Yesterday

Basics of 6d N=(2,0) theory. S-duality of 4d N=4.

Today

4d N=2 as 6d N=(2,0) compactified on C

Tomorrow

Relation with 2d CFT




Yesterday'’s talk’s summary

e 6d N=(2,0) theory comes in types G=A,D,E

 Put on a torus of edges of lengths Rsand Re,

You get 4d N=4 theory with gauge group G,

Rs

\
at coupling - % D S— duality |



How dow we get 4d N=2 theory!?

We need to break SUSY, but not too much.

Instead of a flat torus, use a general Riemann surface
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If you do this naively, it breaks all SUSY,
because there’s no covariantly constant spinor!
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The way out:

compensate the spacetime curvature
with the R-charge curvature.

Spinorisin 4~ of SO(1,5) ® 4 of SO(5)r

with the reality condition.
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We're splitting SO(1,5) to $O(1,3) x SO(2)
Let’s also split SO(5)r to SO(3)r * SO(2)r

Spinor was in 4} of SO(1,5) ® 4 of SO(5)r
with the reality condition.

SO(1,3) x SO(2) * SO@3)r X SO(2)r
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Reality condition removes half of them.




SO(1,3) x SO2) x SOB3)r X SOQ)r
The spinors are in D ® 2P
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We're turning on SO(2) curvature. Destroys all SUSY.

Let’s set SO(2)r curvature = SO(2) curvature.
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Five scalars were vectors of SO(5)r
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Two of them couple to SO(2)r , now set to SO(2)

They now effectively form a (co)tangent vector
of the surface.
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We can now define 4d N=2 supercharges.
When are they preserved!?

O\ = 0 leads to the conditions
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We're forced to set qb& r g = Consl
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but & () can be nontrivial !
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We forget C|>3 4z for the rest of the talk.



So far we talked about | M5-brane on C.

How about N M5-branes on C? We have one-forms
dNz), Pmy, o SM 2y

But we can’t distinguish an M5 from another.

Let A be an auxiliary one-form.Then
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The equation
D=MW+w@Y 7 + ta@N + - + U, (2)

characterize N M5-branes wrapped on C.
At each point z on C, we have N solutions:
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Determines 2, an N:| cover of C.

What are the supersymmetric states!?



A string can extend between 2 M5-branes.
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This is known/believed to give an N=2 vector multiplet.




Instead of thinking of an integral over C,
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This can be thought of an mtegral of A over >
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Another possibility is
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This is known to give an N=2 hypermultiplet.

There would be more possibilities,
but not well understood.




Summarizing, starting from 6d N=(2,0) theory of type An.1,
we get an 4d N=2 theory characterized by
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where BPS particles have masses
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But what’s this N=2 theory???



Conversely, Seiberg and Witten observed that

given an N=2 theory with gauge group G
and matter fields in the rep.R,

there will be a pair of

a Riemann surface 2
and a one-form A on it

such that masses of BPS particles are given by
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But how can we find (2, A) given (G,R) ?



Nobody has been able to answer this question
in full generality so far.

It's YOU who will solve this important problem.

That said, there are a few methods developed:

- Guess and check consistency (SWV, 1994~)
- Geometric engineering (Vafa et al. 1997~)

- Plumbing M5-branes (Gaiotto et al. 2009~)
- Instanton integral (Nekrasov et al. 2003~)

I'd be happy to talk about each of them in detail,
but the time constraint doesn’t allow me.



Let’s consider N=2 pure SU(N) theory.
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The potential is
V=+C¢ ¢'1™

So there’s a family of vacua.

sz di&g_(a\ L S Qg)

,_Cm, G=Sv(n)



One-loop running of coupling is easy to calculate:
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Consider the weakly-coupled regime

/L <= Ay

, \/2 N
We have W-bosons with mass /3
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We also have monopoles:

Take an SU(2) 't Hooft-Polyakov monopole,
and embed into the (i,j)-th block
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with the mass T T
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Compare them to the mass ofW—bosons
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The ratio encodes the running of the gauge coupling.



The configuration of N M5-branes is this:
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Writing 7\=";_;'§7_1 , we have
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which is a form of the Seiberg-Witten curve due to
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But thwon’t work with this younger audience.
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The curve is
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Let’s study the situation A <« |u,|%
Factorize the u’s as follows
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First, you see W-bosons:
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They exist for each pair of (i,)).
The mass is approximately
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Second, you see monopoles:
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The mass is roughly given by NN
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so, we get the expected log running, with correct .
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Log has branches, reflected by the existence of dyons.
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whose mass is
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Note that there are only (N—1) tower of dyons,
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not for every pair of (i,j). This agrees with an old semi-
classical analysis of the monopole moduli space.




Compare this with N=4 SU(N) SYM.
Instead of a sphere, we had a torus.

— | L7 7 i et %
) TRLZZZZIT) g A \ﬂ

- T
C. £ S S

So, we have monopoles for each pair of (i,))
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This is supported by semi-classical analysis on
the monopole moduli space.



Anyway, the configuration
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reproduces the spectrum of pure SU(N)

when weakly coupled, N\ << \\LR\%Q

Holomorphy of N=2 low-energy Lagrangian
guarantees it should then be OK for all values of u.

Two branch points can collide, for example,
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producing almost massless monopoles, etc.




Let’s consider just 2 M5-branes and a 3-punctured sphere
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You see four paths, producing four hypermultiplets
with masses
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Take two copies, and connect them
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We find:

- \an SU(2) vector boson\

- two doublets with mass z™:t"g)\from the Tefe
- two doublets with mass v [lfrom theright,
- monopoles connecting the left and the right

It's SU(2) with four flavors.



Note that the coupling is tunable.
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Agrees with the fact that B=0. {or SU(R) + 4 flowors

What happens when it becomes very strong?
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You get SU(2) with four flavors again,
but the mass is shuffled; new quarks were monopoles.

Reproduces the S-duality originally found in [SWV ’94]



Similarly, for N M5-branes,
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represents N x N hypermultiplets. Then

is SU(N) with 2N flavors, with =0.
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The coupling is tunable.




What happens when it's become very strong!?
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In contrast to SU(2), it’s not the same.

Vi
| don’t have time to describe it in detail, X

but the conclusion is that SU(N) with 2N flavors is dual to

\an SU(2) vector boson coupled to

- .a doublet hypermultiplet
- a CFT called Ry [Chacaltana-Distler 1 0]

Moral: you started from a strange thing (M5).
So you got a strange thing in 4d.



