_{\mu \nu}^{a} F_{\mu \nu}^{a} \\
= & \int d^{4} x \overline{R_{5}} \frac{R_{6}}{R_{\mu \nu}} F_{\mu \nu}^{a} F_{\mu v}^{a} \\
& 1 / g_{4 d}^{\prime \prime}
\end{aligned}
$$

W-bosons
monopoles
dyous

4d N=4 gauge theory with G=A,D,E
 at $\frac{1}{g^{2}}=\frac{R_{5}}{R_{6}}$
$R_{5} \quad 4 d N=4$ gauge theory with $G=A, D, E$ at $\frac{1}{g^{2}}=\frac{R_{6}}{R_{5}}$

For those who've heard of $\mathcal{N}=4$ S-duality for the Est time:
$\mathcal{N}=4$ SCM has six adjoint scalars ϕ_{i}

$$
V=\operatorname{tr}\left[\phi_{i}, \phi_{j}\right]^{2}
$$

Set $\phi_{1}=\operatorname{diag}\left(a_{1} a_{2} \cdots a_{n}\right), \phi_{2,3,4,5,6}=0$.
W-bosons have masses from $\left|D_{\mu}\left\langle\phi_{1}\right\rangle\right|^{2}$

$$
m=\left|a_{i}-a_{j}\right| \text { for the }(i, j) \text {-component. }
$$

(i, j) determines an $S U(2)$ subgroup:

$$
j\left(\begin{array}{ll}
1 & \\
\rightarrow & -1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Using this, we can embed standard $S U(2)$ solution into SU(N).

$$
m=\frac{1}{g^{2}}\left|a_{i}-a_{j}\right|
$$

For SU(N),

$$
\text { W-bosms: }\left|a_{i}-a_{j}\right| \text { mono: } \frac{1}{g^{2}}\left|a_{i}-a_{j}\right|
$$

For General G,
W-bosons: $|\alpha \cdot \phi| \quad$ mono: $\frac{1}{g^{2}} \frac{2}{|\alpha|^{2}}|\alpha \cdot \phi|$
α : roots.
For SU(N), $\alpha_{u j}=\left(\begin{array}{llll}\cdots & 1 & j & -1\end{array}\right)$

$$
\phi=\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right)
$$

So, if all $\left|\left.\right|^{2}=2\right.$, we can exchange
W-bosons \leftrightarrow monopoles g^{2}

$$
1 / g^{2}
$$

All $K T^{2}=2$: simply-laced

$$
G S U(N)=A_{N-1}, S O(2 N)=D_{N} \text {. }
$$

$$
C_{1} E_{6}, E_{77} E_{85}^{E_{8}}
$$

Others: nom-simply-laced

$$
\begin{gathered}
B_{n}=S_{0}(2 n+1), C_{n}=S_{p}(n) . \\
F_{4}, G_{2}
\end{gathered}
$$

What happens when $G \neq A, D, E$?
It's known that
4d $N=4$ gauge theory with $G=S(2 n+1)$ at g^{2} equiv.
$4 d N=4$ gauge theory with $G=S p(n) \quad$ at $g^{\prime 2}=1 / 2 g^{2}$
So, it was good that we didn't have $6 \mathrm{~d} N=(2,0)$ theory of type $\mathrm{G}=\mathrm{SO}(2 \mathrm{n}+1) \ldots$

Instead, we can use this field theory knowledge to better understand $6 \mathrm{~d} \mathrm{~N}=(2,0)$ theory.
We can get $4 \mathrm{~d} \mathrm{SO}(2 n+1)$ from $5 \mathrm{~d} \mathrm{SO}(2 n+2)$:

$$
\begin{aligned}
& \phi\left(x^{4}=2 \pi\right)=P \phi\left(x^{4}=0\right) P^{-1} \\
& P=\operatorname{diag}(+1,+1, \cdots,+1,-1) \\
& \quad: \text { parity of gauge group. }
\end{aligned}
$$

So, from 6d D_{n+1} theory,

gives you $4 d \mathrm{SO}(2 n+1)$.
S-dual configuration is this:

It should give 4d Sp(n).

Therefore, $6 \mathrm{~d} N=(2,0)$ theory of type D_{n+1} on S^{\prime} with the twist gives $5 \mathrm{~d} \mathrm{Sp}(\mathrm{n})$ theory.

This is crazy. $\mathrm{Sp}(\mathrm{n})$ is not a subgroup of $\mathrm{SO}(2 \mathrm{n}+2)$!

