Yesterday

Basics of $6 \mathrm{~d} N=(2,0)$ theory. S-duality of $4 \mathrm{~d} N=4$.

Today
$4 d N=2$ as $6 d N=(2,0)$ compactified on C

Tomorrow
Relation with 2d CFT

Yesterday's talk's summary

- 6d $N=(2,0)$ theory comes in types $G=A, D, E$
- Put on a torus of edges of lengths R_{5} and R_{6},

You get 4d $N=4$ theory with gauge group G, at coupling $\frac{1}{g^{2}}=\frac{R_{5}}{R_{6}} \Im S$ - duality!

How dow we get 4d $\mathrm{N}=2$ theory?
We need to break SUSY, but not too much. Instead of a flat torus, use a general Riemann surface

If you do this naively, it breaks all SUSY, because there's no covariantly constant spinor!

The way out:
compensate the spacetime curvature with the Recharge curvature.

Spinor is in 4 of $S O(1,5) \otimes \mathbb{4}$ of $S O(5)_{R}$ with the reality condition.

$$
\psi_{\alpha a}=J_{\alpha \beta} J_{a b} \psi^{* \beta b}
$$

$\operatorname{dim}_{\mathbb{R}}=16$. Wed like to preserve half of them.

Were splitting $\mathrm{SO}(1,5)$ to Space $(1,3) \times \mathrm{SO}(2)$ Let's also split $\mathrm{SO}(5)_{\mathrm{R}}$ to $\mathrm{SO}(3)_{\mathrm{R}} \times \mathrm{SO}(2)_{\mathrm{R}}$ Spinor was in $4 /$ of $S O(1,5) \otimes 4$ of $S O(5)_{R}$ with the reality condition.

We get

$$
\mathrm{SO}(1,3) \times \mathrm{SO}(2) \times \mathrm{SO}(3)_{\mathrm{R}} \times \mathrm{SO}(2)_{\mathrm{R}}
$$

$$
\left(D_{+} \oplus \bar{D}_{-}\right) \otimes\left(D_{+} \oplus D_{-}\right)
$$

$$
D_{+} \quad \otimes D_{+}
$$

$$
D_{+}
$$

$$
\otimes D_{-}
$$

Reality condition removes half of them.

The spinors are in $\begin{array}{cc}\mathrm{SO}(1,3) \times \mathrm{SO}(2) \times S O(3)_{\mathrm{R}} \times \mathrm{SO}(2)_{\mathrm{R}} \\ \mathrm{L}_{+} & \otimes \\ \mathrm{R}_{\oplus} \\ & \mathrm{L}_{+} \otimes\end{array}$
Were turning on $\mathrm{SO}(2)$ curvature. Destroys all SUSY.

$$
D_{\mu} \varepsilon=\left(\partial_{\mu}+\Gamma_{\mu}\right) \varepsilon .
$$

Let's set $S O(2)_{\mathrm{R}}$ curvature $=\mathrm{SO}(2)$ curvature.

$$
D_{\mu} \varepsilon=\left(\partial_{\mu}+\Gamma_{\mu} \pm A_{\mu}\right) \varepsilon \quad \text { with } \Gamma_{\mu}=A_{\mu}
$$

The spinors in $\mathbb{D}_{+} \otimes \mathbb{D}_{-}$can be constant!

$$
\mathrm{SO}(3,1)<S O(3)_{R} \simeq S \cup(2)_{R}
$$

Ad $\mathcal{N}=2$!

Five scalars were vectors of $\mathrm{SO}(5)_{\mathrm{R}}$

$$
\underbrace{\phi_{2}}_{S_{1}(2)_{R}} \underbrace{\phi_{3} \phi_{4} \phi_{5}}_{S_{3}(3)_{R}}
$$

Two of them couple to $\mathrm{SO}(2)_{\mathrm{R}}$, now set to $\mathrm{SO}(2)$
They now effectively form a (co)tangent vector of the surface.

$$
\begin{aligned}
D_{\mu}\left(\phi_{1}+i \phi_{2}\right) & =\left(\partial_{\mu}+A_{\mu}\right)\left(\phi_{1}+i \phi_{2}\right) \\
& =\left(\partial_{\mu}+\Gamma_{\mu}\right)\left(\phi_{1}+i \phi_{2}\right) .
\end{aligned}
$$

Let $\Phi(z, \bar{z})=\left(\phi_{1}+i \phi_{2}\right) d z$.
$z=x^{\prime}+i x^{2}$: local coordinate on C.

We can now define 4d $\mathrm{N}=2$ supercharges. When are they preserved?
$\delta_{\varepsilon} \psi=0$ leads to the conditions

$$
\left\{\begin{array}{l}
d \Phi(z, \bar{z})=\bar{\partial} \Phi \wedge d \bar{z}=0 \leadsto \Phi=\Phi(z) . \\
\partial \phi_{3}=\partial \phi_{4}=\partial \phi_{5}=0
\end{array}\right.
$$

We're forced to set $\phi_{3,4.5}=$ const.
but $\Phi(z)$ can be nontrivial!

We forget $\phi_{3,4,5}$ for the rest of the talk.

So far we talked about I M5-brane on C.
How about N M5-branes on C? We have one-forms

$$
\phi^{(1)}(z), \phi^{(2)}(z), \cdots, \phi^{(1)}(z) .
$$

But we can't distinguish an M5 from another.
Let λ be an auxiliary one-form. Then

$$
\begin{aligned}
& \left(\lambda-\phi^{0}(z)\right)\left(\lambda-\phi^{(2)}(z)\right) \cdots\left(\lambda-\phi^{(N)}(z)\right) \\
& \quad=\lambda^{N}+u_{1}(z) \lambda^{N-1}+u_{2}(z) \lambda^{N-2}+\cdots+u_{N}(z)
\end{aligned}
$$

contains the invariant info. $u_{k}(z)$ are k differentials:

$$
\begin{aligned}
u_{k}(z) & =a(z) d z^{k} \\
& =b(w) d w^{k}
\end{aligned} \rightarrow b(w)=a(z)\left(\frac{d z}{d w}\right)^{k} .
$$

The equation

$$
0=\lambda^{N}+u_{1}(z) \lambda^{N-1}+u_{2}(z) \lambda^{N-2}+\cdots+u_{N}(z)
$$

characterize N M5-branes wrapped on C .
At each point z on C, we have N solutions:

What are the supersymmetric states?

A string can extend between 2 M5-branes.

$\operatorname{mas}=\int_{A}\left|\phi^{(i)}-\phi^{(j)}\right|>\int_{A} \phi^{(i)}-\phi^{(j)} \mid$
This is known/believed to give an $\mathrm{N}=2$ vector multiplet.

Instead of thinking of an integral over C,

This can be thought of an integral of λ over Σ

$$
\int_{A}\left(\phi^{(i)}-\phi^{(j)}\right)=\int_{A^{i}-A^{j}} \lambda
$$

Another possibility is

This is known to give an $\mathrm{N}=2$ hypermultiplet.
There would be more possibilities, but not well understood.

Summarizing, starting from $6 \mathrm{~d} N=(2,0)$ theory of type A_{N-1}, we get an $4 \mathrm{~d} N=2$ theory characterized by

$$
\Sigma: 0=\lambda^{N}+u_{1}(z) \lambda^{N-1}+u_{2}(z) \lambda^{N-2}+\cdots+u_{N}(z)
$$

where BPS particles have masses

$$
\int_{A} \lambda, A: \text { a closed contour of } \lambda \text {. }
$$

(Gaiotto-Moore-Neitzke '09
Sec. 3 is a nice review on the topics covered sofar.

Klemm-Lerche-Mayr-- Vafa-Warner '96

But what's this $\mathrm{N}=2$ theory???

Conversely, Seiberg and Witten observed that given an $N=2$ theory with gauge group G and matter fields in the rep. R,
there will be a pair of

> a Riemann surface Σ
> and a one-form λ on it
such that masses of BPS particles are given by

$$
\int_{A} \lambda
$$

$$
\text { , A: cloced path on } \Sigma
$$

But how can we find (Σ, λ) given (G, R) ?

Nobody has been able to answer this question in full generality so far.

It's YOU who will solve this important problem.

That said, there are a few methods developed:

- Guess and check consistency (SW, I994~)
- Geometric engineering (Vafa et al. 1997~)
- Plumbing M5-branes (Gaiotto et al. 2009~)
- Instanton integral (Nekrasov et al. 2003~)
l'd be happy to talk about each of them in detail, but the time constraint doesn't allow me.

Let's consider $\mathrm{N}=2$ pure $\mathrm{SU}(\mathrm{N})$ theory.

$$
\begin{aligned}
& Q_{1} C_{\lambda_{\alpha}^{\prime}}^{A_{\mu}} \lambda_{\lambda_{\beta}^{2^{\prime}}}^{Q_{2}} \\
& Q_{2}\left(\phi^{Q_{1}}\right)^{\beta} \text { complex scalar in adj. }
\end{aligned}
$$

The potential is

$$
V=\operatorname{tr}\left[\phi, \phi^{+}\right]^{2}
$$

So there's a family of vacua.

$$
\phi=\operatorname{diag}\left(a_{1}, a_{2}, \cdots, a_{N}\right)
$$

for $G=\operatorname{SU}(N)$

One-loop running of coupling is easy to calculate:

$$
\frac{\partial}{\partial \log \Lambda_{\text {cut }}} \frac{8 \pi^{2}}{g^{2}}\left(\Lambda_{\text {cut }}=2 N\right.
$$

The dynamical scale is

$$
\Lambda^{2 N}=\Lambda_{\text {cutoff }}^{2 N} \exp \left(\frac{8 \pi^{2}}{g^{2}}(\Lambda)+i \theta\right)
$$

Consider the weakly-coupled regime

$$
\Lambda \ll a_{i}
$$

We have W-bosons with mass

$$
m=\left|a_{i}-a_{j}\right|
$$

We also have monopoles:
Take an SU(2) 't Hooft-Polyakov monopole, and embed into the (i,j)-th block
with the mass

$$
\left.\begin{array}{ccc}
i \\
j & \rightarrow & 0 \\
\rightarrow & i \\
i & \uparrow_{j} \\
& j
\end{array}\right)
$$

$$
\frac{4 \pi}{g_{2}}\left(^{\prime \prime} a^{\prime \prime}\right)\left|a_{i}-a_{j}\right|^{\prime} \sim\left(\frac{2 N}{2 \pi} \log \frac{a^{\prime \prime}}{\Omega}\right)\left|a_{i}-a_{j}\right|
$$

Compare them to the mass of W-bosons:

$$
\left|a_{i}-a_{j}\right|
$$

The ratio encodes the running of the gauge coupling.

The configuration of N M5-branes is this:

$$
\begin{gathered}
0=\lambda^{N}+u_{2}(z) \lambda^{N-2}+\cdots+u_{N}(z) \text { where } \\
u_{2}(z)=u_{2}\left(\frac{d z}{z}\right)^{2}, u_{3}(z)=\underline{u_{3}}\left(\frac{d z}{z}\right)^{3} \cdots u_{N-1}(z)=\underline{u_{N-1}}\left(\frac{d z}{z}\right)^{N-1}, u_{N}(z)=\left(\Lambda^{N} z+\frac{u_{N}}{}+\frac{\Lambda^{N}}{z}\right)\left(\frac{d z}{z}\right)^{N}
\end{gathered}
$$

Writing $\lambda=\frac{x d z}{z}$, we have

$$
-\left(\frac{\Lambda^{N}}{z}+\Lambda^{N} z\right)=x^{N}+\underline{u_{2}} x^{N-2}+\underline{u_{3}} x^{N-3}+\cdots+\underline{u_{N}}
$$

which is a form of the Seiberg-Witten curve due to [Martinec-Warner'96] for pure SU(N) theory. But that, won't work with this younger audience. quoting of a once well-known fact

The curve is

$$
-\Lambda^{N}\left(z+\frac{1}{z}\right)=x^{N}+\underline{u_{2}} x^{N-2}+u_{3} x^{N-3}+\cdots+\underline{u_{N}}
$$

Let's study the situation $\quad \Lambda \ll\left|u_{k}\right|^{1 / k}$ Factorize the u's as follows

$$
-\Lambda^{N}\left(z+\frac{1}{z}\right)=\left(x-\underline{a}_{1}\right)\left(x-\underline{a}_{2}\right) \cdots\left(x-\underline{a}_{N}\right)
$$

Then the curve looks like

First, you see W-bosons:

They exist for each pair of (i,j).
The mass is approximately

$$
\int \lambda=\int x \frac{d z}{z}=\int\left(a_{i}-\underline{a}_{j}\right) \frac{d z}{z}=2 \pi i\left(\underline{a}_{i}-\underline{a}_{j}\right)
$$

Second, you see monopoles:

$$
\int \lambda=\int x \frac{d z}{z} \sim\left(2 \log _{\frac{1}{N} a^{N}} \Lambda^{N}\right)\left(a_{i}-a_{j}\right)
$$

so, we get the expected log running, with correct β.
To see this, compare it with W-boson: $2 \pi i\left(\underline{a}_{i}-a_{j}\right)$

$$
\leadsto \frac{4 \pi}{g^{2}} \sim \frac{2 N}{2 \pi} \log \frac{" a "}{\Lambda} .
$$

Explicit form of " a " can be found from the curve.

Log has branches, reflected by the existence of dyons.

whose mass is

$$
\left(2 \log \frac{n^{N}}{a^{N / \prime}}+2 \pi i m\right)\left(\underline{a_{i}}-\underline{a}_{j}\right)
$$

Note that there are only $(\mathrm{N}-\mathrm{I})$ tower of dyons,

not for every pair of (i, j). This agrees with an old semiclassical analysis of the monopole moduli space.

Compare this with $\mathrm{N}=4 \mathrm{SU}(\mathrm{N}) \mathrm{SYM}$.
Instead of a sphere, we had a torus.

So, we have monopoles for each pair of (i,j)
This is supported by semi-classical analysis on the monopole moduli space.

Anyway, the configuration

$$
\wedge^{N}\left(\frac{1}{z}+z\right)=x^{N}+u_{2} x^{N-2}+\cdots+u_{N}
$$

reproduces the spectrum of pure $\mathrm{SU}(\mathrm{N})$ when weakly coupled,

$$
\Lambda \ll\left|u_{k}\right|^{1 / k}
$$

Holomorphy of $\mathrm{N}=2$ low-energy Lagrangian guarantees it should then be OK for all values of u_{k}. Two branch points can collide, for example,

producing almost massless monopoles, etc.

Let's consider just 2 M5-branes and a 3-punctured sphere

You see four paths, producing four hypermultiplets with masses

$$
\begin{array}{cc}
p \sim \frac{1}{2}\left(m_{A}+m_{B}+m_{C}\right) & \frac{1}{2}\left(m_{A}-m_{B}+m_{C}\right) \\
\frac{1}{2}\left(m_{A}+m_{B}-m_{C}\right) & \frac{1}{2}\left(m_{A}-m_{B}-m_{C}\right) \\
x \text { : poles of } u_{2} & q
\end{array}
$$

x : zeros of u_{2}

Take two copies, and connect them

We find:

- an SU(2) vector boson
- two doublets with mass $\frac{1}{2}\left(m_{A} \pm m_{B}\right)$ from the left
- two doublets with mass $\frac{1}{2}\left(m_{C} \pm m_{D}\right)$ from the right
- monopoles connecting the left and the right

It's $S U(2)$ with four flavors.

Note that the coupling is tunable.

W-boson ~a monopole $\sim a \log q$

Agrees with the fact that $\beta=0$. for $\operatorname{SU}(2)+4$ flavors What happens when it becomes very strong?

$$
\begin{aligned}
& x \text { : poles of } u_{2} \\
& x: \text { zeroes of } u_{2}
\end{aligned}
$$

__ quarks $\frac{1}{2} m_{A} \pm m_{B}$
\square monopoles

You get $S U(2)$ with four flavors again, but the mass is shuffled; new quarks were monopoles. Reproduces the S-duality originally found in [SW '94]

Similarly, for N M5-branes,

represents $\mathrm{N} \times \mathrm{N}$ hypermultiplets. Then

is $\mathrm{SU}(\mathrm{N})$ with 2 N flavors, with $\beta=0$.

The coupling is tunable.

What happens when it's become very strong?

In contrast to $\mathrm{SU}(2)$, it's not the same.
I don't have time to describe it in detail,
 but the conclusion is that $\operatorname{SU}(\mathrm{N})$ with 2 N flavors is dual to
> an SU(2) vector boson coupled to
> - a doublet hypermultiplet
> - a CFT called RN [Chacaltana-Distler 'IO]

Moral: you started from a strange thing (M5). So you got a strange thing in 4d.

