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0 Overview of the lectures
The name of this slot is Theory of Elementary Particles but it is used essentially as Quantum
Field Theory III following Quantum Field Theory I and II. The aim of the lectures is to learn
various theoretical aspects of quantum field theory (QFT) in the context of the Standard Model.
The experimental aspects will be covered by Elementary Particle Physics, I, II and III.

One of the difficulties involved in studyingQFT is that it not only involvesmany new conceptual
points but also many technically complicated computations. This makes it rather hard for a first
learner to distinguish which is which. I would aim to use simpler toy models which emphasize
the conceptual points, with the caveat that the conclusions obtained from them cannot usually
be compared with experiments. My normalization of various fields does not follow the accepted
conventions in the Standard Model. So if you actually do computations for it, please do not use
mine.

I will use the unit where c = ~ = 1. The metric is mostly plus, so xµxµ = −t2 + x2 + y2 + z2.
In fact I will usually work in the Wick-rotated Euclidean space where xµxµ = x2 + y2 + z2 + t2.

An analysis in QFT usually follow the following path:

1. The starting point is the classical action, e.g.

S =

∫
d4x(−1

2
∂µφ∂

µφ− 1

2
m2φ2). (0.1)

2. We quantize it into a quantum theory. There are two methods with the same result:

(a) by the canonical quantization, or
(b) by the path integral.

3. We now compute the correlation functions

〈O1(x1)O2(x2) · · · On(xn)〉. (0.2)

Again there are various methods:

(a) perturbative expansions,
(b) numerical simulations, and
(c) analytic exact results in some special cases

4. From the correlation functions, we extract experimentally measurable quantities, e.g.

(a) by Lehmann-Symanzik-Zimmerman (LSZ) reduction to obtain scattering amplitudes,
(b) by Kubo formula to obtain linear responses.

In this lecture, I will mostly concentrate on the steps 1, 2 and 3, leaving the step 4 for other
lecturers. I will mostly use the path integral methods. It is known that there are QFTs which do
not have the classical action, i.e. there are no steps 1 and 2. In fact one of my main areas of study
is exactly such QFTs, but I do not think I have much time for that in this set of lectures.
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1 Recap: path integrals and Feynman diagrams

1.1 Gaussian integration and Wick’s theorem
The bedrock of the path integral is the Gaussian integral∫ ∞

−∞
dxe−ax

2/2 =

√
2π

a
. (1.1)

This is in some sense the 0d quantum field theory: since there are no spacetime directions, the
∂µφ∂

µφ term in (0.1) disappears. Then the Gaussian integral (1.1) is the partition function of the
0d QFT. For a function f(x), its expectation value is denoted by

〈f(x)〉 :=

∫∞
−∞ dxf(x)e−ax

2/2∫∞
−∞ dxe

−ax2/2 . (1.2)

It is clear that 〈x2n+1〉 = 0. We have

〈x2n〉 =
1

an
(2n− 1) · (2n− 3) · · · 3 · 1 (1.3)

Note that the right hand side counts the number of possible contractions, weighted by the propaga-
tor. This is Wick’s theorem. Any other perturbative path integral computations are no more than
complicated versions of (1.1) and (1.3).

For example, for an n× n matrix aij , we have∫
dx1 · · · dxne−aijx

ixj/2 = (2π)n/2(detA)−1/2. (1.4)

1.2 Non-convergence of the perturbative expansion
Let us next consider ∫ ∞

−∞
dxe−ax

2/2−bx4 =

√
2π

a
〈e−bx4〉. (1.5)

This integral defines one of the Bessel functions. This can be computed by a perturbative expan-
sion:

〈e−bx4〉 = 1− b〈x4〉+
b2

2
〈x8〉 − b3

6
〈x12〉+ · · · = 1− 3

b

a2
+ 105

b2

a4
− 10395

b3

a6
+ · · · . (1.6)

This does not converge. One way to see that is to note that the coefficients grow factorially due to
(1.3). Therefore the convergence radius is zero. Another way to see that is the following. Suppose
the convergence radius is nonzero. Then it would converge also for b < 0. But the integral (1.5)
clearly does not converge. This is a contradiction.

In perturbative computations of QFTwe often encounter infinities. There are mainly two types:
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1. The renormalization removes the infinities in the perturbative expansion and produces Taylor
series like (1.6) with finite coefficients. In the 0d QFT (1.5) we did not encounter this issue.

2. The resulting perturbative series usually do not converge, essentially due to the same issue
as the non-convergence of the perturbative expansion of the Bessel function we saw above.
This issue already appears in 0d QFTs, and persists in QFTs in more than 0 dimensions.

We physicists do not often care about this second type of divergence, and evaluate the series by
truncating it (usually to the order we are able to compute). Somehow the resulting numerical
answer is known to agree with experiments quite well.

1.3 0+1d free scalar field
Let us go on to quantum field theory. The simplest example you learn is the free scalar field, whose
action is

S =

∫
dDx(−1

2
∂µφ∂

µφ− 1

2
m2φ2). (1.7)

The associated path integral is
Z =

∫
[Dφ]eiS. (1.8)

The Wick-rotated, Euclidean version has the action

SE =

∫
dDx(

1

2
∂µφ∂

µφ+
1

2
m2φ2). (1.9)

and the path integral
ZE =

∫
[Dφ]e−SE . (1.10)

When D = 0, this is really the Gaussian integral we just saw. When D = 0 + 1, the action is

S =

∫
dt(

1

2
(∂tφ)2 − 1

2
m2φ2). (1.11)

Let us use a different symbol X and ω for what we wrote φ andm:

S =

∫
dt(

1

2
(Ẋ)2 − 1

2
ω2X2). (1.12)

This is simply the action of a particle of a mass 1 moving along a line X under the potential
V = ω2X2/2. Put it differently, this is a quantum mechanical harmonic oscillator.

We all know that the energy eigenvalues are E = ω(1
2

+ n), and so the partition function is

Z = tr e−βH = e−ωβ/2(1 + e−ωβ + · · · ) =
1

eωβ/2 − e−ωβ/2
. (1.13)

Let us reproduce it via the path integral. We use the Euclidean version

Z ∝
∫

[DX(t)] exp(−
∫
dt(

1

2
∂tX∂tX +

1

2
ω2X2)) (1.14)
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where X(t) is now a periodic function on t ∈ [0, β]. Following (1.4), this can be schematically
written as

Z ∝ [det(−∂2
t + ω2)]−1/2. (1.15)

To actually compute it, we diagonalize the operator inside det by expandingX(t) into Fourier
modes Xne

i(2π/β)nt for n ∈ Z. We find

Z ∝ 1

ω

∏
n≥1

1

(2π/β)2n2 + ω2
∝ 1

βω

∏
n≥1

1

1 + ( βω
2πn

)2
, (1.16)

where we allowed β-dependent but ω-independent infinite proportionality constants. We now note
that the infinite product expansion

x

ex/2 − e−x/2
=
∏
n≥1

1

1 + ( x
2πn

)2
, (1.17)

and see the equivalence between the partition function (1.13) as computed in the canonical quan-
tization and the path integral result of(1.16).

Exercise 1.1. Wewere not careful about the β-dependence of the infinite proportionality constants.
If you would like to be more careful, what should be done?

If we only need the vacuum (or ground state) energy E0, we note that logZ ∼ −βE0 in the
large β limit. Writing p = 2πn/β, we see that there are βdp/(2π) modes per interval dp, so we
have

logZ ∼ −1

2
β

∫
dp

2π
log(p2 + ω2) ∼ −1

2
β

∫
dp

2π
log(1 + ω2/p2) = −βω

2
, (1.18)

where ∼ means that we added/subtracted β-dependent ω-independent constants.

1.4 φ4 interaction in 0+1d
We now consider the model with the action

S =

∫
dt(

1

2
(Ẋ)2 − (

1

2
ω2X2 + λX4)). (1.19)

Let us find the ground state energy using the Feynman diagram. We use the Euclidean version:

Z =

∫
[DX] exp(−

∫
dt(Ẋ)2 +

1

2
ω2X2 + λX4) (1.20)

and therefore
Z/Z0 = 〈exp(−

∫
dtλX4)〉0 (1.21)
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where the subscript 0 means that it is evaluated with λ = 0. We extract the ground state energy E
via logZ ∼ −βE. Writing

E = ω/2 + c1λ+ c2λ
2 + · · · , (1.22)

we know that
Z/Z0 = −βc1λ− (βc2 −

1

2
(βc1)2)λ2 − · · · . (1.23)

This allows us to read off c1,2,... from the computation of Z/Z0.
We first Fourier-transform the interaction term to∫

dtλX4 =

∫
dp

2π

dq

2π

dr

2π

ds

2π
2πδ(p+ q + r + s)X(p)X(q)X(r)X(s) (1.24)

and the propagator is
〈X(p)X(q)〉 = (2π)δ(p+ q)

1

p2 + ω2
. (1.25)

Then the leading contribution to Z/Z0 is simply given by the Feynman diagram shown in Fig. 1.
The value can be evaluated as follows:

−λ〈
∫
dtλX4〉0 = −λ

∫
dp

2π

dq

2π

dr

2π

ds

2π
2πδ(p+ q + r + s)〈X(p)X(q)X(r)X(s)〉0 (1.26)

= −3λ(2πδ(0))(

∫
dp

2π

1

p2 + ω2︸ ︷︷ ︸
=1/(2ω)

)2 = −β · 3λ

4ω2
. (1.27)

Here we recall that 2πδ(p) =
∫
dteitp, so by setting p = 0 we know that 2πδ(p) acts as β =

∫
dt

in the large β limit. Comparing with (1.22) and (1.23), we find that the ground state energy is

E =
ω

2
+

3λ

4ω2
(1.28)

to this order.
In the next order, we see three Feynman diagrams, see Fig. 1 again. The diagram a) contributes

exactly as 1/2 the square of (1.27), so from (1.23) we see that the second order contribution to E
has two contribution, one is

b) = βλ2 · 1

2
· 6 · 6(

∫
dp

2π

1

p2 + ω2
)2(

∫
dp

2π

1

(p2 + ω2)2︸ ︷︷ ︸
1/(4ω3)

) = β
9

4

λ2

ω5
(1.29)

and another is

c) = β · λ2 1

2
· 24

∫
dpdqdr

(2π)3

1

p2 +m2

1

q2 +m2

1

r2 +m2

1

(p+ q + r)2 +m2︸ ︷︷ ︸
=1/(32ω5)

= β
3

8

λ2

ω5
. (1.30)

In total, we find

E =
ω

2
+

3λ

4ω2
− 21

8

λ2

ω5
+ · · · (1.31)

to this order. Reassuringly, what we obtained so far reproduces the results obtained from the
standard perturbation theory in quantum mechanics, see Sec. 1.5 and in particular (1.47).
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Figure 1: Feynman diagrams for the ground state energy.

Exercise 1.2. Carry out the computation in the next order, i.e. to the order λ3.

Exercise 1.3. Write a program in your favorite computer algebra system to perform the computa-
tion in an arbitrary order, and compare its result against the result from the standard perturbation
theory in quantum mechanics to your satisfaction.

1.5 Aside: Brillouin-Wigner perturbation theory in quantum mechanics
Here we quickly recall Brillouin-Wigner perturbation theory in quantum mechanics. (I do not plan
to talk about this subsection in the actual lecture.)

We would like to solve

(H0 + gV )|ψn(g)〉 = En(g)|ψn(g)〉 (1.32)

where ψn(g) is the n-th eigenstate, with the normalization

〈ψn|ψn(g)〉 = 1. (1.33)

We start by rewriting (1.32) as

(En(g)−H0)|ψn(g)〉 = gV |ψn(g)〉. (1.34)

We first hit both sides of (1.34) from the right by 〈ψn| and find

En(g)− En = 〈ψn| gV |ψn(g)〉. (1.35)

This means that if we know ψn(g) up to gi, we know En(g) up to gi+1.
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We next apply 〈ψm| (m 6= n):

(En(g)− Em) 〈ψm|ψn(g)〉 = g 〈ψm|V |ψn(g)〉 (1.36)

which means

|ψn(g)〉 = |ψn〉+ g

(∑
m6=n

|ψm〉
1

En(g)− Em
〈ψm|

)
V |ψn(g)〉. (1.37)

We now introduce
Rn(g) =

∑
m 6=n

|ψm〉
1

En(g)− Em
〈ψm| (1.38)

with which we can write

|ψn(g)〉 = |ψn〉+ gRn(g)V |ψn(g)〉 (1.39)
= |ψn〉+ gRn(g)V |ψn〉+ g2Rn(g)V Rn(g)V |ψn(g)〉 (1.40)
= |ψn〉+ gRn(g)V |ψn〉+ g2Rn(g)V Rn(g)V Rn(g)V |ψn(g)〉 (1.41)

ad infinitum. En(g) can then be found by (1.35).
So far we did not make any approximation. We perform the same expansion repeatedly and

replace the final |ψn(g)〉 by |ψn〉. We obtain

|ψn(g)〉 = |ψn〉+ gRn(g)V |ψn〉+ g2Rn(g)V Rn(g)V Rn(g)V |ψn〉+ · · · (1.42)

We now multiply 〈ψn| gV from the right and obtain

En(g) = En+g 〈ψn|V |ψn〉+g2 〈ψn|V Rn(g)V |ψn〉+g3 〈ψn|V Rn(g)V Rn(g)V |ψn〉+· · · . (1.43)

We note that the denominator of Rn(g) contains En(g) itself, which needs to be expanded using
(1.43). This is the Brillouin-Wigner perturbation, which is more economical than the very basic
Rayleigh-Schrödinger perturbation.

For example, the g3-contribution to En(g) is a sum of g3 〈ψn|V Rn(g)V Rn(g)V |ψn〉 where
Rn(g) is replaced by Rn(0) and g2 〈ψn|V Rn(g)V |ψn〉 where we evaluate Rn(g) to the first order
in g. The latter is given by

1

En(g)− Em
=

1

En − Em
− 1

En − Em
(En(g)− En)

1

En − Em
(1.44)

=
1

En − Em
− 1

En − Em
g 〈ψn|V |ψn〉

1

En − Em
+O(g2). (1.45)

In total, we find

E(3)
n = 〈ψn|V Rn(0)V Rn(0)V |ψn〉 − 〈ψn|V Rn(0)Rn(0)V |ψn〉 〈ψn|V |ψn〉 . (1.46)

For an actual computation it is useful to use any computer algebra system of your liking.
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Exercise 1.4. Perform this computation for the example where H = 1
2
(p2 + x2) + gx4.

Answer. My sample implementation follows:

(* tell Mathematica how operators act on the states*)

Act[{c___, a_ + b_}, psi_] := Act[{c, a}, psi] + Act[{c, b}, psi];
Act[a_, psi_ + phi_] := Act[a, psi] + Act[a, phi];
(* Ket[n] is the unperturbed n-th eigenstate*)

Act[a_, c_ Ket[n_]] := c Act[a , Ket[n]];
(* A is the annihilator and AD is the creator*)

Act[{c___, A}, Ket[n_]] := Sqrt[n] Act[{c}, Ket[n - 1]];

Act[{c___, AD}, Ket[n_]] := Sqrt[n + 1] Act[{c}, Ket[n + 1]];

Act[{}, psi_] := psi;
(* This is the X^4 operator *)

V[psi_] := Act[{A + AD, A + AD, A + AD, A + AD}, psi]/4;
(* Define the operation to extract the coefficient of |0>*)

Proj[psi_ + phi_] := Proj[psi] + Proj[phi];
Proj[c_ Ket[n_]] := c Proj[Ket[n]];
Proj[Ket[n_]] := If[n == 0, 1, 0];

(* Define the operator R*)

R[order_, psi_ + phi_] := R[order, psi] + R[order, phi];
R[order_, c_ Ket[n_]] := c R[order, Ket[n]];
R[order_, Ket[n_]]:=If[n == 0, 0, Ket[n]/(Energy[order]-(n+1/2))];
(* State[n] is the perturbed n-th eigenstate *)

(* Energy[n] is the perturbed n-th eigenvalue *)

State[0] = Ket[0];
Energy[0] = 1/2;

VState[order_] := VState[order] =

V[State[order] // Normal // Expand] // Expand;
Energy[order_] := Energy[order] =

Energy[0]+g Proj[ VState[order-1]]+O[g]^(order+1) //Normal;
State[order_] := State[order] =

State[0]+g R[order-1, VState[order-1]]+O[g]^(order+1) //Normal;
(*This will compute the perturbative series to g^20*)

Energy[20]

E0(g) =
1

2
+

3g

4
− 21g2

8
+

333g3

16
− 30885g4

128
+

916731g5

256
− 65518401g6

1024
+

2723294673g7

2048

− 1030495099053g8

32768
+

54626982511455g9

65536
− 6417007431590595g10

262144
+O

(
g11
)
. (1.47)
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1.6 Vacuum energy of a 3+1d free scalar field
Let us finally talk about 3+1d QFT.We simply consider the free massive scalar field with the action

S =

∫
d4x(−1

2
∂µφ∂

µφ− 1

2
m2φ2). (1.48)

The Euclidean path integral is then

Z ∝
∫

[Dφ] exp(−
∫
d4x(

1

2
|∂µφ|2 +

1

2
m2φ2)). (1.49)

We can evaluate logZ as in 0+1d.
Here we put the system on a large spacetime box of size L1,2,3,4. Then we see it behaves as

logZ ∼ L1L2L3L4E where E is the energy density per spatial volume, where

E ∼ 1

2

∫
d4p

(2π)4
log(p2 +m2) ∼ 1

2

∫
d4p

(2π)4
log(1 +m2/p2). (1.50)

where ∼ allows an addition/subtraction ofm-independent constants, see (1.18) for the 0+1d case.
We see that this still diverges. Taking the derivative w.r.t. m2 three times, we find that the

integral converges and

(
∂

∂m2
)3E =

1

2

∫
d4p

(2π)4

2

(p2 +m2)3
=

2π2

(2π)2

∫ ∞
0

p3dp

(p2 +m2)3
=

1

32π2m2
. (1.51)

Integrating w.r.t.m2 three times, this means that the vacuum energy density is

E = am4 + Λ2m2 +
1

64π2
m4 log

m2

Λ′2
. (1.52)

where a, Λ and Λ′ are three integration constants (where a is dimensionless and Λ, Λ′ has a di-
mension of energy.)

Note that this is in principle measurable, since the vacuum energy density acts as cosmological
constants. Therefore, if the massm slowly varies in a cosmological timescale, this would manifest
as a slow variation of the cosmological constant. The same computation also appears as an inter-
mediate step in the evaluation of the Coleman-Weinberg potential, which describes how the scalar
potential is quantum mechanically modified.

Exercise 1.5. Perform the computation in the different spacetime dimensions. What is the physical
interpretation in the very low dimensional case, say in 0d or in 0+1d?

1.7 The Casimir effect
Let us next consider a massless scalar field in 0+1d, but with the constraint that the spatial direction
is periodically identified, x ∼ x+ L. The action is as always

S =

∫
dtdx(−∂µφ∂µφ− V0) (1.53)
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where we included a constant term V0. The vacuum energy V is then

V = LV0 +
∞∑
n=1

En, En =
2πn

L
(1.54)

We regularize by writing it as

V = LV0 +
∞∑
n=1

e−En/ΛEn = LV0 +
LΛ2

2π
− 1

12

2π

L
+O(Λ−4), (1.55)

where Λ is a large energy cutoff. This means that we can renormalize it by taking V0 = −Λ2/(2π),
and the vacuum energy is found to be

V = − 1

12

2π

L
. (1.56)

Exercise 1.6. Perform the same computation in the case of a massive scalar field.

The same computation can be performed for a massless free scalar in 3+1d, with one spatial
direction restricted to 0 < x < L, with the Dirichlet boundary condition φ(x = 0) = φ(x = L) =

0. The energy density turns out to be

E = − π2

1440L4
. (1.57)

Exercise 1.7. Compute it.

For the electromagnetic field within two perfectly conducting plates, we need to multiply it by a
factor of two, accounting for two polarizations. This is the Casimir effect, and has been measured,
see Fig. 2.

We now know that we have a nonzero cosmological constant. The measured value is about
10−29g/cm3. The Casimir energy of the electromagnetic field will be comparable to this when

~cπ2

720L4
∼ 10−29gc2/cm3, (1.58)

which is when
L ∼ 25µm. (1.59)

Exercise 1.8. Is my computation correct? If so, why is the current cosmological constant, which
is related to the largest scale in the universe, has such an ordinary looking value as (1.59)?
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large. This drift was the result of a variety of environmen-
tal factors, most notably temperature variations. Roughly
10% of the upydown sweeps were rejected because anoma-
lously large drift resulted in an unsatisfactory convergence
for the fit, as evidenced by an anomalously large x2, a
nonphysical value for a0, and an inconsistent result for b
which was quite constant. Also, those sweeps where the
net change in dV between start and finish corresponded
to a force greater than 4 3 1025 dyn were rejected; in all,
the final data set comprises 216 upydown sweeps. Quite
often, as the absolute separation drifted, the plates would
contact before the end of a complete up sweep. The step
at which this occurred could be unambiguously determined
by a sudden jump in the feedback signal. Roughly eight
steps on the down sweep had to be rejected because af-
ter such a large perturbation, the feedback system required
several minutes to reestablish equilibrium.
Assuming that the functional form for the Casimir force

is correct, its magnitude was determined by using linear
least squares to determine a parameter d for each sweep
such that

Fm
c said ≠ s1 1 ddFT

c said 1 b0 . (9)
In this context, b0 should be zero, and for the complete
data set, b0 , 5 3 1027 dyn (95% confidence level).
The average over the 216 sweeps gives d ≠ 0.01 6 0.05,
and this is taken as the degree of precision of the
measurement. There was no evidence for any variation
of d depending on the region of the plates used for the
measurement.
The most striking demonstration of the Casimir force

is given in Fig. 4. The agreement with theory, with no

FIG. 4. Top: All data with electric force subtracted, averaged
into bins (of varying width), compared to the expected Casimir
force for a 11.3 cm spherical plate. Bottom: Theoretical
Casimir force, without the thermal correction, subtracted from
top plot; the solid line shows the expected residuals.

adjustable parameters, is excellent. It should be noted that
the closest approach is about 0.6 mm; this limit could be
caused by either dirt on the surfaces, or by an instability
of the feedback system. The Casimir force is nonlinear
and increases rapidly at distances less than 0.5 mm. With
the plates separated by 10 mm, the feedback loop became
unstable when a 700 mV potential difference between the
plates was applied; the change in force with distance (the
effective spring constant) in this case is dFeyda ≠ 1.5 3
1023 dynymm, which is equal to dFcyda at a ≠ 0.5 mm.
In conclusion, we have given an unambiguous demon-

stration of the Casimir force with accuracy of order 5%.
Our data is not of sufficient accuracy to demonstrate the
finite temperature correction, as shown in Fig. 4(b). Also,
given a plasma frequency for Au of order vpy2p ¯
6 3 1014 Hz, Eq. (5) gives a correction of order 20%
at the closest spacings; our data does not support such
a deviation. However, the simple frequency dependence
of the electrical susceptibility used in the derivation of
Eq. (5) is not correct for Au, the index of refraction of
which has a large imaginary component above the plasma
frequency; a rough estimate using the tabulated complex
index [14] limits the conductivity correction as no larger
than 3%, which is consistent with our results [15].
I thank Dev Sen (who was supported by the UW NASA

Space Grant Program) for contributions to the early stages
of this experiment, and Michael Eppard for assistance
with calculations.

*Present address: Los Alamos National Laboratory,
Neutron Science and Technology Division P-23, M.S.
H803, Los Alamos, NM 87545.
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2 The Lagrangian of the Standard Model

2.1 Gauge fields
Let Aµ(x) be a vector field (µ = 0, 1, 2, 3) whose components are N × N Hermitean matrices.
This means, for example, Aµ=0(x) is an N × N Hermitean matrix with elements (Aµ=0)ij(x),
i = 1, . . . , N , and each element (Aµ)ij(x) is a function on the spacetime.

We consider the combination
Dµ := ∂µ + iAµ (2.1)

(where the first term ∂µ is implicitly multiplied with the identity matrix). We now consider g(x)

which assigns N ×N unitary matrices at each point x in the spacetime. We then define the gauge
transformation by g(x)

gDµ := gDµg
−1. (2.2)

We define gAµ by the formula
gDµ = ∂µ + igAµ (2.3)

and find
gAµ = gAµg

−1 + ig∂µg
−1. (2.4)

This is the U(N) gauge field.

Exercise 2.1. Check that gAµ is Hermitean.

We can impose the conditions that trAµ = (Aµ)ii = 0. Accordingly, we restrict g(x) so that
det g = 1; such matrices are called special unitary. This guarantees that tr gAµ = 0. This is the
SU(N) gauge field.

Exercise 2.2. Check that tr gAµ = 0.

We now define
iFµν := [Dµ, Dν ] = i(∂µAν − ∂νAµ + i[Aµ, Aν ]). (2.5)

We can easily compute its gauge variation to be
gFµν = gFµνg

−1 (2.6)

and therefore
trFµνF

µν , trFµνFρσε
µνρσ (2.7)

are both gauge invariant.
The classical action of the SU(N) gauge field is then taken to be

SYang-Mills = −
∫
d4x[

1

2g2
trFµνF

µν +
θ

32π2
trFµνFρσε

µνρσ]. (2.8)

g is the coupling constant and θ is the theta angle.
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• We will see later that due to quantum effects g changes as we change the scale we measure
the system.

• Wewill also see later that θ and θ+2π cannot be distinguished, and therefore θ is an angular
parameter.

• Note that this is the math normalization. Physicists usually define Amath
µ = gAphys

µ so that g

does not appear as the coefficient of the trFµνF
µν term. The math normalization obscures

some physics but makes various formulas somewhat shorter.

A U(1) gauge field is simply the Maxwell field. Indeed, for N = 1, an N × N matrix is a
number, and g(x) can be written as g(x) = eiχ(x). Then the transformation law (2.4) becomes

gAµ = Aµ + i∂µχ. (2.9)

The commutator term in (2.5) also drops out, and we simply have

Fµν = ∂µAν − ∂νAµ. (2.10)

The Lagrangian is usually written as

SMaxwell = −
∫
d4x[

1

4e2
FµνF

µν +
θ

32π2
FµνFρσε

µνρσ] (2.11)

where e is the electric charge and θ is again the theta angle.

• The difference in the coefficient 1/2 in (2.8) and 1/4 in (2.11) are not typos but follows the
standard convention in the literature.

• θ is again an angular variable.

• Wewill see later that θ affects the electric charge of a magnetic monopole, so it is in principle
a measurable quantity. It is also known that within a time-reversal-invariant topological
insulator, we have θinside − θoutside = π.

Here we only considered the case when the gauge transformation g(x) is a (special) unitary
N × N matrix, thus forming the group U(N) or SU(N). More generally, we can use whatever
compact Lie group G and its Lie algebra g, so that the components Aµ=0,1,2,3 of the gauge fields
now take values in g. The formulations above can be readily adapted to this more general setting,
after taking care of the normalization of tr.

2.2 Why gauge invariance?
Gauge invariance is required for a massless vector field. Let us briefly recall why. The logic here
is not very precise. See textbooks for details. (The keywords are the BRST transformation and the
Kugo-Ojima condition.)
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In a (naive) covariant quantization, we introduce creation operators a†µ(k) for each µ. The inner
product is

〈0|aµa†ν |0〉 ∝ ηµν . (2.12)

In particular, when the norm of the spatial component 〈0|aµ=3a
†
ν=3|0〉 is positive, the norm of the

temporal component 〈0|aµ=0a
†
ν=0|0〉 is negative. This is bad, because the norm is related to the

probability, and should be positive.
In a gauge-invariant system, one way out is to declare that any modes which arise from gauge

transformation are decoupled and can be removed. For simplicity, say kµ = (k, 0, 0, k). The
equation of motion ∂µFµν = 0 implies that kµa†µ = 0, which means that only a†1, a

†
2, and a

†
0 + a†3

are kept.
Then, the gauge transformation ∂µχ can create the linear combination a†0 + a†µ=3. In the end,

what remains is a†µ=1|0〉 and a
†
µ=2|0〉, which are the two modes transverse to kµ and describe the

two transverse polarizations. Effectively, one mode a†0|0〉 with a negative norm and another mode
a†3|0〉 with a positive norm with exactly the same magnitude paired up and cancelled.

With gauge invariance, a detailed version of this analysis can be done in the presence of inter-
actions, and can show that the norm of the Hilbert space is positive definite, and the probability is
positive. Without gauge invariance, we eventually run into a problem of negative probability.

2.3 Coupling gauge fields to scalars
Consider N complex scalar fields φi(x) (i = 1, . . . , N ). The gauge transformation gij(x) acts as
by a matrix multiplication:

gφ(x) := gφ(x). (2.13)

This is called a scalar in the fundamental representation of U(N) or SU(N).
From the definition of the covariant derivative, we see

g(Dµφ(x)) = gDµφ(x). (2.14)

Then the action
Sscalar kinetic term = −

∫
d4x(Dµφ(x))†Dµφ(x) (2.15)

is gauge invariant, since g†g = id for a unitary matrix.
We can also add a gauge-invariant potential V (φ) to this action. One example is

V (φ) = m2φ†φ+
1

2
λ2(φ†φ)2; (2.16)

then the total action is

Sscalar = −
∫
d4x[(Dµφ(x))†Dµφ(x) + V (φ(x))] (2.17)
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More generally, consider a general gauge groupG and a representation ρwhich isn-dimensional.
This means that ρ(g) is an n × n matrix and ρ(g)ρ(h) = ρ(gh). We introduce φa(x) where
a = 1, . . . , n. The gauge transformation is then defined by

gφ(x) := ρ(g)φ(x). (2.18)

This is called a complex scalar in the representation ρ.
The covariant derivative we should use is

ρ(Dµ) := ∂µ + iρ(Aµ) (2.19)

where the representation matrix ρ(X) for a Lie algebra generator X ∈ g satisfies

ρ(eiεX︸︷︷︸
=g

) = id + iερ(X) + · · · . (2.20)

This guarantees that
ρ(gDµ) = ρ(g)ρ(Dµ)ρ(g)−1 (2.21)

and that the action

Sscalar kinetic term = −
∫
d4x(ρ(Dµ)φ(x))†ρ(Dµ)φ(x) (2.22)

is gauge invariant. Since we cannot use anything other than ρ(Dµ) in the expression above, we do
not typically write ρ here, and simply use (2.15) instead.

Consider in particular the case G = U(1), and the 1-dimensional representation ρq(g) = gq;
note g is a 1 × 1 unitary matrix, i.e. a complex number with absolute value 1. It is easy to check
that ρq(gh) = ρq(g)ρq(h). Consider a scalar φ in this representation; such a field transforms as

gφ(x) = g(x)qφ(x) (2.23)

under the gauge transformation. What should be the covariant derivative? From (2.20) we see
ρq(X) = qX for a Lie algebra generator. This means that the covariant derivative in this case is

ρq(Dµ)φ = (∂µ + iqAµ)φ. (2.24)

Thus we see that this number q is the electric charge of the field φ.
Next, consider the case G = U(1) × SU(2), whose element is parameterized by g = (g1, g2)

where g1 is a complex number of absolute value 1 and g2 is a 2× 2 special unitary matrix. We can
introduce a two-component scalar field with the transformation law

gφ(x) = (g1)qg2︸ ︷︷ ︸
=ρ(g)

φ(x). (2.25)

This is a field ofU(1) charge q in the doublet representation of SU(2). The corresponding covariant
derivative has the form

ρ(Dµ)φ(x) = (∂µ + iqAU(1)
µ + iASU(2)

µ )φ(x). (2.26)

Note that the first two terms on the right hand side are implicitly multiplied by the 2 × 2 identity
matrix, and ASU(2)

µ are themselves 2× 2 matrices.
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2.4 Two-component spinors
Let us consider the group SL(2,C) of 2 × 2 complex matrices g of determinant 1.1 This acts
naturally on Hermitean 2× 2 matrices X by the formula

X 7→ gX = gXg†, (2.27)

since gXg† is also Hermitean.
We parameterize the Hermitean matrix X as

X =

(
t+ z x+ iy

x− iy t− z

)
(2.28)

We note that
detX = t2 − x2 − y2 − z2 (2.29)

is the minus of the standard norm of the Minkowski space R3,1. Therefore

det(gX) = det(gXg†) = (det g)(detX)(det g†) = detX. (2.30)

We define (gx)µ in terms of gX by the formula (2.28). This then means that

(gx)µ(gx)µ = xµxµ, (2.31)

which should be a Lorentz transformation

xµ 7→ (gx)µ := Λ(g)µνx
ν . (2.32)

Note that g = −1 ∈ SL(2,C) keeps X intact. Therefore we constructed a homomorphism
SL(2,C)→ SO(3, 1), which is 2 to 1. For example, consider

SL(2,C) 3 g =

(
eiθ 0

0 e−iθ.

)
(2.33)

By computing gXg−1, one finds that this corresponds to a 2θ rotation around the z axis. So a 2π

rotation around the z axis corresponds to −1 ∈ SL(2,C) and the 4π rotation around the z axis
finally comes back to 1 ∈ SL(2,C).

Exercise 2.3. What does the element

SL(2,C) 3 g =

(
eβ 0

0 e−β

)
(2.34)

do as a Lorentz transformation?

1In this subsection, g is for the spacetime transformation. g is a gauge transformation in most of the other parts of
the notes.
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Exercise 2.4. Write down the Lorentz transformation Λ(g) in (2.32) explicitly.

Two-component spinors are two-dimensional representations of this SL(2,C).2 A left-handed
spinor ψα (α = 1, 2) is transformed as

gψα = gαβψ
β (2.35)

and its complex conjugate, the right-handed spinor ψα̇ (α̇ = 1̇, 2̇) is transformed as

gψα̇ = gα̇
β̇
ψβ̇. (2.36)

Exercise 2.5. Is my convention correct? The choice of±i in front of y in (2.28) ties the handedness
to the discussion, so it should be possible to check if ψα as I defined here leads to massless left-
handed fermion. I confess I have not checked this.

Here we adopt the rule where an index α or α̇ gains or loses the dot when it is taken outside
the bar for the complex conjugation: e.g.

gαβ = gα̇
β̇
. (2.37)

In my convention
ψα̇ = ψα. (2.38)

For two spinors ψα and χα, let us consider the combination

εαβψ
αχβ := det(ψ, χ) := det

(
ψ1 χ1

ψ2 χ2

)
. (2.39)

Here
ε11 = ε22 = 0, ε12 = −ε21 = 1. (2.40)

This is invariant under the Lorentz transformation, since

εαβ(gψ)α(gχ)β = det(gψ, gχ) = det(g · (ψ, χ)) = det g det(ψ, χ) = εαβψ
αχβ. (2.41)

We raise and lower the spinor indices using this εαβ , just as we raise and lower the vector indices µ
using ηµν . (One needs to be extra careful about the signs because ε is antisymmetric while η was
symmetric. I will not be precise about the signs below.) Then we have

εαβψ
αχβ = ψαχα. (2.42)

In this notation, the transformation (2.27) becomes

Xαα̇ 7→ (gX)αα̇ = gαβg
α̇
β̇
Xββ̇. (2.43)

2I would often call them Weyl fermions but particle phenomenologists would probably disagree with my usage.
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We also write (2.28) as
Xαα̇ = σαα̇µ xµ (2.44)

where

σµ=0 =

(
1 0

0 1

)
, σµ=1 =

(
0 1

1 0

)
, σµ=2 =

(
0 i

−i 0

)
, σµ=3 =

(
1 0

0 −1

)
. (2.45)

We can now write down the Lagrangian for a massive two-component fermion ψα:

SWeyl =

∫
d4x[iψα̇σµαα̇∂µψ

α +
m

2
ψαψα +

m

2
ψα̇ψ

α̇]. (2.46)

Note thatmψαψα is nonzero because the fermions ψ anticommute:

ψαψα = εαβψ
αψβ = ψ1ψ2 − ψ2ψ1 = 2ψ1ψ2. (2.47)

This type of the mass term involving a single two-component spinor is called a Majorana mass
term, and a massive fermion of this type is called a Majorana fermion.

A Dirac fermion Ψ has four components, and decomposes into two two-component spinors:

Ψ =

(
ψα
χα̇

)
(2.48)

and the gamma matrices in this basis are

γµ =

(
0 σµα̇α

σµαα̇ 0.

)
(2.49)

Then the Dirac action can be decomposed as follows:

SDirac =

∫
d4x[iΨγµ∂µΨ−mΨΨ] (2.50)

=

∫
d4x[iψα̇σµαα̇∂µψ

α + iχα̇σµαα̇∂µχ
α −mχαψα −mψα̇χα̇]. (2.51)

The mass term now connects two two-component spinors ψ and χ.
In the following we often omit the indices when there are only one sensible way of putting

them. This needs practice but simplifies writing.

Exercise 2.6. Check this decomposition. (I am sorry that the signs and factors written above are
most probably wrong.)
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2.5 Coupling gauge fields to fermions
It is not really different from the coupling of gauge fields to scalars. Let us say that a gauge
transformation g(x) acts on a fermion ψiα(x) via a unitary representation ρ as

gψiα = ρ(g)ijψ
iα. (2.52)

Then
ρ(gDµ)gψ = ρ(g)ij(Dµψ)j. (2.53)

Combining with
gψi = ρ(g)

i

jψ
j, (2.54)

one finds that ∫
d4x[iψσDµψ] (2.55)

is a gauge-invariant Lagrangian.
The mass term will be of the form

mcijεαβψ
iαψjβ. (2.56)

Since εαβ is antisymmetric and ψ anticommutes, cij needs to be symmetric. cij also needs to be
gauge-invariant. Therefore, the mass term is possible only when the representation ρ(g)ij admits
such an invariant symmetric two-index tensor. This is equivalent to the condition that ρ(g)ij is a
strictly real representation.

For example, let G = U(1) and consider a two-component fermion ψ of charge q 6= 0:

gψ = gqψ (2.57)

where g ∈ U(1) is a complex number of absolute value one. We then have

g(ψαψα) = g2qψαψα, (2.58)

and the mass term is not gauge invariant, and therefore is not allowed. To write down a gauge-
invariant mass term, one introduces χ of charge −q with the transformation

gχ = g−qχ. (2.59)

Then
g(ψαχα) = ψαχα (2.60)

is gauge invariant. If we start from a Dirac spinor Ψ and assigns charge +q

gΨ = gqΨ, (2.61)

we obtain a pair of two component spinors ψ, χ of charge +q, −q via the decomposition (2.48).
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Exercise 2.7. Consider a fermion ψiα where i = 1, 2 is the gauge index for SU(2), i.e. it has the
gauge transformation

gψi = gijψ
j (2.62)

for 2× 2 special unitary matrices g. Can you write down a mass term?

2.6 Coupling scalars to fermions
It is also possible to couple scalars to the fermions in a gauge-invariant manner. For example, let
us go back to (2.58). We can compensate this transformation if we have a scalar field φ of charge
−2q, with the transformation

gφ = g−2qφ. (2.63)
Indeed, the term φψαψα is now gauge invariant

g(φψαψα) = φψαψα, (2.64)

and therefore we can consider the gauge-invariant interaction term

SYukawa =

∫
d4x[yφψαψα + yφψα̇ψ

α]. (2.65)

The second term is often abbreviated as c.c. or h.c., standing for the complex conjugate or the
Hermitean conjugate.

2.7 The Lagrangian of the Standard Model
At this point, we can write down the Lagrangian describing a combined system gauge fields, scalar
fields and fermions. We pick the gauge group G = G1 ×G2 × · · · , and two-component fermions
ψiα in some representation ρfermion(g)ij ofG, and scalars φa in some other representation ρscalar(g)ab
of G. Then the Lagrangian has the form

S =

∫ [
−
∑
s

(
1

2g2
(s)

trF (s)
µν F

(s)µν +
θ(s)

32π2
trF (s)

µν F
(s)
ρσ ε

µνρσ

)
− ((Dµφ)†Dµφ+ V (φ))

− (iψσµDµψ +mijψ
iαψjα + c.c.)

− (yaijφ
aψiαψiα + c.c.)

]
.

(2.66)

Here g(s) and θ(s) are the coupling constants and the theta angles for the s-th gauge group Gs,
V (φ) is a gauge-invariant scalar potential,mij is a gauge-invariant mass term, and yaij specifies a
gauge-invariant Yukawa interaction.

It so happened that when Vairocana Buddha3 decided to manifest itself as the real world, it
chose the following G and the scalar/fermion representations.

3Please replace this entity by your favorite creator/universal entity.
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2.7.1 Gauge group

The gauge group is
G = U(1)× SU(2)× SU(3). (2.67)

(OK, it liked one, two, three. Why not.)
We denote its element by

g = (g1, (g2)uv , (g3)ab ) (2.68)

where u, v = 1, 2 and a, b = 1, 2, 3 are indices for SU(2) and SU(3), respectively.
Here, U(1) is the Hypercharge; SU(2) is the Weak Force; and SU(3) is the Strong Force. The

electromagnetic U(1) is the result of the Higgs mechanism acting on the hypercharge U(1) and the
SU(2) weak force.

2.7.2 Scalar

Next, as the scalar, it chose φu=1,2 with the transformation

gφu = (g1)+1/2(g2)uvφ
v. (2.69)

This is a charge +1/2 scalar in the fundamental two-dimensional representation of SU(2), often
denoted as 2 of SU(2). (OK, that is one of the simplest nontrivial representation. Why not. But
why only for SU(2)? And why does it have U(1) hypercharge +1/2?) This is the Higgs field.

2.7.3 Fermions

Finally, as the fermions, it chose the following monstrosity.4 To describe them, let us first consider
ψα consising of six pieces,

ψα = (QL, uR, dR, `L, eR, νR)α, (2.70)

whereQL is the left-handed quark doublet, uR is the right-handed up quark, dR is the right-handed
down quark, `L is the left-handed lepton doublet, eR is the right-handed electron, νR is the right-
handed neutrino. Here I used the complex conjugation to make everything left-handed.

They have the following gauge transformations:

g(QL)ua= (g1)+1/6(g2)uv(g3)ab (QL)vb,
g(uR)a = (g1)−2/3 (g3)a

b
(uR)b,

g(dR)a = (g1)+1/3 (g3)a
b
(dR)b,

g(`L)u = (g1)−1/2(g2)uv (`L)v,
geR = (g1)+1 eR,
gνR = νR.

(2.71)

4Here I assume that the neutrino masses are given by the right-handed neutrinos. This part is not experimentally
verified. Otherwise I need to add a non-renormalizable term in (2.66).
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The same information is often tabulated as follows:

U(1) SU(2) SU(3)

QL +1/6 2 3

uR −2/3 1 3

dR +1/3 1 3

`L −1/2 2 1

eR +1 1 1

νR 0 1 1

(2.72)

or even
QL : (2,3)+1/6, uR : (1,3)−2/3, dR : (1,3)+1/3,

`L : (2,1)−1/2, eR : (1,1)+1, νR : (1,1)0.
(2.73)

And then introduce three copies of it:

ψi=1,2,3
α = (QL, uR, dR, `L, eR, νR)i=1,2,3

α . (2.74)

This additional index i = 1, 2, 3 labels the flavor and/or the generations.

Exercise 2.8. Isidore Rabi famously said “Who ordered that” when first member of the second
generation, muon, was found. Locate the original reference to this quote.

2.7.4 Higgs potential, mass terms and Yukawa interactions

We need to specify the potential V (φ), the mass term mψψ and the Yukawa interaction yφψψ in
(2.66), which should all be gauge-invariant. The potential up to the quartic term is fixed to have
the form

V (φ) = (λ/2)(φ†φ)2 −m2(φ†φ). (2.75)

The quadratic term is known to be negative. We can only introduce gauge-invariant mass term to
νR:

mψψ + c.c. = mMaj.
ij (νR)iα(νR)jα +mMaj.

ij
(νR)iα̇(νR)jα̇. (2.76)

The possible Yukawa interactions are of the form

yφψψ = Y up
ij εuvδaaφ

u(QL)ivaαuR
ja
α + Y down

ij δuvδaaφ
u
(QL)ivaαdR

ja

α (2.77)

+ Y lepton
ij εuvφ

u(`L)ivαeR
j
α + Y neutrino

ij δuvφ
u
(`L)ivανR

j
α (2.78)

Therefore, to completely specify the theory, we need to give the numerical values to three
couplings and three theta angles

g1,2,3, θ1,2,3, (2.79)

the two real parameters of the Higgs potential

λ, m2, (2.80)
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the Majorana neutrino masses
mMaj.
ij (2.81)

and the Yukawa couplings

Y up
ij , Y down

ij , Y lepton
ij , Y neutrino

ij . (2.82)

As we will see, some of parameters can be absorbed by field redefinitions.

2.8 Questions
We are then led to many natural questions:

• Why did the Buddha choose the parameters (2.79), (2.80), (2.81), (5.36) have the measured
values?

• Why did the Buddha introduce three generations i = 1, 2, 3, not just one?

• Why did the Buddha decide that a single generation should consist of the strange represen-
tation (2.73)?

• Why did the Buddha choose the gauge group U(1)× SU(2)× SU(3)?

• Why did the Buddha use the Quantum Field Theory to implement us?

Exercise 2.9. Speculate why the Buddha made these decisions.

Exercise 2.10. If You are the One to create the universe, what would You do instead?

2.9 Anomaly cancellation
In fact, even the Buddha cannot choose an arbitrary fermion representation ρfermion, because of the
following constraint. Let us say that the infinitesimal gauge transformation g = eiεX acts on the
fermions ψiα by

gψi = ρ(g)ijψ
j = ψi + iερ(X)ijψ

j. (2.83)

Then we have

Anomaly Cancellation Condition.
tr ρ(X)3 and tr ρ(X) need to vanish for arbitrary infinitesimal generator X .
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We will see why this condition is necessary in later lectures. Very roughly, if this condition is not
satisfied, the gauge invariance is broken, and one cannot contain the negative norm states in the
system, and the positivity of the probability breaks down.

For simplicity, consider the case G = U(1), with three fermions ψi=1,2,3
α , with the charge

q1, q2, q3 respectively. The gauge transformation is
gψ1 = gq1ψ1, gψ2 = gq2ψ2, gψ3 = gq3ψ3. (2.84)

Equivalently, ρ(g) = diag(gq1 , gq2 , gq3). Writing g = eiεX , we find

ρ(X) = diag(q1, q2, q3)X. (2.85)

Therefore the anomaly cancellation condition is

tr ρ(X)3 = ((q1)3 + (q2)3 + (q3)3)X3 = 0, tr ρ(X) = (q1 + q2 + q3)X = 0. (2.86)

The general solution is
q1 = −q2, q3 = 0 (2.87)

or its cyclic permutations.

Exercise 2.11. Show this.

Let us check that the anomaly cancellation condition is satisfied within a single generation
(2.73). The gauge transformation parameter is g = (g1, g2, g3) ∈ U(1) × SU(2) × SU(3). The
infinitesimal version can be parameterized as g = eiX where

g1 = eiX , g2 = diag(eiY , e−iY ), g3 = diag(eiA, eiB, eiC) (2.88)

where A+B+C = 0. ρ(X can be read off from the explicit gauge transformation rule (2.71) and
we can compute tr ρ(X)3 and tr ρ(X). They are a cubic polynomial and a linear polynomial inX ,
Y , and A,B,C, respectively. And the anomaly cancellation condition demands that they are both
zero.

Let us check this in the simpler case where X 6= 0 but Y = A = B = C = 0. We find

tr ρ(X)3 = X3

3 · 2 ·
(

1

6

)3

︸ ︷︷ ︸
QL

+ 3 ·
(
−2

3

)3

︸ ︷︷ ︸
uR

+ 3 ·
(

1

3

)3

︸ ︷︷ ︸
dR

+ 2 ·
(
−1

2

)3

︸ ︷︷ ︸
`L

+ 1 · 13︸ ︷︷ ︸
eR

 = 0. (2.89)

Similarly, one finds

tr ρ(X) = X

3 · 2 ·
(

1

6

)
︸ ︷︷ ︸

QL

+ 3 ·
(
−2

3

)
︸ ︷︷ ︸

uR

+ 3 ·
(

1

3

)
︸ ︷︷ ︸

dR

+ 2 ·
(
−1

2

)
︸ ︷︷ ︸

`L

+ 1 · 1︸︷︷︸
eR

 = 0. (2.90)
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Figure 3: Surrounding a magnetic monopole by two patches.

Exercise 2.12. Check the cancellation of the anomaly in the most general case, without assuming
Y = A = B = C = 0.

This motivates us to add the following question to those listed in Sec. 2.8:

• Why did the Buddha decide to satisfy the anomaly cancellation in this very strange manner?

3 Anomalies

3.1 Aharonov-Bohm phase and the Dirac quantization of monopole charges
Consider a 2d region S with a boundary ∂S. The Stokes theorem applied to Fµν = ∂µAν − ∂νAµ
says that ∫

S

Fµνdx
µdxν =

∫
∂S

Aµdx
µ. (3.1)

Note that the right hand side is gauge invariant, since the left hand side is. Note also that the
right hand side can be nonzero even when Fµν is zero at the boundary. The quantum-mechanical
electron famously feels the phase

exp(i

∫
∂S

Aµdx
µ), (3.2)

known as the Aharonov-Bohm phase named after its discoverer; its effect was experimentally con-
firmed. In the math literature the same object is known as the holonomy of the gauge field.

Consider surrounding a magnetic monopole by two surfaces SN and SS , such thatC = ∂SN =

−∂SS , see Fig. 3. The total magnetic flux is∫
SN+SS

Fµνdx
µdxν =

∫
C

(AN)µdx
µ − (AS)µdx

µ =

∫
C

[(AN)θ − (AS)θ]dθ. (3.3)
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The gauge fields AN and AS at the boundary is related by the gauge transformation

(AN)θ = (AS)θ + ig(θ)∂θg(θ)−1 (3.4)

where g(θ) is a map from the circle parameterized by θ to the unit circle in the complex plane.
Writing g(θ) = eiϕ(θ) we find∫

SN+SS

Fµνdx
µdxν =

∫
C

[(AN)θ − (AS)θ]dθ =

∫
C

(∂θϕ(θ))dθ = 2πn (3.5)

where n is the integer specifying the number of times the map g(θ) wraps around the target unit
circle. This is the Dirac quantization of the magnetic monopole charge. Note that the same com-
putation shows that

exp(i

∫
C

(AN)µdx
µ) = exp(i

∫
C

(AS)µdx
µ), (3.6)

i.e. the phase felt by the electron around the monopole is a gauge-invariant quantity.
We will discuss 1+1d fermions below. The simplest nontrivial spacetime is the torus T 2, given

by identifying t ∼ t + T and x ∼ x + L. The preceding argument can be carried out similarly,
and we can show ∫

dxdtFxt = 2πn (3.7)

for some integer n ∈ Z. We will be mostly interested in the n = 0 case, with the further condition
that Fµν = 0. This does not mean that the gauge field is trivial; there can be Aharonov-Bohm
phases around the temporal and the spatial circle. For simplicity we take At and Ax are constants;
this choice indeed leads to Ftx = 0. Still, we can have nonzero

gt := exp(i

∫
dtAt) = eiTAt , gx := exp(i

∫
dxAx) = eiLAx (3.8)

which are gauge-invariant. We note that the gauge transformation of the form

Ax → Ax + g(x)∂xg(x)−1 (3.9)

can change
α :=

∫
dxAx → (

∫
dxAx) + 2πn′ (3.10)

for an integer n′, but the (exponentiated) Aharonov-Bohm phase gx above is invariant. This trans-
formation (3.10) is often called the large gauge transformation.

Let us see the effect of this spatial Aharonov-Bohm phase in the context of 1-dimensional
quantum mechanics. The Hamiltonian of a free uncharged particle moving on a line with periodic
boundary condition x ∼ x + L is (i∂x)2

2m
acting on the wavefunction φ(x), which again has peri-

odic boundary condition. Diagonalizing the Hamiltonian is easy; the eigenmodes and the energy
eigenvalues are

φn(x) = exp(
2πin

L
x); En =

1

2m

(
2πn

L

)2

. (3.11)
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For a particle with charge q, the Hamiltonian is modified to

H =
(iDx)

2

2m
=

(i∂x + iqAx)
2

2m
. (3.12)

The diagonalization is still easy:

φn(x) = exp(
2πin

L
x); En =

1

2m

(
2πn

L
+ Ax

)2

=
1

2m

(
2πn+ α

L

)2

. (3.13)

We note that the large gauge transformation (3.10) does change the individual energy eigenvalues
En, but the set {En} is invariant under (3.10).

3.2 2d fermions
Wewill start our discussion of anomalies by first considering charged fermions in 1+1 dimensions.
It is simpler than 3+1d fermions, and also has direct applications to the study of edge modes in the
quantum Hall systems.

3.2.1 Massive fermion

A typical Lagrangian for 2d massive fermion has the form

S =

∫
dtdx(iψ`(∂t − ∂x)ψ` + iψr(∂t + ∂x)ψr +mψ`ψr +mψrψ` (3.14)

Indeed, by taking the variation, one finds

i(∂t − ∂x)ψ` = mψr, i(∂t + ∂x)ψr = mψ`. (3.15)

Expanding in Fourier modes exp(iEt− ipx), we find

− (E + p)ψ` = mψr, −(E − p)ψr = mψ` (3.16)

from which we find E2 − p2 = |m|2.

Exercise 3.1. Derive the 2d fermion Lagrangian in the usual manner, by constructing the γ matri-
ces. Rewrite the resulting Lagrangian into the form (3.14).

3.2.2 Massless fermion and its gravitational anomaly

A special case is when m = 0, where we have E2 = p2, which can be solved as E = ±p in
1+1d. Correspondingly, we can consider a left-moving or a right-moving fermion separately. For
example, a purely left-moving fermion has the Lagrangian

S =

∫
dtdxiψ`(∂t − ∂x)ψ` (3.17)
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whose classical equation of motion is

i(∂t − ∂x)ψ` = 0 (3.18)

whose general solution is
ψ` = f(x+ t). (3.19)

Let us analyze its quantization, under the periodic boundary condition x ∼ x+L. We expand
ψ` into Fourier modes:

ψ`(x) =
∑
n

ψn exp(
2πin

L
x). (3.20)

Then the anticommutation relation is

{ψn, ψ†m} = δnm. (3.21)

The mode ψn carries the momentum −2πn/L and the energy 2πn/L. Considered in isolation,
this leads to two states

|↓〉n = ψ†n|↑〉n, |↑〉n = ψn|↓〉n. (3.22)

It is then natural to assign the momentum ∓1
2
(2πn/L) and the energy ±1

2
(2πn)/L to the states

|↑〉n and |↓〉n.
The vacuum state is then obtained by using |↓〉n for n > 0 and |↑〉n for n < 0. The energy and

the momentum of the vacuum are both given by

E = −P = −2π

L

∑
n≥1

n =
1

12

2π

L
. (3.23)

The Casimir energy has the sign opposite to that of a scalar (1.56). What is more strange is the
Casimir momentum. Recall that eiPX corresponds to the shift of the x direction by X . Since we
started from a periodic boundary condition x ∼ x + L, one might expect that the shift by X = L

should not change the system. But we gain the phase

exp(i
1

12

2π

L
L) = exp(

2πi

12
). (3.24)

This is weird, and is known as the gravitational anomaly.
An overall shift of the periodic direction does nothing classically, but the quantum system re-

sponds nontrivially. Such phenomena are called quantum anomalies. In this case the geometric
shift is a baby version of the general coordinate transformation, which is why this particular case
is known as the gravitational anomaly. A system with gravitational anomaly cannot couple con-
sistently with quantum gravity: the negative norm states of the graviton cannot be consistently
decoupled.

By a long chain of arguments which I do not have time to develop here, the gravitational
anomaly of the 1+1d boundary system is known to be proportional to the thermal Hall conductivity
of the 2+1 dimensional bulk. So this is an experimentally measurable quantity and has indeed been
measured.
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Figure 4: The change of the vacuum state by a change of α from 0 to 2π. Left: α = 0; Middle:
α = π; Right: α = 2π.

Note that the right-moving fermion has

E = +P =
1

12

2π

L
. (3.25)

Therefore, if we have both a right-moving and a left-moving fermion, the Casimir energies sum
up, but the gravitational anomalies cancel out. In particular, a massive fermion does not have the
gravitational anomaly.

3.2.3 Charged massless fermion and its gauge anomaly

Let us next consider the case of a charged massless fermion

S =

∫
dtdxiψ`(Dt −Dx)ψ` (3.26)

with a periodic boundary condition x ∼ x + L with a spatial Aharonov-Bohm phase α = AxL.
We first consider the case when the gauge transformation is gψ` = gψ`, i.e. when ψ` is of charge
1. Each mode now has the momentum −(2πn+ α)/L and the energy (2πn+ α)/L.

When |α| is very small, the vacuum state is still obtained by using |↓〉n for n > 0 and |↑〉n for
n < 0.

Exercise 3.2. Compute the Casimir energy and the Casimir momentum when α 6= 0, by the
regularization as in Sec. 1.7.

However, when we gradually increase α from 0 to 2π, we have the situation shown in Fig. 4.
As each mode carries charge +1, we see that there is a gain of charge +1 in this process. It is
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natural to assign the charge of the vacuum to be

Q =
α

2π
. (3.27)

Exercise 3.3. Derive this vacuum charge by regularizing the charge of the vacuum state as in the
case of the Casimir energy.

This is known as the gauge anomaly: two situations α = 0 and α = 2π are gauge equiva-
lent and should give rise to the same physical quantity, if the system is invariant under the gauge
transformation. But here we clearly have two different answers for these two situations.

We can generalize the analysis to the case of charge q fermion. The covariant derivative is
i∂x + iqAx, and therefore the energy eigenvalues of the modes are (2πn + qα)/L. Then the shift
α → α + 2π gives us q additional filled states. Each mode carries charge q, and therefore we
gained the charge q2 in total. We then have

Q =
q2α

2π
(3.28)

as the vacuum gauge charge.
We can also consider the right-moving fermions. It has the energy −(2πn + qα)/L and thus

has the opposite shift of the charge, with the anomaly

Q = −q
2α

2π
. (3.29)

In general, we can consider the systemwhere we have left-moving fermions of charge q1, q2, . . .

and right-moving fermions of charge q̃1, q̃2, . . .. The total anomaly is

Q =
α

2π
[
∑

(qi)
2 −

∑
(q̃i)

2]. (3.30)

Therefore, the gauge anomaly is absent only when∑
(qi)

2 −
∑

(q̃i)
2 = 0. (3.31)

This is the anomaly cancellation condition in 1+1d.
We note that a massive fermion such as (3.14) contains a left-moving component of charge +q

and a right-moving component of the same charge +q. Therefore their contribution to the anomaly
automatically cancels.

3.3 An index theorem
We switch gears and ask the following question [AC79]. Let us consider a non-relativistic charged
particle moving in 2d under the effect of the magnetic field B = Fxy. The Hamiltonian is (up to a
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proportionality factor)

H = (iDx)
2 + (iDy)

2 +B(x, y)σz = (3.32)

=

(
i(Dx − iDy)i(Dx + iDy) 0

0 i(Dx + iDy)i(Dx − iDy)

)
(3.33)

=

(
0 i(Dx + iDy)

i(Dx − iDy) 0

)2

. (3.34)

We are interested in its spectrum.
Setting D := i(Dx + iDy), this falls within a more general problem of the diagonalization of

D†D|ψ+〉 = E+|ψ+〉, DD†|ψ−〉 = E−|ψ−〉. (3.35)

Let us first study this. We note that

〈ψ+|E+|ψ+〉 = 〈ψ+|D†D|ψ+〉 = ‖D|ψ+〉‖2. (3.36)

Therefore,
D|ψ+〉 = 0⇐⇒ E+ = 0 (3.37)

and otherwise E+ > 0. Similarly,

D†|ψ−〉 = 0⇐⇒ E− = 0 (3.38)

and otherwise E− > 0.
Now suppose we found an eigenstate |ψ+〉 ofD†D with eigenvalueE > 0 such that 〈ψ+|ψ+〉 =

1. Let |ψ−〉 := D|ψ+〉/
√
E. This satisfies 〈ψ−|ψ−〉 = 1 and

DD†|ψ−〉 = DD†D
|ψ+〉√
E

= DE+
|ψ+〉√
E+

= E|ψ−〉. (3.39)

This means that |ψ−〉 thus defined is an eigenstate ofDD† with the same eigenvalue. We also have
|ψ+〉 = D†|ψ−〉/

√
E.

Therefore, eigenstates of zero energy of D†D and DD† are annihilated by D and D† respec-
tively, and eigenstates of nonzero energy of D†D and DD† form pairs with the same eigenvalues.
We denote the eigenstates of zero energy by |Ψu

+〉 and |Ψs
−〉, and the eigenstates of nonzero energy

Ea by |ψa+〉 and |ψa−〉, where |ψa−〉 = D|ψa+〉 and |ψa+〉 = D†|ψa−〉.
Let us come back to our case whenD = i(Dx− iDy), and study the eigenstates of zero energy

more carefully. They are often called zero modes.
Recall that B = ∂xAy − ∂yAx. We further write Ax = −∂yρ and Ay = +∂xρ. Then B =

(∂2
x + ∂2

y)ρ, which can be solved. We now define f+(x, y) by

Ψ+(x, y) = f+(x, y)eρ(x,y). (3.40)

Then
(Dx − iDy)Ψ+(x, y) = 0⇐⇒ (∂x − i∂y)f+(x, y) = 0. (3.41)
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which means that f+(x, y) is a holomorphic function of w = x+ iy. Similarly, by defining

Ψ−(x, y) = f−(x, y)e−ρ(x,y). (3.42)

one finds
(Dx + iDy)Ψ−(x, y) = 0⇐⇒ (∂x + i∂y)f−(x, y) = 0. (3.43)

which means that f−(x, y) is an antiholomorphic function, i.e. it depends on w but not on w.
Consider in particular that B is nonzero only in a finite region S ⊂ R2 and zero outside.

Asymptotically, we have

ρ(x, y) ∼ 1

2π
(

∫
S

Bdxdy) log r = n log r (3.44)

where we write
∫
S
Bdxdy = 2πn and r is the radial distance from a fixed point in the region S.

For definiteness let n > 0, and for simplicity we assume n is an integer. This means that

e+ρ ∼ rn, e−ρ ∼ r−n (3.45)

asymptotically. We require that |Ψ±〉 to decay when r → 0, so that it is square integrable. This
means that f+(x, y) is forced to be zero, while f−(x, y) is a linear combination of w0 to wn−1.

We conclude that there are no zero energy states |Ψu
+〉, and there are n zero energy states |Ψs

−〉,
s = 1, . . . , n. When we have a charge q particle, we basically have the same conclusion, except
that s = 1, . . . , qn.

3.4 Anomalies of 4d chiral fermion
Let us now consider a charge q > 0 chiral fermion in 3+1d. The Lagrangian is

S = i

∫
d4xiψα̇σµα̇αDµψ

α (3.46)

= i

∫
dtdzdxdy(ψ1, ψ2)

(
Dt +Dz Dx + iDy

Dx − iDy Dt −Dz

)
(ψ1, ψ2). (3.47)

We now introduce Bz(x, y) = Fxy in a finite region S ⊂ R2
x,y and zero outside. We further put a

periodic boundary condition z ∼ z+L. We first expand the chiral fermions using the eigenmodes
of H studied in the last section:

ψ1(z, t;x, y) =
∑
a

ψar (z, t)|ψa+〉, (3.48)

ψ2(z, t;x, y) =
∑
a

ψa` (z, t)|ψa−〉+

qn∑
s=1

Ψs
`|Ψs
−〉. (3.49)
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Plugging this into (3.47), we obtain

S =

qn∑
s=1

∫
dtdx(iψs`(Dt −Dx)ψ

s
` )

+
∑
a

∫
dtdx(iψa` (Dt −Dx)ψ

a
` + iψar(Dt +Dx)ψ

a
r +

√
Eaψ

a
`ψ

a
r +

√
Eaψ

a
rψ

a
` ). (3.50)

This counts as qn left-moving 2d fermions of charge q, thus contributing

Q =
q3nα

2π
(3.51)

to the anomalous gauge charge, and
P =

qn

12

2π

L
(3.52)

to the gravitational anomaly. When q < 0, we instead have |q|n right-moving 2d fermions, con-
tributing to

Q = −|q|
3nα

2π
=
q3nα

2π
(3.53)

to the anomalous gauge charge, and

P = −q|n|
12

2π

L
=
qn

12

2π

L
(3.54)

to the gravitational anomaly.
When there are multiple chiral 4d fermions of charge qa, we therefore see that the total gauge

anomaly is proportional to ∑
a

(qa)
3, (3.55)

whereas the total gravitational anomaly is proportional to∑
a

qa. (3.56)

When we treat U(1) gauge symmetry quantum mechanically, the gauge anomaly has to vanish,
in order to contain the negative norm state of the photons. When we treat the general coordinate
transformation invariance quantum mechanically, the gravitational anomaly has to vanish, in order
to contain the negative norm state of the gravitons.

Exercise 3.4. Here I chose a rather non-standard method to derive the anomaly. Learn more stan-
dard methods in your favorite textbook.

4 Spontaneous symmetry breaking, Higgs effect and solitons
The topic in this section is the Higgs effect and the associated solitons. Everything stated in this
section concerns classical field theory, and no quantum physics is involved.
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Figure 5: The form of the potentials V (φ) m2 > 0 andm2 < 0.

4.1 Spontaneous symmetry breaking
Let us start by considering a complex scalar field φ with the following action:

S =

∫
d4x[−∂µφ∂µφ− V (φ)], V (φ) = m2|φ|2 +

λ

2
|φ|4. (4.1)

The action is invariant under the U(1) transformation

gφ(x) = gφ(x), (4.2)

where g ∈ U(1) is a complex number of absolute value 1, which is independent of the spacetime.
We require λ > 0. Otherwise, the potential is unbounded below when |φ| is sufficiently large,

which is very dangerous. We do not require m2 to be positive. See Fig. 5 for a crude drawing of
the shape of the potential. The case m2 < 0 is sometimes known as the Maxican hat potential or
the wine-bottle potential. The latter nomenclature is somewhat common in the Japanese particle
physics literature but is rarely found outside.

Exercise 4.1. Track down who first used these two suggestive names for the shape of the potential.

Let us consider the spacetime-independent situation, specified by giving a value to the scalar
field φ. This is usually denoted by 〈φ〉, and called the vacuum expectation value, or vev for short.
The equation of motion says that ∂V/∂φ = 0 when evaluated at φ = 〈φ〉.

When m2 > 0, there is a single solution 〈φ〉 = 0. When m2 < 0, the choice 〈φ〉 = 0 is still a
solution, but

〈φ〉 =
|m|√
λ
ei〈θ〉 (4.3)

for an arbitrary 〈θ〉 also forms a continuous family of solutions. The notation

v := |〈φ〉| = |m|√
λ

(4.4)

is often also found.
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When 〈φ〉 = 0, the vacuum expectation value is invariant under the phase rotation (4.2). This
vacuum is said to preserve theU(1) symmetry. Equivalently, theU(1) symmetry is unbroken there.
Let us analyze the small variations δφ(t, x, y, z) around it. Considering the mode ∝ ei(Et−~p~x), we
see that we have

E2 − p2 = m2. (4.5)

When m2 > 0, this simply says that (after quantization) the particle has the mass |m|. The
λ|φ|4/2 term then provides an interaction term. When m2 < 0, we see that the 4-momentum is
spacelike; naively, the speed of the excitation exceeds the speed of light. Such a mode is called
tachyonic. A better interpretation is obtained by setting p = 0, iEt = +|m|t instead, getting the
behavior δφ ∼ e+|m|t. This means that the value of the scalar field starts to exponentially grow.
This behavior is clear from the potential shown in Fig. 5: to save energy, the field rolls down the
potential to the bottom (4.3).

There, the U(1) symmetry action (4.2) does change the value of 〈φ〉. In this situation, the U(1)

symmetry is said to be broken. Writing φ = ρeiθ, we can consider the fluctuation δρ and δθ around
it. We see that δρ has the mass

m2
ρ =

1

2

∂2

∂ρ∂ρ
V
∣∣∣
φ=eiθ

√
λ/|m|

= 2|m2|, (4.6)

whereas δθ is massless,
m2
θ = 0. (4.7)

Exercise 4.2. Confirm these two masses.

It is a general feature of a relativistic field theory that for each broken continuous symmetry,
there is a massless particle. This is the theorem of Nambu and Goldstone; the corresponding
particle is called a Nambu-Goldstone mode. At this classical level, this is simply because 〈φ〉 and
g〈φ〉 has the same energy V (φ). So there is no energy variation in the direction obtained by an
infinitesimal symmetry operation applied to 〈φ〉, meaning that this direction is massless.

We can take a limit where we keep v = |m|/λ fixed but sending both |m| and λ infinity. Then
the radial mode ρ is infinitely massive, and is decoupled from the rest. The Lagrangian for the
remaining mode θ is simply

S =

∫
d4x|v|2(−∂µθ∂µθ), (4.8)

where we need to remember that θ ∼ θ + 2π.

4.2 Higgs mechanism in U(1) gauge theory
We now couple the Maxwell field to the model studied above:

S = −
∫
d4x[

1

4e2
FµνF

µν +DµφDµφ+ V (φ)], V (φ) = m2|φ|2 +
λ

2
|φ|4 (4.9)
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where
Dµφ = (∂µ + iAµ)φ. (4.10)

This model is now invariant under the spacetime-dependent transformation

gAµ = Aµ − ig∂µg−1, gφ = gφ. (4.11)

Whenm2 > 0, the only vacuum (i.e. the configuration with the lowest energy) is 〈φ〉 = 0. The
field φ and Aµ are both massless. This is called the Coulomb phase.

Whenm2 < 0, the extrema of V (φ) are 〈φ〉 = 0 and

〈φ〉 = |m|/
√
λei〈θ〉 (4.12)

as before. The first choice 〈φ〉 = 0 is unstable, since the field φ is tachyonic. We concentrate on
the latter.

We recall that the gauge transformation g = eiχ shifts the phase of φ:

g〈θ〉 = 〈θ〉+ χ. (4.13)

In the non-gauge version we studied in the last subsection, this meant that there are continuous
family of vacua related by the U(1) global symmetry. In the gauged version here, the two config-
urations related by the gauge symmetry is identified instead. Therefore, the family (4.12) is in fact
a single configuration.

Writing φ = ρeiθ as before, we see that the mode δρ still has the mass m2
ρ = |m|2/λ. The

mode δθ is a gauge mode and is gone. Let us now analyze the gauge field. We note that Dµφ =

(∂µ + iAµ)φ now contains the piece iAµ〈φ〉. This means that we have

1

4e2
FµνF

µν +DµφDµφ ⊃
1

4e2
FµνF

µν + AµA
µ|v|2. (4.14)

The equation of motion is then
∂µFµν = 2e2v2Aν . (4.15)

Applying ∂ν on both sides, we see ∂νAν = 0. Plugging this back to the left hand side and replacing
∂µ by ikµ, we find that k2 = 2e2v2, i.e. the mass of the gauge boson is now

m2
A = 2e2v2 = 2e2|m2|/λ. (4.16)

We recall that the mass of δρ was found above to be

m2
ρ = 2|m2|. (4.17)

This is the Higgs mechanism in the U(1) gauge theory. In this context, the field φ is called the
Higgs field, and the radial mode δρ is called the Higgs boson. This phase is known as the Higgs
phase.

We note that a massive gauge boson has three polarizations. Taking kµ = (E, 0, 0, 0), we find
At = 0 and Ax,y,z can be nonzero. Recall that a massless gauge boson had two polarizations:
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taking kµ = (E,E, 0, 0), At + Ax = 0, (At, Ax) ∝ (1,−1) were gauge modes and nonphysical,
and the two polarizations came from Ay and Az. The difference in the number of polarizations is
often said to come from the gauge field Aµ eating the Nambu-Goldstone mode δθ.

We can again take a limit where we keep v = |m|/λ fixed but sending both |m| and λ infinity.
We then force |φ| = v and we can write φ = veiθ so that

DµφD
µφ = |v|2(∂µθ + Aµ)(∂µθ + Aµ). (4.18)

The Lagrangian of the system is now

S = −
∫
d4x[

1

4e2
FµνF

µν + |v|2(∂µθ + Aµ)(∂µθ + Aµ)], (4.19)

and describes a single massive vector boson. This simplified form of the Higgs mechanism is
called the Stückelberg mechanism, and θ the Stückelberg field.

4.3 Under the external magnetic field
Let us consider applying an external magnetic field Bext = Fxy to the system in the Higgs phase.
We consider time-independent configurations. The energy to be minimized is∫

d3x[
1

2e2
(B −Bext)

2 + |Diφ|2 + V (φ)]. (4.20)

We note that this has basically the same form as the energy functional of the Ginzburg-Landau
effective model of the superconductor, except that the field φ has charge q = 2 instead of charge
q = 1 as assumed here. This is due to the fact that in a superconducting material, what gets the
vev is the Cooper pair, which is a combination of two electrons. In any case, the physics we see
below is essentially the same, and we borrow the terminology from there.

Let us first consider spatially independent situation. One is to take 〈φ〉 = 0 and Bext = B.
The energy density is zero. Another is to take Diφ = 0 and 〈φ〉 = |v|. We note that Fijφ =

i[Di, Dj]φ = 0, meaning that B = 0. Therefore the energy density is

1

2e2
B2

ext + V (v) =
1

2e2
B2

ext −
m4

2λ
. (4.21)

This means that when
Bext <

e|m2|√
λ

=: Bc, (4.22)

the external magnetic field is screened. This is called the Meissner effect. In contrast, whenBext >

Bc, the Coulomb phase with 〈φ〉 = 0 is favored.
So far we only considered spatially independent configurations. WhenBext = 0, the origin 〈φ〉

contains a tachyon and is unstable. Let us see what happens with Bext 6= 0. The equation to be
considered is

− ∂2
t φ = [−(D2

x +D2
y +D2

z)− |m2|]φ = 0. (4.23)
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Type I (e2 > λ) Type II (e2 < λ)

Figure 6: Phases of the Abelian Higgs model under external magnetic field.

We recall that [Dx, Dy] = iBext, and therefore the smallest eigenvalue of D2
x + D2

y is Bext. This
means that when

Bext > m2, (4.24)

the Coulomb phase is stable. Therefore, when e2 > λ, Bc > m2 and the Coulomb phase is indeed
stable. However, when e2 < λ, the spatially independent solution is unstable. What will happen
in this case?

We will see below that we will have a lattice of vortices. Before giving the detail, a summary
of the phases are given in Fig. 6. Following the terminology in the study of superconductors, the
case e2 > λ and the case e2 < λ are known as Type I and Type II, respectively.

4.4 Vortex solution
Let us next consider |v| is space-dependent and is small in a finite region C in the xy plane around
x = y = 0. One can then turn on the magnetic field in C without costing too much energy. What
is the situation outside C?

Consider a large circle of radius r around the region C, parameterized by 0 < ϕ < 2π. Recall
the integral

∫
dϕ∂ϕθ = 2πn for an integer n, which counts the winding number of the field θ(ϕ)

as we traverse the circle by varying ϕ. By a gauge transformation we can arrangeAϕ to be constant
in ϕ. Now we would like to minimize the energy:

E ≥
∫
r>R

rdr

∫
dϕ|v|2|1

r
(∂ϕθ + Aϕ)|2 (4.25)

The minimum is obtained when ∂ϕθ is also constant, i.e. when θ = nϕ. We then have

E ≥
∫
r>R

dr

r
|v|2|n+ Aϕ|2. (4.26)

This diverges logarithmically unlessAϕ is an integer−n. Recalling that
∫
∂C
Aϕdϕ =

∫
C
Fxydxdy,

we see that
1

2π

∫
C

Fxydxdy = −n ∈ Z. (4.27)
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This shows that themagnetic flux in theHiggs phase is quantized, and is proportional to thewinding
number of the field θ. This is known as a Abrikosov-Nielsen-Olsen vortex.5

Exercise 4.3. Redo the analysis when the original scalar field φ = ρeiθ has charge q ∈ Z instead
of 1 as assumed above. Show that 1

2π

∫
C
Fxydxdy is now of the form n/q for n ∈ Z. In the normal

superconductor, q = 2 since φ is the field representing the Cooper pair.

We can see that a vortex has a fixed size roughly as follows. Let us say we put a magnetic field∫
dxdyB = 2πn in the region C of area A. To do this, we set 〈φ〉 = 0 in the same region. The

energy const is then∫
dxdy[

1

2e2
B2 + (V (0)− V (v))] ∼ (2πn)2

A
+ (V (0)− V (v))A. (4.28)

This has a minimum at a specific value A.
The case |n| = 1 is the minimal vortex. Whether the case |n| = 2 splits into two minimal

vortices or prefers to be a single vortex depends on the parameter e2/λ. The fact that Type II
admits a vortex phase means that the vortices prefer to separate in e2 < λ whereas the vortices
clump together when e2 > λ.

Exercise 4.4. Come up with a more direct argument showing that the vortices repel each other
when e2 ≪ λ and clump together when e2 ≫ λ.

For the type II system, when the external magnetic field Bext is above Bc1 the magnetic field
penetrates the system as a combination of minimal vortices, each having

∫
Bdxdy = 2π. They are

packed together to realize the given external magnetic field Bext. As we increase Bext, the vortices
become more and more tightly packed, and at Bext = Bc2 they all coalesce and become uniform.
From the discussion in the last subsection, we know Bc2 = m2. From dimensional analysis and
scaling argument, Bc1 is of the form Bc1 = f(e/

√
λ)m2 where f(x) is a dimensionless function.

Exercise 4.5. Learn how to compute f(x).

4.5 Bogomolny trick
When e2 = λ, we can use the following trick first found by Bogomolny to study the system in
detail. Let us assume that the system is independent of t and z. The energy to be minimized is

E :=

∫
dxdy

[
1

2e2
B2 +DxφDxφ+DyφDyφ+

e2

2
(|φ|2 − v2)2 − m4

2λ

]
(4.29)

5The model without the gauge field, with logarithmically divergent energy, was considered by Nielsen and Olsen.
Abrikosov found the finite-energy solution with the gauge field.
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where we recall v2 = |m2|/λ. We first note that

1

2e2
B2 +

e2

2
(|φ|2 − |m

2|
λ

)2 =
1

2e2
(B + e2(|φ|2 − v2))2 −B(|φ|2 − v2). (4.30)

We then consider

DxφDxφ+DyφDyφ = (Dx + iDy)φ(Dx − iDy)φ+ i(DxφDyφ−DyφDxφ) (4.31)

We perform a partial integral of the second term and note∫
dxdy[DxφDxφ+DyφDyφ] =

∫
dxdy[|(Dx − iDy)φ|2 − i(φ(DxDy −DyDx)φ)] (4.32)

=

∫
dxdy[|(Dx − iDy)φ|2 +B|φ|2]. (4.33)

Combining (4.30) and (4.33), we find

E =

∫
dxdy[

1

2e2
(B + e2(|φ|2 − v2))2 + |(Dx − iDy)φ|2 +Bv2] (4.34)

≥
∫
dxdyBv2 = 2πnv2 (4.35)

where the inequality is saturated if and only if

B + e2(|φ|2 − v2) = 0, (Dx − iDy)φ = 0. (4.36)

In a similar manner, we can show

E =

∫
dxdy[

1

2e2
(B − e2(|φ|2 − v2))2 + |(Dx + iDy)φ|2 −Bv2] ≥ −

∫
dxdyBv2 = −2πnv2

(4.37)

where the inequality is saturated if and only if

B − e2(|φ|2 − v2) = 0, (Dx + iDy)φ = 0. (4.38)

We conclude that E ≥ 2π|n|v2, and therefore the minimal energy configuration for a given n can
be found by solving (4.36) when n > 0 and (4.38) when n < 0.

Let us study these minimal energy configuration further. Let us assume n > 0. We use the
same trick as we used in Sec. 3.3: recalling B = ∂xAy − ∂yAx, we introduce ρ by demanding
Ax = −∂yρ and Ay = +∂xρ, meaning that B = (∂2

x + ∂2
y)ρ. We now define f(x, y) by

φ(x, y) = f(x, y) exp ρ(x, y). (4.39)

Then
(Dx − iDy)φ(x, y) = 0⇐⇒ (∂x − i∂y)f(x, y) = 0. (4.40)

which means that f(x, y) is a holomorphic function of w = x+ iy.
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We also know that the winding number of φ at asymptotic infinity is n, meaning that f(x, y)

is a polynomial of degree n. The general solution is then

φ(x, y) = (exp ρ(x, y))
n∏
i=1

(w − wi) (4.41)

where wi can be thought of as the positions of the cores of the vortices. We then have to solve

B + e2(|φ|2 − v2) = 0 (4.42)

which becomes
(∂2
x + ∂2

y)ρ+ e2((exp 2ρ)
∏
i

|w − wi|2 − v2) = 0. (4.43)

Here, the boundary condition on ρ is that the second term vanishes at infinity. It is known that this
differential equation for ρ has a unique solution for arbitrary choices of w1,...,n.

This means that for any choice of w1,...,n, we can find the n-vortex solution with exactly the
same energy E = 2πnv2. This means that the forces between two minimal vortices are exactly
zero and they can be superimposed. The analysis so far is completely classical, and the quantum
corrections destroys the exact degeneracy. There are versions of the Abelian Higgs model with
fermions which has supersymmetry. There, this exact degeneracy is known to survive quantum
corrections.

Exercise 4.6. Look for the literature and learn the proof that there is a unique solution to (4.43)
for any w1,...,n.

Exercise 4.7. Learn how to determine ρ numerically when w1,...,n are given as the input. Plot the
resulting solutions for various choices and make animations.

Exercise 4.8. No analytic solutions to ρ is known on a flat space, but it is known that the equation
(4.43) simplifies on the Poincaré disk and admits simple analytic solutions. Look for the literature
and study it.

4.6 Higgs mechanism in non-Abelian gauge theory
4.6.1 Scalar in the doublet

Let us now consider the system of SU(2) gauge field Aµab and a complex scalar field φa in the
doublet. We consider the action

S = −
∫
d4x(

1

2g2
trFµνF

µν + (Dµφ)†Dµφ+ V (φ)) (4.44)
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where
Dµφ = (∂µ + iAµ)φ (4.45)

as before and
V (φ) = m2φ†φ+

λ

2
(φ†φ)2. (4.46)

When m2 > 0, the lowest energy is achieved at 〈φ〉 = 0 and we simply have the massless
SU(2) gauge field and the massive scalar field φ. When m2 < 0, the value|〈φ〉| = |m|/

√
λ =: v

gives the lowest energy as before. For definiteness, let us choose

〈φa〉 =

(
v

0

)
(4.47)

An infinitesimal gauge variation by

g = eiεX , X =

(
X3 X1 + iX2

X1 − iX2 −X3

)
(4.48)

gives

g

(
v

0

)
=

(
v

0

)
+ εv

(
iX3

X1 + iX2

)
. (4.49)

This means that the fluctuation of φ along the imaginary part of φ1 and along both the real part
and the imaginary part of φ2 are gauge modes and unphysical. The only physical mode is along
the real part of φ1, which we decide to call ρ The mass can be calculated as before, and finds

m2
ρ = 2|m2|. (4.50)

Let us now study the gauge fields. We write

Aµ =
1

2

(
A3 A+

A− −A3

)
, A± = A1 ± iA2. (4.51)

We expand the action and find that the part |Dµφ|2 provides a term quadratic in Aµ:
1

2g2
FµνF

µν + (Dµφ)†Dµφ ⊃ 1

4g2
F 3
µνF

3,µν +
1

4
A3
µA

3,µ|v|2 +
1

4g2
F+
µνF

−,µν +
1

4
A+
µA
−,µ|v|2.

(4.52)
Three components A3, A± of the gauge fields all have the same mass

m2
A =

1

2
g2v2 =

g2|m|2

2λ
. (4.53)

Let us count the degrees of freedom:

• Whenm2 > 0, three massless vectors, each with two polarizations 3× 2, together with two
complex scalars, each with two real components 2× 2.

• Whenm2 < 0, three massive vectors, each with three polarizations 3× 3, together with one
real Higgs scalar ρ.

We see 3 × 2 + 2 × 2 = 3 × 3 + 1. Three vector bosons ate three scalars out of four scalars and
became massive.
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4.6.2 Scalar in the triplet

We next consider the case when the scalar ϕ is in the real triplet representation of SU(2). We
represent ϕ as a traceless hermitean 2× 2 matrix

ϕ =

(
ϕ3 ϕ+

ϕ− −ϕ3

)
, ϕ± = ϕ1 ± iϕ2 (4.54)

with the gauge transformation
gϕ = gϕg−1. (4.55)

The covariant derivative can then be found from the general rule to be

Dµϕ = ∂µϕ+ i[Aµ, ϕ]. (4.56)

We now consider the action

S =

∫
d4x(

1

2g2
trFµνF

µν +
1

4
tr(Dµϕ)†Dµϕ) + V (ϕ)) (4.57)

where
V (ϕ) =

m2

2
(
1

2
trϕ†ϕ) +

λ

4
(
1

2
trϕ†ϕ)2. (4.58)

Let us consider the casem2 < 0. The potential as always is minimal at

1

2
trϕ†ϕ = (ϕ1)2 + (ϕ2)2 + (ϕ3)2 =

m2

λ
=: v2. (4.59)

For definiteness we take
〈ϕ〉 =

(
v 0

0 −v

)
. (4.60)

We perform an infinitesimal gauge transformation by (4.48) and find

g

(
v 0

0 −v

)
=

(
v 0

0 −v

)
+ 2εv

(
0 X2 − iX1

X2 + iX1 0

)
. (4.61)

This means that ϕ1 and ϕ2 are now gauge modes and unphysical. The mode ρ = δϕ3 is physical
and has the mass

m2
ρ = 2|m2| (4.62)

as always.
Let us find the masses of the gauge fields:

1

2g2
trFµνF

µν +
1

2
tr(Dµϕ)†Dµϕ) ⊃ 1

4g2
F 3
µνF

3,µν +
1

4g2
F+
µνF

−,µν +
1

2
A+
µA
−,µ|v|2. (4.63)

This means that
m2
A3 = 0, m2

A± = 2g2|v|2 = g2|m|2/λ. (4.64)
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Here we can see the important fact: the gauge transformation of the vev 〈ϕ〉 by the infinitesimal
generator X3 was zero, while the transformation by X1,2 were nonzero. Correspondingly, the
gauge field A3 remained massless, while A1,2 became massive.

The gauge transformations which keeps the vev are called unbroken and those which change
the vev are called broken. We can summarize our finding by saying that unbroken gauge bosons
remain massless, while broken gauge bosons become massive.

Before moving on, let us count the degrees of freedom:

• Whenm2 > 0, we had three massless vectors, with 3× 2 degrees of freedom. We also had
three massive scalars.

• When m2 < 0, we have one massless vector and two massive vectors, 2 + 3 × 2. We have
one massive Higgs boson.

Again we find 3× 2 + 3 = 2 + 3× 2 + 1.

Exercise 4.9. Study the Higgs mechanism of SU(2) gauge field by scalar fields in other represen-
tations.

4.7 Monopole solution
Let us continue our study of the Higgs mechanism by the triplet scalar. We took

〈ϕ〉 =

(
v 0

0 −v

)
(4.65)

as constant across spacetime above. We can try to vary it. We do not like to have too much energy,
so we would like to keep

〈ϕ1〉2 + 〈ϕ2〉2 + 〈ϕ3〉2 = v2, (4.66)

at least almost all of the regions of the space.
For simplicity let us consider a ‘spherically symmetric’ situation where

〈ϕ1,2,3〉 ∼ v
(x, y, z)

r
(4.67)

when r =
√
x2 + y2 + z2 is big. Note that the superscript of ϕi is a index for the gauge symmetry,

while on the right hand side we are using the spacetime index.
This configuration is topologically nontrivial in the sense that the sphere S2 at spatial infinity

to the field space S2 defined by (4.66);6 we can compare this situation to the analysis of the vortex
in Sec. 4.4, where the ‘sphere’ S1 at spatial infinity around the vortex was mapped to the sphere
S1 of the field space defined by |φ|2 = v2. In both cases, the configurations are topologically

6The sphere in Rd+1 is denoted by Sd.
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distinguished by its winding number. The hedgehog solution (4.67) has the winding number 1,
whereas the constant solution (4.65) has the winding number 0.

Let us show that the configuration (4.67) is a magnetic monopole. To see this, let us first
parameterize the sphere at the spatial infinity by the spherical coordinate so that

(x, y, z)

r
= (cos θ, sin θ cosφ, sin θ sinφ) (4.68)

which corresponds to the vev

〈ϕ〉 =

(
cos θ sin θeiφ

sin θe−iφ − cos θ

)
v. (4.69)

Consider the gauge transformation

gN(θ, φ)) = exp(i
θ

2

(
0 ieiφ

−ie−iφ 0

)
). (4.70)

This gauge transformation brings the vev to (4.65).

Exercise 4.10. Check this, i.e. check that gN 〈ϕ〉 = gN〈ϕ〉g−1
N =

(
v 0

0 −v

)
.

But this gauge transformation is not single valued at the south pole, where θ = π, for which
we have

gN(π, φ) =

(
0 −eiφ
eiφ 0.

)
(4.71)

Instead, around very close to the south pole, we need to choose a single-valued gauge transforma-
tion

gS(π, φ) =

(
0 −1

1 0

)
. (4.72)

Between the two transformations, we find

gN(π, φ) =

(
eiφ 0

0 e−iφ

)
gS(π, φ), (4.73)

where we note that the gauge transformations between the two patches,(
eiφ 0

0 e−iφ

)
, (4.74)

is in the U(1) subgroup unbroken by the vev
(
v 0

0 −v

)
. Recalling the arguments in Sec. 3.1, the

existence of this gauge transformation of the winding number 1 means that the monopole flux in
the unbroken U(1) gauge field is∫

d~n · ~B =

∫
dθdφFθφ = 2π · 1. (4.75)
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In general, the winding number of the scalar field at spatial infinity, S2 ϕ−→ S2 translates to the
monopole number.

Exercise 4.11. Derive this result by a topological argument.

Analogously to the case of the vortex, 〈ϕ〉 needs to vanish at the core of the vortex. The profile
of the scalar fields can be found by solving the equations of motion derived from the action. This
solution is called as the ’t Hooft-Polyakov monopole, after the discoverers.

Exercise 4.12. Study the literature and learn how to determine the profile of the monopole.

There is also the version of the Bogomolny trick for the monopole.

E ≥
∫
d3x

1

g2
trBiBi +

1

4
(Diϕ)Diϕ (4.76)

=

∫
d3x tr(

Bi

g
± 1

2
Diϕ)2 ∓ tr

1

g
BiDiϕ (4.77)

≥ ∓1

g

∫
d3x trDi(Biϕ) (4.78)

= ∓1

g

∫
dSi trBiϕ (4.79)

= ∓v
g

∫
d~S · ~B = ∓v

g
2πn =

v

g
2π|n|. (4.80)

In the first inequality, we dropped the contribution from V (ϕ). In the third line, we used the fact
DiBi = 0 and added tr(DiBi)ϕi; this can be proved easily sinceBi = εijk[Dj, Dk]/2 and therefore

DiBi = εijk[Di, [Dj, Dk]]/2 = 0. (4.81)

In the fourth line, we convert the volume integral to the surface integral at spatial infinity. To go to
the fifth line, we use the fact that trBiϕ project the non-Abelian gauge field to the unbroken U(1)

direction; recall our normalization is such that

Bi =
1

2

(
Bunbroken
i 0

0 −Bunbroken
i

)
, 〈ϕ〉 =

(
v 0

0 −v

)
. (4.82)

Finally, we note that the second inequality is attained only when

Bi

g
= ∓1

2
Diϕ. (4.83)

This is also called the Bogomolny equation. For a general potential V (ϕ), this equation does not
help much, since we discarded V (ϕ) at the first inequality. But for the special case where V (ϕ) ≡
0, the solutions of the Bogomolny equation give the lowest energy monopole configurations for a
given monopole number n.
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4.8 Higgs mechanism in the Standard model
4.8.1 Gauge boson masses

In the standard model, we have U(1)× SU(2) gauge fields and a Higgs field φ with the covariant
derivative

Dµφ = (∂µ +
i

2
AU(1)
µ + iASU(2)

µ )φ. (4.84)

As a matrix, the gauge field part has the form

(
1

2
AU(1)
µ + ASU(2)

µ )φ =
1

2

(
A

U(1)
µ + A3

µ A+
µ

A−µ A
U(1)
µ − A3

µ

)(
φ1

φ2

)
. (4.85)

We now assume that our potential V (φ) is such that it has the minimum at |〈φ〉| = v = m/
√
λ.

We pick the convention that

〈φ〉 =

(
0

v

)
. (4.86)

The gauge field masses can be found from

1

4g2
1

FU(1)
µν FU(1),µν +

1

2g2
2

trF SU(2)
µν F SU(2),µν + (Dµφ)†Dµφ ⊃

1

4g2
1

FU(1)
µν FU(1),µν +

1

4g2
2

F 3
µνF

3,µν +
1

4g2
2

F+
µνF

−,µν

+
1

4
(AU(1)

µ − A3
µ)(AU(1),µ − A3,µ)|v|2 +

1

4
A+
µA
−,µ|v|2 (4.87)

The component A± are usually called the W-bosons and denoted byW±. They have masses

m2
W =

1

2
g2

2|v|2. (4.88)

We now define (
A

U(1)
µ

A3
µ

)
=

(
1

1

)
Aem
µ +

(
g1/g2

−g2/g1

)
Zµ. (4.89)

Then we have
1

4g2
1

FU(1)
µν FU(1),µν +

1

4g2
2

F 3
µνF

3,µν +
1

4
(AU(1)

µ − A3
µ)(AU(1),µ − A3,µ)|v|2 (4.90)

=
1

4
(

1

g2
1

+
1

g2
2

)F em
µν F

em,µν +
1

4
(

1

g2
1

+
1

g2
2

)ZµνZ
µν +

1

4
(
g1

g2

+
g2

g1

)2ZµZ
µ|v|2 (4.91)

=
1

4e2
F em
µν F

em,µν +
1

4

g2
1 + g2

2

g2
1g

2
2

ZµνZ
µν +

1

4

(g2
1 + g2

2)2

g2
1g

2
2

ZµZ
µ|v|2. (4.92)

We see that Aem
µ remains massless; this is the electromagnetic U(1) we actually observe, and

the coupling e is given by
e =

g1g2√
g2

1 + g2
2

. (4.93)
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Figure 7: Weinberg angle etc.

The mass of the Z-boson is given by

m2
Z =

1

2
(g2

1 + g2
2)|v|2. (4.94)

We see that
mW

mZ

= cos θW , tan θW =
g1

g2

. (4.95)

This angle θW is known as the Weinberg angle. See Fig. 7.

4.8.2 Fermion masses

Recall from Sec. 2.7.4 that the StandardModel Lagrangian did not have a mass term for the quarks.
What we had was the Yukawa interaction between fermions and the Higgs:

(quark Yukawa) = Y up
ij εuvδaaφ

u(QL)ivaαuR
ja
α + Y down

ij δuvδaaφ
u
(QL)ivaαdR

ja

α + c.c. (4.96)

We now use
Qiuaα
L =

(
uiaαL
diaαL

)
. (4.97)

and plug in the Higgs vev to this Yukawa interaction. We find

(quark Yukawa) ⊃ vY up
ij δaaφ

u(uL)iaαuR
ja
α + vY down

ij δaa(dL)iaαdR
ja

α + c.c. (4.98)

This means that they become the mass terms for the quarks.
Before proceeding, we note that the covariant derivative of QL contained the combination

∂µ + i
1

6
AU(1)
µ + iASU(2)

µ = ∂µ + i

(
1
6
A

U(1)
µ + 1

2
A3
µ

1
2
A+
µ

1
2
A−µ

1
6
A

U(1)
µ − 1

2
A3
µ

)
(4.99)

acting on (4.97). Using (4.89), the coupling to Aem
µ can be found by simply setting AU(1)

µ = A3
µ =

Aem
µ . This means that uL and dL have the electromagnetic U(1) charges 1/6 + 1/2 = 2/3 and

1/6− 1/2 = −1/3, respectively. Similarly, the electromagnetic U(1) charges of uR and dR can be
found to be −2/3 and +1/3. Indeed the mass terms are invariant under the electromagnetic U(1)

gauge symmetry.
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4.8.3 Number of physical parameters in the Yukawa couplings

Let us count the number of physical parameters in the Yukawa couplings of the quarks. (The
following discussion can be done without referring to the Higgs effect, so this part could have
been put at the end of Sec. 2.7.4.) For this purpose, it is useful to write the quark Yukawa by
emphasizing a slightly different aspect:

(quark Yukawa) = Y x
i φ(QL)i(uR)x + Ỹ s

i φ(QL)i(dR)s + c.c. (4.100)

where we dropped the gauge indices u, a and the spinor index α because they do not play any role
below, and we used distinct symbols i, x, s = 1, . . . , N for the label of the generation (which is the
real world is given by N = 3.

We now note that it is our choice to redefine the symbols as follows:

Qi
L 7→ U ijQ

j
L, (uR)x 7→ (uR)y(V−1)yx, (dR)s 7→ (dR)t(V−1)ts (4.101)

and at the same time
Y x
i 7→ Vxy Y

y
j (U−1)ji , Ỹ s

i 7→ Ws
t Ỹ

t
j (U−1)ji (4.102)

where U , V ,W are three unitary matrices which are independent of the spacetime position.
This means that any observable physical quantity is a function of Y , Ỹ and their complex

conjugates, which are invariant under the transformation (4.102).7
The invariance under V andW are easy to deal with: we simply form

X i
j := (Y †)ixY

x
j , X̃ i

j := (Ỹ †)isỸ
s
j (4.103)

which are both hermitean and have the transformation

X 7→ UXU−1, X̃ 7→ UX̃U−1. (4.104)

An N × N Hermitean matrix contains N2 real parameters. In total, X and X̃ have 2N2 real
parameters. There is an action of U , containing N2 real parameters, but U and cU act in the same
way on X and X̃ . In total we find

2N2 − (N2 − 1) = N2 + 1 (4.105)

parameters.
Note that the eigenvalues ofX , X̃ (times v2) are the masses squared of the up-type quarks and

the down-type quarks, respectively. They comprise 2N real parameters.
Therefore, there are

N2 + 1− 2N = (N − 1)2 (4.106)

additional real parameters, which describe how the quarks are mixed under the weak interaction.
For N = 2 there is a single such parameter, known as the Cabbibo angle. For N = 3, there are
22 = 4 parameters.

7In mathematics this is an example of something called the quiver representation theory.
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4.8.4 CP (non-)invariance

ACP transformation on a fermion acts in the following way: ψnew
α (t, x, y, z) = ψα(t,−x,−y,−z),

which is compatible with the Lorentz transformation.

Exercise 4.13. Check this.

One finds that performing the CP transformation on the fermions is equivalent to performing
the change

Y newx
i := Y x

i , Ỹ news
i := Ỹ s

i . (4.107)

We say that our theory is CP invariant when Y and Ỹ are invariant under (4.107), i.e. they are real
matrices, possibly after a suitable transformation (4.102) using U , V andW . The discussion in the
last subsection means that this condition is equivalent to the condition that X and X̃ can be made
real matrices by a suitable U .

Let us count the number of parameters in CP invariant theories. A real symmetric matrix X
contains N(N + 1)/2 parameters; and therefore X and X̃ together have N(N + 1) parameters.
We can still perform the transformation (4.104) with a real orthogonal matrix U , which contains
N(N − 1)/2 parameters. In the end we find

N(N + 1)−N(N − 1)/2 = N(N + 3)/2 (4.108)

parameters. Among them, we have 2N mass parameters. Therefore there are

N(N + 3)/2− 2N = N(N − 1)/2 (4.109)

mixing angles. Comparing with (4.106), we find that the non-CP-invariant theories have

(N − 1)2 −N(N − 1)/2 = (N − 1)(N − 2)/2 (4.110)

real parameters in addition to the CP-invariant cases.
When N = 2, this is zero. This means that with two generations, the quark sector is automat-

ically CP invariant. When N = 3, this is one. This means that with three generations, the quark
sector contains a single real parameter which controls its CP non-invariance.8

One consequence of the CP invariance is the following. Recall that any physical quantity is a
function ofX and X̃ invariant under the transformation (4.104). Any function can be approximated

8This simple analysis gave Kobayashi and Maskawa a Nobel Prize! I always consider a 4-way distinction concern-
ing scientific problems:

interesting not interesting
simple A B
difficult C D

I like A the most; the result of Kobayashi-Maskawa clearly belongs to this category. D is the worst. I am not sure
which of B and C I prefer.
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by a polynomial. Any monomial made out ofX and X̃ invariant under the transformation (4.104)
has the form

tr(a sequence of X and X̃, ) (4.111)

for example
trXXX̃XX̃X̃. (4.112)

When the theory is CP invariant, X and X̃ can be made simultaneously real, and such traces are
automatically real. When the theory is not CP invariant, there are in general non-real combinations
among such functions.

We saw above that the system is always CP-invariant whenN = 2. This means that for arbitrary
pair of two 2× 2 Hermitean matricesX and X̃ , the trace of an arbitrary sequence ofX and X̃ , for
example (4.112), is automatically real.

Exercise 4.14. Prove this funny fact about two 2× 2 Hermitean matrices.

5 Renormalization group
In the last section we only talked about purely classical phenomena. Let us study some quantum
effects.

5.1 Scalar φ4

Let us start from a theory of N real scalars φi=1,...,N , with the action

SE =

∫
d4x[

1

2
∂µφi∂

µφi +
1

24
λL(φiφi)

2] (5.1)

where we work in the Wick-rotated Euclidean version; the repeated indices are summed. We
also put the subscript L to the parameter λ that it is a parameter in the Lagrangian which is not
directly the quantity appearing in the correlation functions. Before proceeding, we note that φ has
dimension 1 since d4x has dimension −4 and ∂ has dimension 1. Therefore the coupling λL is
dimensionless.

At tree level, we find

〈φi(p)φi(q)φi(r)φi(s)〉 ⊃ (2π)4δ(p+ q + r + s)
1

p2

1

q2

1

r2

1

s2
(−λL) (5.2)

where we do not sum over the repeated indices i. and we only kept the term proportional to
1/p2q2r2s2. See Fig. 8.0) for the diagram.

There are a few one-loop diagram. The two diagrams Fig. 8.1) and 1’) contribute by

(2π)4δ(p+ q + r + s)
1

p2

1

q2

1

r2

1

s2
(−λL)2(

1

2
+
N − 1

18
)

∫
d4`

1

`2(`+ p+ q)2
. (5.3)

53



Figure 8: Diagrams for the renormalization of the φ4 theory

These two diagrams group momenta as (pq)(rs). There are also diagrams where we group mo-
menta as (pr)(qs) and (ps)(qr).

Let us concentrate on the integral
∫
d4`/(`2(`+ P )2). This itself is logarithmically divergent,

but its derivative w.r.t. P 2 is not. Let us perform some standard manipulations

I(P 2) :=

∫
d4`

(2π)4

1

`2(`+ P )2

=

∫ 1

0

dx

∫
d4`

(2π)4

1

(`2 + x(1− x)P 2)2
=

∫ 1

0

dx
2π2

(2π)4

∫ ∞
0

`3d`
1

(`2 + x(1− x)P 2)2
. (5.4)

We now formally differentiate the integrand with respect to P 2. After a short computation one
finds

P 2 ∂

∂P 2
I = − 1

16π2
. (5.5)

Exercise 5.1. Perform this computation.

We now consider the dependence of 〈φi(p)φi(q)φi(r)φi(s)〉when we keep the ratio p : q : r : s

fixed and change the scale (p+q)2 ∼ (p+r)2 ∼ (p+s)2 ∼ P 2. We denote by λ(P 2) the coefficient
appearing in

〈φi(p)φi(q)φi(r)φi(s)〉 ⊃ (2π)4δ(p+ q + r + s)
1

p2

1

q2

1

r2

1

s2
(−λ(P 2)). (5.6)

The computations above show that

∂

∂ logP
λ(P 2) =

N + 8

3
λ2
L +O(λ3

L). (5.7)

We now note λ(P 2) = λL +O(λ2
L), and therefore we write this as

∂

∂ logP
λ(P 2) =

N + 8

3

1

16π2
λ(P 2)2 +O(λ(P 2)3). (5.8)

Note that λL disappeared from our view. Or more simply, we have

∂

∂ logP
λ =

N + 8

3

1

16π2
λ2 +O(λ3). (5.9)
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This is an equation written solely in terms the quantities appearing directly in the correlation func-
tions, and does not contain λL etc. which are formally infinite. This differential equation is known
as the renormalization group equation, and the change in the coupling is known as its running.9

Neglecting the O(λ3) correction, it is easy to integrate it. One first rewrites it as

∂

∂ logP

16π2

λ
= −N + 8

3
(5.10)

which means that
16π2

λ
=
N + 8

3
log

PLP

P
(5.11)

where ΛLP is an integration constant.
This means that λ grows as we raise the energy scale P , and becomes infinite when P = PLP;

this is called the Landau pole. Of course the O(λ3) correction become non-negligible well before
we reach this scale; the point is that the theory goes out of the validity of the perturbation theory
around this scale. In contrast, when we lower the energy scale to measure the system, λ smoothly
goes to zero. This means that the self-interaction of the scalar field decreases as we measure the
system at larger distances.

Another point of note is that the original Lagrangian (5.1) does not have any dimensionful pa-
rameter; but after solving the renormalization group equation one finds a dimension-ful parameter
PLP. This is sometimes called the dimensional transmutation.

One application of this simple analysis was an theoretical upper bound on theHiggsmass before
it was discovered. Let us put ourselves before the Higgs discovery. Recall that the Higgs mass is
m2
H = 2|m|2 = 2v2λ and the W-boson mass ism2

W = g2v2/2. As the W-boson had been already
discovered and the weak coupling g was also known, the vev of the Higgs field v was known. This
means that determiningmH was equivalent to determining λ, around the energy scale P 2 ∼ m2

W .
Using the result above with N = 4, we can then estimate the scale of the Landau pole PLP. One
might assume that PLP should not be below the Planck scaleMPlanck (or some other favorite scale
of yours.) This puts an upper bound to λ. This type of bound is known as the triviality bound from
historical reasons. When we require PLP > MPlanck, we get the constraintmH . 150GeV.

Exercise 5.2. Perform this computation.

In passing, we note that in the full StandardModel there are many more terms which contribute
to the running of λ. For example, there is also a contribution of the top loop, see Fig. 9. Since this
is a fermion loop, one has an extra minus sign in the contribution:

∂

∂ logP
λ ∼ +λ2 − Y 4

t + · · · . (5.12)

Again, Yt was known since the top quark had already been discovered. When λ is small, then λ
decreases as we raise the energy, and it can happen that λ becomes negative before too long. This

9People often say that the coupling constant runs, but it is not constant since it runs. I try to avoid to say the running
coupling constants and try to simply say the running couplings, but it is hard to change the habit.
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Figure 9: Top loop contribution to the running of Higgs self coupling.

makes the Higgs potential unbounded from below, andmakes our present universe only metastable,
or even unstable depending on the choice of the parameter. This gives a lower bound to the Higgs
mass. This type of the bound was known as the stability bound.

5.2 Running of the gauge couplings
5.2.1 General formula

Let us move on to the case of the gauge theory. We start from the action

SE =

∫
d4x[

1

4g2
trFµνF

µν + ψDµσ
µψ +Dµφ

†Dµφ†] (5.13)

where Fµν is a gauge field of gauge group G, ψ is a left-handed fermion in the representation RF

of G, and φ is a complex scalar in the representation RS of G.
At tree level, 〈Aaµ(p)Abν(−p)〉 ∼ δabg2/p2, where a = 1, . . . , dimG is the index for the gauge

components. We have various loop corrections to this, see Fig. 10.
It is clear from the diagrams that the running is of the form

∂

∂ logP
g2 ∼ g4(kvC(g) + kfC(RF ) + ksC(RS)) +O(g6). (5.14)

Here, C(R) for an irreduicble representation R is defined by

C(R)δab = tr ρ(T a)ρ(T b) (5.15)

where T a=1,...,dimG are infinitesimal generators of the Lie algebra g ofG and ρ is the representation
matrix inR, and for a reducible representationC(R) is given by the sum

∑
iC(Ri)whereRi are the

irreducible components of R; C(R) are manifestly positive. Then, kv, kf and ks are the numerical
constants which characterize the loop computations of a vector boson, a fermion, or a scalar field.
Their signs are not clear until one actually computes it.

After a long computation, one finds

∂

∂ logP
g2 =

g4

8π2

[
−11

3
C(g) +

2

3
C(Rf ) +

1

3
C(RS)

]
+O(g6). (5.16)

56



Figure 10: One loop diagrams contributing to the running of the gauge coupling.

Exercise 5.3. If you have never done this computation, you should. Consult any of the standard
textbooks.

5.2.2 QED

Consider for example the U(1) gauge theory with Dirac fermions Ψi of charge qi, i.e. the quantum
electrodynamics (QED). Each Dirac fermion is a pair of Weyl fermions ψL and ψR, each of charge
qi and −qi. Plugging this in to the general formula, one finds

∂

∂ logP
e2 =

e4

6π2
(
∑

q2
i ) +O(e6). (5.17)

Neglecting the higher order corrections, this is easy to integrate. It is conventional to use α :=

e2/(4π), called the fine structure constant. We find

∂

∂ logP

1

α
= − 2

3π
(
∑

q2
i ) +O(α), (5.18)

meaning that
1

α
=

2

3π
(
∑

q2
i ) log

PLP

P
(5.19)

where PLP is again the Landau pole. This means that the perturbation theory breaks down around
the high energy scale ∼ PLP in the massless QED, and the coupling runs to zero in the infrared.
This behavior is known as the infrared freedom.
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Figure 11: Running of the fine structure constant.

When the fermion has mass M , it is known that the contribution to the running disappears
when P ≪M and the running is essentially the same with the massless fermion when P ≫M .
This needs a careful justification but should be intuitively acceptable. In the real world, the lightest
charged particle is the electron (which is about 500keV) and the second lightest one is the muon
(which is about 150MeV). This means that the fine structure constant stops running below the scale
of the electron mass; this is the value of the fine structure constant which we usually refer to, and
famously has the dimensionless value ∼ 1/137.10

5.2.3 QCD

Let us next consider the SU(N) gauge theory withNf copies of Dirac fermions in the fundamental
N -dimensional representation. It is conventional to use the normalization that C(fundamental) =

1/2 for T a. Then one finds that C(su(N)) = N .

Exercise 5.4. Check this.

Plugging into our general formula, one finds

∂

∂ logP
g2 =

g4

24π2
(−11N + 2Nf ). (5.20)

In particular, whenNf = 0 (which is called the pure Yang-Mills theory, the coupling grows in
the infrared; the naive solution of the renormalization group equation is

1

g2
=

11

24π2
log

P

Λdyn
. (5.21)

10There have been many crackpots who tried to come up with a formula for α. Its history up to 2003 is summarized
in [Kra03], according to which Heisenberg thought α = π2/(2433). In 2018 it was a mildly big issue in academia
that the famous mathematician M. F. Atiyah claimed to have come up with the derivation, which he announced in a
public talk. He passed away shortly after, before describing the details.
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Figure 12: The field content of N= 4 super Yang-Mills.

This means that something happens at around the dynamical scaleΛdyn. What we believe to happen
is the confinement and the generation of the mass gap, to which we return in detail later. Its
ultraviolet behavior in contrast is very tame: g2 smoothly goes to zero as we raise the energy scale.
This behavior is known as the asymptotic freedom.

The asymptotic freedom persists as long as Nf/Nc < 11/2. When Nf/Nc exceeds this value,
the direction of the running of the coupling reverses, and the system becomes infrared free, just as
in the case of massless QED. We find the Landau pole in the ultraviolet.

5.2.4 N= 4 super Yang-Mills

It so happens that our general formula gives zero when we choose four chiral fermions ψ in g and
three complex scalars φ in g for any gauge group G, since

− 11

3
+ 4× 2

3
+ 3× 1

3
= 0. (5.22)

It is known that by giving a suitable potential for the scalars and a suitable Yukawa coupling among
fermions and scalars, the system has N= 4 supersymmetry. A supersymmetry is a symmetry
which changes the spin of the particle by 1/2; In an N= 4 supersymmetric system there are four
supersymmetries, which connects all the fieldsAµ, ψα and φ in the system, see Fig. 12. WithN= 4

supersymmetry, there is an independent argument saying that the gauge coupling cannot run at all,
not just to the leading order but to all orders. What we saw above is consistent with this curiosity.

5.3 Two-loop running and the fixed points
There are of course higher-loop contributions to the renormalization group equation. Let us first
discuss some generalities.

Let us suppose that the renormalization group equation is of the form

∂

∂ logP
g2 = b1g

4 + b2g
6 +O(g8), (5.23)

where g2 is a coupling in the theory which is supposed to be positive, such as the gauge coupling
squared or the coefficient of φ4 in the Higgs potential. We first need to discuss the issue of the
scheme dependence of the renormalization group equation. This concerns the following point.
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Very naively, a coupling, say g2, is a coefficient of a term in the Lagrangian. However, a naive
loop computation leads to infinities, which needs to be regularized and renormalized. We then
need to define g2(P 2) depending on the scale, in terms of a correlation function. This process
involves many choices, and a totality of such choices which allows computations in the QFT un-
der consideration is called a renomralization scheme, or simply a scheme. Suppose we have two
schemes, and correspondingly two differently defined couplings g2

scheme1 and g2
scheme2. An actually

measurable quantity X is a function of the coupling, and can be computed in any scheme of your
choice. Of course should satisfy

X = Xscheme1(g
2
scheme1) = Xscheme2(g

2
scheme2) (5.24)

under a certain mapping gscheme1 ↔ gscheme2.
Usually scientists agree among themselves on the leading term of what should be their g2, so

the relation is usually11 of the form

g2
scheme2 = 1 · g2

scheme1 + c · g4
scheme1 + c′ · g6

scheme1 + · · · . (5.25)

Now, suppose we computed the renormalization group equation

∂

∂ logP
g2
scheme1 = b1g

4
scheme1 + b2g

6
scheme1 + b3g

8
scheme1 + · · · . (5.26)

We can use (5.25) to translate it to the renormalization group equation for gscheme2. It turns out that

∂

∂ logP
g2
scheme2 = b′1g

4
scheme2 + b′2g

6
scheme1 + b′3g

8
scheme1 + · · · (5.27)

where
b′1 = b1, b′2 = b2, b′3 = b3 − b2c+ b1(c′ − c2). . . . (5.28)

This means that the first two coefficients of the renormalization group equation are scheme inde-
pendent.

Exercise 5.5. Confirm (5.28).

Exercise 5.6. Come up with an argument that b1,2 are scheme independent which does not use an
explicit computation.

Exercise 5.7. Does this scheme independence apply when there are more than one couplings?

11This is not always the case. If you work on supersymmetry, the often-used holomorphic scheme does not satisfy
this.
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Figure 13: Schematic form of the renormalization group flow.

Let us now come back to the equation

∂

∂ logP
g2 = b1g

4 + b2g
6 +O(g8). (5.29)

We dropped the subscript specifying the scheme again. A rough drawing of the renormalization
group flow of g2 is given in Fig. 13. Note that the arrow denotes the flow when we lower logP ,
following the standard convention.

We see that when g2
∗ = −b1/b2, the value of g2 becomes independent of the scale logP at

which we observe the system, at least to this order of approximation. (The value of the coupling
at the fixed point is conventionally denoted by attaching ∗ as a subscript or a superscript.) Such
a value is called a renormalization group fixed point. We are supposing that g2 is an inherently
positive quantity, so this requires that g2

∗ = −b1/b2 > 0. Furthermore, to be really sure about the
existence of the fixed point, g2

∗ needs to be sufficiently small. We also have a much more trivial
fixed point when g2 = 0: this is called a free fixed point or a Gaussian fixed point.

Depending on whether the fixed point is approached in the ultraviolet (i.e. at high energy or at
the small scale) or in the infrared (i.e. at low energy or at long distance), the fixed points are called
ultraviolet or infrared, respectively. In Fig. 13, we also indicated the types of the fixed points in
the infrared and in the ultraviolet, assuming that g2

∗ is very small. The entries marked by ? are for
the cases where the renormalization group flow takes the value of g2 out side of the region where
the perturbation theory is valid.

When the coupling g2
∗ stays constant under the change of logP , the system is scale invariant.

Such a system is often invariant under a bigger symmetry called the conformal symmetry, and is
called a conformal field theory.
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Figure 14: Schematic picture of the phase structure of the infrared limit of QCD.

5.4 The Banks-Zaks IR fixed point
Let us now study some example. The two-loop running of the SU(N) gauge theory withNf quarks
in the fundamental representations was first computed by [Cas74, Jon74, BM74], and has the form:

∂

∂ logP
g2 =

g4

8π2
(−11

3
N +

2

3
Nf )

+
g6

(8π2)(16π2)
(−34

3
N2 + (

20

3
N + 4

N2 − 1

2N
)
Nf

2
) +O(g8). (5.30)

Exercise 5.8. Compute and confirm the coefficient of g6.

We takes the limit N,Nf →∞ keeping Nf/N = 11/2− ε with a very small ε fixed. We find
that it has a weakly-coupled infrared fixed point at

g2
∗N

16π2
=

4

75
ε+O(ε2). (5.31)

This was first noted in [BZ82] and is known as the Banks-Zaks fixed point after the discoverer.
As we will study in detail later, when Nf = 0, the SU(N) gauge theory is believe to confine

and develop a mass gap. WhenNf is small, the QCD will break the chiral symmetry by having the
nonzero vev 〈ψαψα〉 6= 0. When Nf . (11/2)N , the long-distance limit is the Bankz-Zaks fixed
point, which is a weakly-coupled conformal field theory, and when Nf > (11/2)N , the system is
infrared free with a logarithmically decreasing coupling. The range ofNf where the infrared limit
is a nontrivial conformal field theory is known as the conformal window. As we lower Nf/N , the
fixed point coupling g2

∗ grows, and eventually we lose perturbative control. This makes it hard to
find the lower end of the conformal window.

Our world has N = 3, and depending on the energy scale, we usually think of Nf as 2 or
3. Experimentally, we know that we have the chiral symmetry breaking. So Nf = 3 is below the
lower boundary. The upper boundary is atNf < (11/2)N , i.e.Nf ≤ 16. A lot of numerical efforts
was put forward to determine the lower boundary. See [DeG15] for an extensive review from 2015.
The author of that review says that the evidence that Nf = 8 is below the lower boundary is very
strong, while Nf = 12 is definitely above the lower boundary.
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5.5 The Litim-Sannino UV fixed point
A natural question then is whether there is a weakly-coupled ultraviolet fixed point. This question
was only (relatively12) recently answered, in the affirmative by Litim and Sannino [LS14].13

The model is not too difficult. One starts from SU(N) gauge theory with Nf quarks ψiL and
ψRj in the fundamental representation, i = 1, . . . , Nf . We then introduceNf ×Nf complex scalar
fields H i

j . One just consider the Lagrangian

S = −
∫
d4x
[ 1

2g2
trFµνF

µν + ψLDµσ
µψL + ψRDµσ

µψR + ∂µH
†∂µH

+ yψiLψR,jH
j
i + c.c.+ u tr(HH†)2 + v(trHH†)2.

]
(5.32)

The couplings are

αg :=
g2N

16π2
, αy :=

y2N

16π2
, αu :=

uNF

16π2
, αv :=

vN2
F

16π2
. (5.33)

As before, we define
NF/N = 11/2 + ε (5.34)

and take the limit NF , N →∞, keeping ε small and fixed.
The RG equations are, according to [LS14, LMS15],

α̇g =
4

3
εαg + 25α2

g −
121

2
αgαy +O(α3), (5.35)

α̇y = αy(13αy − 6αg +O(α2)), (5.36)
α̇u = −11α2

y + 4αu(αy + 2αu) +O(α3), (5.37)
α̇v = 12α2

u + 4αv(αv + 4αu + αy) +O(α3). (5.38)

Here the dot on the left hand side means the derivative with respect to the scale logP .
The structure of the RG equations show that a consistent fixed point can be found at α∗ ∼ ε.

From (5.36) one finds α∗y = (6/13)α∗g. Plugging this in to (5.35) one finds α∗g and α∗y. The equation
(5.37) then determines α∗u, which can be fed to (5.38) to fix α∗v. The results are:

α∗g =
26

57
ε, α∗y =

4

19
ε, α∗u =

√
23− 1

19
ε, α∗v = − 1

19
(2
√

23−
√

20 + 6
√

23)ε, (5.39)

and this fixed point is in the ultraviolet; the flow is visualized in Fig. 15.
12In the sense that the answer was not known when I was a graduate student around 2005. I remember being asked

by Prof. Yanagida whether such a UV fixed point exists. I looked for various supersymmetric theories, because I never
dealt with non-supersymmetric theories back then. I did not find any. Indeed, later, Intriligator and Sannino found
that you cannot have weakly-coupled UV fixed points in supersymmetric theories [IS15].

13I might be writing too many personal recollections here, but there is another point I want to make. The authors of
this paper has been pursuing the idea called the asymptotic safety of gravity, in which they hope for the existence of
an ultraviolet fixed point of gravity. If it were realized, you do not need string theory or loop quantum gravity to deal
with quantum gravity, and the ordinary QFT analysis would suffice. Personally I thought this approach was somewhat
misguided, and I still think it is. That said, while trying to look for pieces of evidence, they analyzed ordinary gauge
theories, and found this class of weakly-coupled UV fixed points. This gave me a cautionary tale: interesting results
can come out even from a misguided motivation. It is often useful, therefore, to let other people pursue what they like,
independent of whether you like it or not.
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Figure 15: Renormalization group flow for αg and αy. We chose ε = 0.1; the arrow shows the
direction toward the infrared; the black blob is the fixed point.

That αv < 0 is somewhat worrisome, since this might make the potential for H unbounded
below. To check that this does not happen, one rewrites

u trX2 + v(trX)2 = u tr(X − (trX)/Nf )
2 + (v − u/Nf )(trX)2 (5.40)

where X = HH†. We can use (5.39) to check that v∗ − u∗/Nf = (α∗v − α∗u)N2
f > 0. Therefore

the scalar potential at the fixed point is bounded from below.

6 Qualitative discussions of strongly-coupled gauge theories
We saw above that SU(N) gauge theory withNf massless quarks in the fundamental representation
is

• infrared free when Nf > (11/2)N ,

• goes to the Banks-Zaks conformal fixed point when Nf . (11/2)N .

We also learned that the coupling g∗ at the Banks-Zaks fixed point grows as we lower Nf .
What happens in the other extreme, when Nf = 0 (which is known as the pure gauge theory

or the pure Yang-Mills theory) or when Nf = 1, 2 or 3? We do not have any perturbative control
in the infrared limit. Here the experiment gives us important information, since our world has the
strong force and the quarks, corresponding to N = 3 and Nf = 2 or 3.
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6.1 Nf = 0: color confinement and the mass gap
When Nf = 0, i.e. in the pure SU(N) gauge theory, with the bare action

S = −
∫

1

2g2
trFµνF

µν , (6.1)

the system is believed to confine its color and generate the mass gap. This means the following.

Color confinement: First, recall the situation in the more familiar quantum electrodynamics. In
the classical theory of Maxwell fields and electrons, the electron field couple to the Maxwell fields.
In other words, the electron fields are electrically charged. In the quantum theory ofMaxwell fields
and electrons, there is a single electron state in the Hilbert space, which has finite energy and has
an electric charge.

Now, let us consider the classical pure SU(N) theory. The gauge fields have self couplings,
sinceFµν = ∂µAν−∂νAµ+i[Aµ, Aν ] and therefore trFµνF

µν contains cubic and quartic couplings.
What couples to SU(N) gauge fields are said to have color charges. After a naive quantization,
the gauge fields give the gluons. And indeed in the high energy limit, they are known to interact
weakly. But it is believed that it costs infinite amount of energy to isolate a single colored particle.
In other words, in the Hilbert space of the theory, there is no finite energy state which has the color
charge. This is the color confinement.

Generation of the mass gap: In general, a one-particle excitation over a relativistic vacuum is
characterized by a 4-momentum of the form E2 − p2 = m2, where m is the rest mass of that
excitation. In the quantum Maxwell theory, there definitely is the photon, which is massless. In
the quantum SU(N) gauge theory, the gluon has colors and cannot be isolated. The lowest-mass
excitation above the vacuum is known as the glue ball, and it is believed to be massive, despite the
fact that there is no mass term in the original Lagrangian above. This is the generation of the mass
gap.

Here are two anecdotes:

1. One of the Clay Millennium problems is to mathematically construct the pure Yang-Mills
theory and prove that there is the mass gap [JW06]. A successful proof will give you a
million dollars.

2. When Yang andMills originally came up with the Yang-Mills theory, Yang gave a seminar at
IAS. He wrote his experience in the comment section of his collected works, see pp. 19–20
of [Yan05]. Let me quote the most interesting part:

Oppenheimer invited me to return to Princeton for a few days in late February
to give a seminar on our work. Pauli was spending the year in Princeton, and he
was deeply interested in symmetries and interactions . . . Soon after my seminar
began, when I had written down on the blackboard,

(∂µ − ieBµ)ψ
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Pauli asked, “What is the mass of this field B?” I said we did not know. Then
I resumed my presentation, but soon Pauli asked the same question again. I said
something to the effect that that was a very complicated problem, we had worked
on it and had come to no definite conclusions. I still remember his repartee: “That
is not sufficient excuse.” I was so taken aback that I decided, after a fewmoments’
hesitation, to sit down. There was general embarrassment. Finally Oppenheimer
said, “We should let Frank proceed.” I then resumed, and Pauli did not ask any
more questions during the seminar.

Exercise 6.1. Prove that pure Yang-Mills theory has a mass gap.

6.2 Nf = 1, 2, . . .: chiral symmetry breaking and the U(1) problem
Before proceeding, we note that two phenomena, the color confinement and the generation of the
mass gap, are logically independent. Indeed, withNf = 2, 3, it is believed that the system confines
without the mass gap. To understand this we need to know the concept of the chiral symmetry.

Let us recall the classical action:

S = −
∫

[
1

2g2
trFµνF

µν + ψaiα̇σ
µ
α̇αDµψ

ai
α + ψ̃auα̇ σ

µ
α̇αDµψ̃auα] (6.2)

where we put indices explicitly to fermions. First α, α̇ are spinor indices. Second, a = 1, . . . , N

are indices for the color (=gauge) indices. This means that ψ is in the fundamental representation
(a column vector ofN elements, say), and ψ̃ is in the antifundamental representation (a row vector
of N elements). ψ is then in the antifundamental and ψ̃ is in the fundamental.

Third, i = 1, . . . , Nf and u = 1, . . . , Ñf are for the distinct flavors of quarks. For the moment
we consider introducing different numbers of quarks for ψ and ψ̃. We can compute the gauge
anomaly as explained in Sec. 3.4. We consider aU(1) subgroup in the SU(N) group corresponding
to the infinitesimal generator

X = diag(q1, . . . , qN),
∑

qa = 0. (6.3)

Under this U(1) subgroup, the a-th component of ψ has charge qa and the a-th component of ψ̃
has charge −qa. Then the total gauge anomaly is

Nf

∑
(qa)

3 + Ñf

∑
(−qa)3, (6.4)

which is zero if and only if Nf = Ñf . We want the gauge anomaly to be absent, so we assume
Nf = Ñf in the following. In this case, we can stop distinguishing two types of indices i and u
and we can combine two Weyl spinors ψaiα and ψ̃aiα̇ into a Dirac spinor Ψai = (ψaiα , ψ̃

ai
α̇ ).

We now consider the field redefinition of the form

ψiold → ψinew := U ijψ
j
old, ψ̃old

u → ψ̃new
u := ψold

v V−1v
u, (6.5)
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where U ∈ U(Nf ) and V ∈ U(Nf ) are spacetime-independent matrices. This is clearly a symme-
try of the classical Lagrangian above.

Historically, people originally used the Dirac spinor Ψai, with which the transformation

Ψi
old → Ψi

new :=W i
jΨ

j
old, (6.6)

looks more obvious. This corresponds to the special case (U ,V) = (W ,W). W are said to form
the diagonal subgroup of the group of (U ,V).

The transformations
(U ,V) ∈ U(Nf )× U(Nf ) (6.7)

is known as the chiral flavor symmetry, and the subgroup

W ∈ U(Nf )diagonal ⊂ U(Nf )× U(Nf ) (6.8)

is called the the flavor symmetry. Wewill soon see that the non-diagonal part of theU(1) symmetry
is in fact anomalous and is not the symmetry of the theory, but for the moment we ignore this
important subtlety.

Chiral symmetry breaking: For a sufficiently smallNf , this system is believed to exhibit color
confinement and chiral symmetry breaking. We already introduced the color confinement, so let
us concentrate on the chiral symmetry breaking. The essence is that the strong interaction in the
infrared is believed to produce a non-zero eigenvalue for the fermion bilinear

〈ψaiα ψ̃αau〉 ∝ Λ3
dynδ

i
u. (6.9)

This is also known as the chiral condensate, and can roughly be thought of as the analogue of the
Cooper pair in the superconductor.

Note that the chiral symmetry acts on this condensate as

〈ψioldψ̃old
u 〉 7→ 〈ψinewψ̃new

u 〉 = U ij〈ψ
j
oldψ̃

old
v 〉V−1v

u, (6.10)

and therefore is invariant only under (U ,V) = (W ,W), because of the presence of δiu. In other
words, the nonzero condensate breaks the chiral symmetry U(Nf )×U(Nf ) to the non-chiral sub-
group U(Nf )diag.

The U(1) problem: If this were the whole story, we would obtain 2N2
f − N2

f = N2
f massless

Nambu-Goldstone bosons associated to the symmetry breaking, because we have 2N2
f generators

for U(Nf ) × U(Nf ) which is broken to U(Nf ) with N2
f generators. However, in nature where

Nf = 2, we observed only N2
f − 1 = 3 massless Nambu-Goldstone bosons, which were identi-

fied as the pions π+, π0 and π−, which corresponded to broken generators of SU(Nf ) = SU(2).
(Note that they are actually massive, about ∼ 135MeV, but this can be accounted for from the
correction coming from the fact that the quarks are not massless. The problem is that the next
lightest particle with the correct quantum number, η, is too heavy.) What happened to the would-
be Nambu-Goldstone boson for the U(1) part of the broken generator?
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Let us be more explicit about the structure of the symmetry. We now separate U(Nf )×U(Nf )

as (U(1)×SU(Nf ))× (U(1)×SU(Nf )). The combination of U(1)×U(1), which assigns charge
+1 toψ and−1 to ψ̃, is called the baryonic symmetry, and is an actual symmetry. This combination
is called the baryonic symmetry since it assigns zero charge to a meson operator ψψ̃ whereas it
assigns charge +N to the baryon operator

εa1a2···aNψ
a1
α2
ψa2α2
· · ·ψaNαN . (6.11)

The other combination of U(1)×U(1), which assigns charge +1 to both ψ and ψ̃, is called the
axial U(1) ‘symmetry’, but it is simply not a symmetry of the system in the quantum theory. We
will detail why this is the case in the next subsection, but let us accept it for a while.

Such a ‘symmetry’ is called anomalous.14 The Nambu-Goldstone theorem does not apply since
an anomalous ‘symmetry’ is not really a symmetry, and therefore we do not have to worry about
the missing Nambu-Goldstone boson for the axial U(1) symmetry. This is the famous solution to
the U(1) problem by ’t Hooft [tH76, tH86].15 Summarizing, we have the situation:

symmetry of the classical Lagrangian: U(Nf )× U(Nf )

↓
symmetry of the quantum theory: U(1)baryon × SU(Nf )× SU(Nf )

↓
symmetry of the infrared limit: U(1)baryon × SU(Nf )diagonal.

(6.12)

where N2
f − 1 generators are spontaneously broken by the chiral condensate in the second arrow,

producing N2
f − 1 Nambu-Goldstone bosons in the process.

6.3 The U(1) problem
We said above that the chiral U(1) ‘symmetry’ is not a symmetry to start with. Let us understand
why this is the case.

6.3.1 First derivation

To see this, we repeat the argument in Sec. 3.4. We pick an arbitrary U(1) subgroup of U(Nf ) ×
U(Nf ) corresponding to the generator

diag(q1, q2, . . . , qNf ), diag(q̃1, q̃2, . . . , q̃Nf ) (6.13)

for (U ,V) ∈ U(Nf )×U(Nf ), respectively, and would like to ask which U(1) subgroup is actually
a symmetry.

14This is a confusing terminology, since an anomalous ‘symmetry’ is not really a symmetry. But it is hard to change
the established terminology.

15According to http://www.staff.science.uu.nl/~hooft101/ap.html, ’t is pronounced as [@t]. Therefore with a indef-
inite article we should use an ’t Hooft loop not a ’t Hooft loop, and similarly the ’t Hooft anomaly matching condition
should be pronounced with [Di] instead of [D@].
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Let us introduce a magnetic flux Bz for this U(1) subgroup with
∫
Bzdxdy = 2π. More

explicitly, we introduce a magnetic flux for U(Nf )× U(Nf ) of the form

diag(q1, q2, . . . , qNf )Bz for U(Nf ) acting on ψ (6.14)

and
diag(q̃1, q̃2, . . . , q̃Nf )Bz for U(Nf ) acting on ψ̃ . (6.15)

This leads to (q1 + · · ·+ qNf ) massless left-moving 2d fermions in the z − t plane charged under
gauge SU(N) from ψα, and similarly to (q̃1 + · · · + q̃Nf ) massless right-moving 2d fermions in
the z − t plane charged under gauge SU(N) from ψ̃α̇. This has gauge anomaly and therefore
inconsistent unless there are equal number of left-moving and right-moving fermions, i.e.

q1 + · · ·+ qNf = q̃1 + · · ·+ q̃Nf . (6.16)

The SU(Nf )× SU(Nf ) part automatically satisfy the constraint above, since we have

q1 + · · ·+ qNf = 0 = q̃1 + · · ·+ q̃Nf (6.17)

separately. We now set q1 = · · · = qNf =: q and q̃1 = · · · = q̃Nf =: q̃ to isolate the U(1)× U(1)

part. We see that there is a gauge anomaly unless q = q̃. This means that the diagonal U(1) ⊂
U(1) × U(1) has no problem, whereas a magnetic field in the anti-diagonal U(1) where q = −q̃
causes a gauge anomaly.

6.3.2 Second derivation

In the above derivation, we saw the appearance of the problematic gauge anomaly of SU(N) when
one introduces a nonzero background gauge field for the chiral U(1) symmetry. Let us see how the
problem manifests itself when we consider a nonzero gauge field for SU(N).

Let us first consider a single Weyl fermion ψ of charge +1 under U(1). Let us introduce
the background U(1) gauge field on Euclidean R4 parameterized by x, y, z, w, such that only the
components Fxy and Fzw are nonzero, with∫

dxdy
Fxy
2π

= nxy,

∫
dzdw

Fzw
2π

= nzw. (6.18)

We first regard x, y directions as internal; we saw there are nxy zero modes of D
/

for the x, y
directions. Then we effectively have nxy left-moving complex 2d fermions on the zw plane. We
apply the same argument again on the z, w directions; there are nzw zero modes of D

/
for the z, w

directions, for each left-moving complex 2d fermion. In total, we have nxynzw zero modes of the
4d Dirac operator D

/
.

We can write this combination nxynzw in a more covariant way:

nxynzw =

∫
d4x

1

8

1

(2π)2
εxyzwFµνFµν , (6.19)
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and in this way it is known to generalize:

((effective) # of the zero modes of D
/

) =

∫
d4x

1

8

1

(2π)2
εµνρσFµνFρσ, (6.20)

for arbitrary configuration of F , not just for configurations of the particular form (6.18). This is
the index theorem.

What does a 4d zero mode do? We have a normalizable solution to

σµDµψ = 0 (6.21)

in other words
(∂tψ(t, x, y, z) +

∑
i=1,2,3

σiDi)ψ(t, x, y, z) = 0. (6.22)

We can expand the x, y, z directions using the eigenmodes of σiDi, which is now time dependent.
Assuming that the change is very slow, we see

(∂tψn(t) + En(t))ψn(t). (6.23)

Integrating it from t = 0 to t→ ±∞, we see that

ψn(t) ∼ e−
∫ t
0 En(t)dt (6.24)

which converges only if En(t) > 0 for t ≫ 0 and En(t) < 0 for t ≪ 0. Therefore the zero
modes correspond to the energy eigenvalues crossing from negative to positive. This brings up a
fermionic mode from the Dirac sea. Since each new fermionic mode carries the U(1) charge, we
have

Q(t = +∞)−Q(t = −∞) = ((effective) # of the zero modes of D
/

). (6.25)
Combining with (6.20), we have

Q(t = +∞)−Q(t = −∞) =

∫
d4x

1

8

1

(2π)2
εµνρσFµνFρσ. (6.26)

In fact there is a local version of this equation:

∂µjµ =
1

8

1

(2π)2
εµνρσFµνFρσ (6.27)

where jµ is the U(1) current. This form of the equation can be derived directly by a perturbation
theory one-loop computation; the coefficient is easier to fix in the approach taken in this section in
my opinion. Technicality aside, all this means that the U(1) current is not conserved and the U(1)

is not really a symmetry.
We can now repeat the same discussion in the case of SU(N) gauge theory with Nf flavors.

First consider the case Nf = 1. We have ψα in the fundamental of SU(N) and ψ̃α in the antifun-
damental of SU(N). We assign U(1) charge q for ψα and−q̃ for ψα. The same argument as above
shows that the U(1) current is anomalous in general:

∂µj
µ = (q − q̃)1

8

1

(2π)2
εµνρσ trFµνFρσ. (6.28)
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Then the diagonal U(1) symmetry for which q = q̃ is actually a symmetry while the chiral U(1)

symmetry for which q = −q̃ is not a symmetry.
For the more general case ofNf > 1, we again pick the U(1) subgroup specified by q1, . . . , qNf

and q̃1, . . . , q̃Nf ). Then the anomaly equation is

∂µj
µ = (

∑
i

qi −
∑
i

q̃i)
1

8

1

(2π)2
εµνρσ trFµνFρσ. (6.29)

Therefore we come to the same conclusion as in the first method: U(1)baryon× SU(Nf )× SU(Nf )

is actually a symmetry, while U(1)chiral is not.

6.3.3 Instanton number

In the equation above, the integral of the left hand side is Q(t = +∞) − Q(t = −∞) and is an
integer. Then the right hand side should also be an integer. This means that, for an SU(N) gauge
field,

I :=

∫
d4x

1

8

1

(2π)2
εµνρσ trFµνFρσ (6.30)

should be an integer. This integer is known to be the instanton number. Is there a way to understand
that it is an integer?

Let us recall a simpler question, which is the Dirac quantization of the monopole number. This
was ∫

d2x
1

2

1

2π
εµνFµν (6.31)

for a U(1) gauge field, and the integral is over a sphere. This was shown as follows. We separate
the integral to the sum of the integrals over the northern and the southern hemisphere. On each
hemisphere, we use

1

2
εµνFµν = εµν∂µAν (6.32)

to partially integrate. Then∫
d2x

1

2

1

2π
εµνFµν =

∫
equator

dθ
1

2π
(Anorth

θ − Asouth
θ ) =

∫
equator

dθ
1

2π
∂χ = χ(θ = 2π)− χ(θ = 0)

(6.33)
where eiχ(θ) is the gauge transformation on the equator.

The approach to the case above is similar. We separate R4 into the region t < 0 and t > 0. We
then use the equation

1

8

1

(2π)2
εµνρσ trFµνFρσ =

1

2

1

(2π)2
εµνρσ∂µ tr(Aν∂ρAσ +

2

3
AνAρAσ) (6.34)

to partially integrate, so that

I =
1

2

1

(2π)2

∫
|x|=R

[
d3xενρσ tr(Aν∂ρAσ +

2

3
AνAρAσ)− tr(A′ν∂ρA

′
σ +

2

3
A′νA

′
ρA
′
σ)
]

(6.35)

where Aν and A′ν are the gauge fields on t < 0 and t > 0, respectively.
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Exercise 6.2. Check this equation (and correct my typos).

Now they are related by the gauge transformation

A′ν = gAνg
−1 + g∂µg

−1. (6.36)

After plugging this in to the equation above, and after a somewhat lengthy computation when the
dust settles, one finds

I =
1

24π2

∫
t=0

d3xενρσ tr(g∂νg
−1)(g∂ρg

−1)(g∂σg
−1) (6.37)

When G = SU(2), g is a map from R3 = {t = 0} to S3 ' SU(2). We can add a point at infinity
to think that R3 is essentially an S3, so g is a map from S3 to S3. I computes the winding number,
which is an integer. WhenG = SU(N), I computes a generalized version of this winding number
and still is an integer.

Exercise 6.3. Compute the winding number explicitly for the identity map S3 → S3 using this
formula, and check that I = 1.

We now have another way to see the chiral anomaly. A SU(N) backgroundwith nonzero instan-
ton number I requires a global gauge transformation on some constant-time slice g : R3 → SU(N)

with the winding number I . This creates the chiral charge (
∑

i qi −
∑

i q̃i)I . A gauge transfor-
mation is a redundancy in the description, and should not change a genuine physical observable.
Therefore, when

∑
i qi −

∑
i q̃i 6= 0, the U(1) subgroup is not a genuine symmetry.

6.4 Chiral Lagrangian
Assuming that there is a chiral condensate 〈ψaiα ψ̃αau〉 6= 0, we can proceed to the study of the
Goldstone bosons. We saw above that the actual symmetry is U(1)baryon × SU(Nf ) × SU(Nf ),
which is then broken to U(1)baryon × SU(Nf ) by the vev

〈ψaiα ψ̃αau〉 ∝ Λ3δiu (6.38)

There should then be N2
f − 1 broken symmetry directions, which should be massless. How do we

describe its dynamics?
We can start by a simpler example. Consider a theory of a single complex scalar field φ with a

U(1) symmetry, with the potential V (φ) = λ(|φ|2 − v2)2. The lowest-energy point is 〈φ〉 = veiθ

and the fluctuation along θ is the Nambu-Goldstone mode associated to the breaking of the U(1)

symmetry. We note that all possible vev’s are obtained by starting from one particular value 〈φ〉 =

v and applying the U(1) transformation φ 7→ eiθφ.
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The action of the Nambu-Goldstone mode is obtained by simply restricting the original La-
grangian

S =

∫
d4x∂µφ∂

µφ+ V (φ) (6.39)

to the those φ of the form φ = veiθ, resulting in

S =

∫
d4x∂µφ∂

µφ =

∫
d4xv2∂µθ∂

µθ, (6.40)

which describes a massless scalar field.
Let us now come back to the case of the chiral symmetry breaking of QCD. The Goldstone

mode corresponds to the fluctuation of the chiral condensate (6.38)

〈ψaiα ψ̃αau〉 ∝ Λ3U i
u (6.41)

whereU i
u is obtained by δiu by the action of the symmetry (6.10). We see thatU i

u can be an arbitrary
unitary matrix of determinant 1.

We would like to write an action S ofU i
u. This needs to be symmetric under SU(Nf )×SU(Nf )

acting on the indices i and u. The simplest term one can write has two derivatives, and the next
has four derivatives:

S =

∫
d4x

[
F 2
π

4
tr(∂µU∂

µU †) + a tr(∂µU∂
µU †)2 + · · ·

]
(6.42)

Here Fµ has dimension 1 and a is dimensionless. Note that one cannot write a potential term for
U , since any monomial of U and U † symmetric under SU(Nf ) × SU(Nf ) is in fact a constant.
This is as it should be, since the Goldstone modes should be massless. This Lagrangian is known
as the chiral Lagrangian.

Let us be more specific and consider Nf = 2. It is customary to parameterize

U = exp(
i

Fπ

(
π0(x)

√
2π+(x)√

2π−(x) −π0(x)

)
), (6.43)

where π0 and π± are pions. Then we have

F 2
π

2
tr(∂µU∂

µU †) =
1

2
∂µπ

0∂µπ0 + ∂µπ
+∂µπ−

+
1

6F 2
π

((π0∂µπ
0 + π+∂µπ

− + π−∂µπ
+)2 − ((π0)2 + 2π+π−)(∂µπ

0∂µπ0 + 2∂µπ
+∂µπ−))

+ · · · (6.44)

Exercise 6.4. Perform this expansion.
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Therefore the single SU(Nf ) × SU(Nf )-invariant term tr ∂µU∂
µU † contains the standard ki-

netic terms of the pions, together with a lot of interaction terms. The value Fπ cannot be computed
from first principles at this rough level of understanding, but we already know that the relative size
of various four-point couplings among pions, up to a single constant Fπ. We also know that the
four-point interactions are all of order P 2/F 2

π where P is the typical momentum scale.
What would be a contribution to the four-point couplings to the more complicated term in the

chiral Lagrangian in (6.42), e.g. the term proportional to a? A gedanken computation shows that
any such terms would have four derivatives, and therefore carries a factor P 4/F 4

π . This means that
when P ≪ Fπ, the interaction processes are dominated by the contributions of the order P 2/F 2

π

we saw above. We can summarize our finding by saying that the behavior pion interactions in the
low-momentum limit P ≪ Fπ is completely determined by the single term (F 2

π/4) tr ∂µU∂
µU

alone.
So far we only considered the case when the quarks are massless. But we can use this formalism

to study what happens when quarks are massive. Again let us say Nf = 2. We can introduce the
mass term

m1ψ
a,i=1
α ψαa,u=1m2ψ

a,i=2
α ψαa,u=2 + c.c. (6.45)

to the original QCD Lagrangian (where we could call m1 = mu and m2 = md are the masses of
the up and down quarks). Using (6.41) we rewrite it as a term

m1Λ3U i=1
u=1 +m2Λ3U i=2

u=2 + c.c. = Λ3 tr(

(
m1

m2

)
U) + c.c. (6.46)

Expanding in terms of π0 and π±, we find that it leads to the Lagrangian of the form

1

2
∂µπ

0∂µπ0 +
(m1 +m2)Λ3

F 2
π

((π0)2 + 2π+π−) + · · · (6.47)

which means that the masses of π0 and π± are the same at this order and furthermore

m2
π ∝

Λ3(m1 +m2)

F 2
π

, (6.48)

i.e. the pion masses are proportional to the square root of the quark mass.

6.5 Baryon as a soliton in the chiral Lagrangian
Our chiral Lagrangian only contains massless pions, bound states of the form ψψ̃. How do we
describe a baryon, which is of the form

B := ψa1ψa2 · · ·ψaN εa1···aN? (6.49)

Note that it has charge N under the U(1) baryon symmetry.
To get a clue, consider U(1)baryon and SU(Nf )L × SU(Nf )R. Repeating the computation of

Sec. 6.3 but with the role of Nf and N exchanged, we can show that

∂µj
µ
baryon = N

1

8

1

(2π)2
εµνρσ(trFL

µνF
L
ρσ − trFR

µνF
R
ρσ) (6.50)
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where FL and FR are background gauge fields for SU(Nf )L × SU(Nf )R symmetry. This means
that a gauge transformation in SU(Nf )L given by g : R3 → SU(Nf ) of winding number w creates
the baryon charge Nw, whereas the same in SU(Nf )R destroys the baryon charge Nw.

We now start from a pion configuration

〈U i
u〉 = δiu, (6.51)

onR3 at t = 0. This is the vacuum configuration and has baryon number 0, obviously. We can now
apply an SU(Nf )L transformation g : R3 → SU(Nf ) of winding numberw to get the configuration

〈U i
u(x, y, z)〉 = giu(x, y, z). (6.52)

We now see that this configuration has baryon number Nw.
In general, 〈U i

u(x, y, z)〉 itself determines a mapU : R3 → SU(Nf ) and has a winding number.
Therefore, any theory which has such a non-linear field U has the winding number as a topologi-
cally conserved quantum number. In the chiral Lagrangian of the QCD, we found that the winding
number times N can be identified with the baryon number. This is in accord with the fact that
every object in QCD with nonzero baryon number has baryon number which is a multiple of N ,
due to the fact that εa1···aN has N indices.

This topological soliton is known as the Skyrmion, after Tony Skyrm who first considered
such a configuration. The lowest energy configuration for the winding number 1 skyrmion needs
to be found by solving the chiral Lagrangian (6.42). In the limit when the chiral Lagrangian solely
consists of tr ∂µU∂

µU †, the Skyrmion tends to shrink, since for a configuration Ũ(x) := U(cx)

one finds∫
d3x tr ∂iŨ∂iŨ

† =

∫
d3xc2 tr(∂iU)(cx)(∂iU)(cx)† = c−1

∫
d3x tr ∂iU∂iU

† (6.53)

which means that by shrinking it we can lower the energy arbitrarily.
In contrast, suppose there is a term containing four derivatives, such as a tr(∂µU∂

µU †)2. This
term scales with the prefactor c+1 instead. Therefore there is a nonzero value of c where the
combined energy

c−1

∫
d3x

F 2
π

4
tr ∂iŨ∂iŨ

† + c

∫
d3xa tr(∂µU∂

µU †)2 (6.54)

is minimized. In this way the size of the Skyrmion is fixed.

6.6 Wess-Zumino-Witten term
The chiral Lagrangian (6.42) is known to be quite useful in describing the pion dynamics, and even
contains baryons as discussed above. But there are still a few points which are unsatisfactory.

One point is that the Lagrangian (6.42) is parity symmetric (in the sense that it contains no
epsilon symbol), whereas the original QCDLagrangian is not (in the sense that it usesWeyl spinors
whose definition requires γ5 which is essentially the epsilon symbol for spinors). We expect a term
containing epsilon symbols in the chiral Lagrangian.
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Another point is that the Lagrangian (6.42) does not explain the statistics of the baryons.
Namely, a baryon contains N quark fields. Therefore, a baryon is a fermion if N is odd. How
can a Skyrmion, which is just a nontrivial configuration of the bosonic field U , be a fermion when
N is odd?

Luckily it is known that both problems can be solved by adding the so-called Wess-Zumino-
Witten term [Wit83a, Wit83b]. Let us have a brief look at this term.

Let us consider a 2d version first. We already learned the concept of the winding number for
SU(N), given in (6.37), which we reproduce here:

I[g] =
1

24π2

∫
dtdxdyενρσ tr(g∂νg

−1)(g∂ρg
−1)(g∂σg

−1) (6.55)

As discussed there, this is an integer, if it is integrated over the entire 3d space.
We now consider the following expression:

ΓWZW[g] =
1

24π2

∫
y≥0

dtdxdyενρσ tr(g∂νg
−1)(g∂ρg

−1)(g∂σg
−1). (6.56)

This is not an integer anymore. In addition, it has an interesting feature that the value modulo 1
only depends on the values of g at y = 0 and not on the values at y > 0.

To see this, let us say g1 and g2 are two maps {y ≥ 0} → SU(N) such that their values at
y = 0 agree. Then, we have

ΓWZW[g1]− ΓWZW[g2] =
1

24π2

∫
y≥0

dtdxdyενρσ tr(g1∂νg
−1
1 )(g1∂ρg

−1
1 )(g1∂σg

−1
1 )

− 1

24π2

∫
y≥0

dtdxdyενρσ tr(g2∂νg
−1
2 )(g2∂ρg

−1
2 )(g2∂σg

−1
2 )

=
1

24π2

∫
dtdxdyενρσ tr(g∂νg

−1)(g∂ρg
−1)(g∂σg

−1) = I[g]. (6.57)

where in the last line g is defined by

g(t, x, y) =

{
g1(t, x, y) (y ≥ 0),

g2(t, x,−y) (y ≤ 0).
(6.58)

Therefore the last line is the winding number of the configuration g, which is an integer. This was
what we wanted to show.

This means that ΓWZW[g] is effectively a two-dimensional integral and can be used in the action
of two-dimensional field theories. Indeed, consider the path integral for the partition function of a
2d theory given by

Z =

∫
[Dg]e−S[g]+2πikΓ[g]. (6.59)

Γ[g] is well-defined modulo 1. Therefore, e2πikΓ[g] is well-defined if k is an integer. This is the
Wess-Zumino-Witten term in 2d.
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Now we can generalize the discussion to 4d. The 5d version of the winding number is known
to be given by

Z 3 I[g] =
1

480π3

∫
d5xεµνρστ tr(g∂µg

−1)(g∂νg
−1)(g∂ρg

−1)(g∂σg
−1)(g∂τg

−1). (6.60)

We then consider

ΓWZW[g] =
1

480π3

∫
d5xx5≥0εµνρστ tr(g∂µg

−1)(g∂νg
−1)(g∂ρg

−1)(g∂σg
−1)(g∂τg

−1). (6.61)

Exactly as before, this quantity is well-defined modulo 1, and depends only on the value of g at
x5 = 0, i.e. on the value of g on the 4d spacetime. Nowwe can add to the contribution 2πikΓWZW[g]

to the action, which is consistent if k is an integer.
Let us come back to the question of the chiral Lagrangian. We needed a term which involves

an epsilon symbol; the Wess-Zumino-Witten term is a good candidate. The coefficient should be
of the form 2πik for an integer k. There are only two integers in the QCD, N and Nf . Nf already
appears in the chiral Lagrangian as the size of the matrix U . Then it sounds reasonable to take
k = N . This motivates us to upgrade the chiral Lagrangian to the form:

S =

∫
d4x

[
F 2
π

4
tr(∂µU∂

µU †) + a tr(∂µU∂
µU †)2 + · · ·

]
+ 2πNiΓWZW[U ]. (6.62)

To leading order, U∂µU−1 ∼ (i/Fπ)∂µπ where we parameterize U = exp((i/Fπ)π). Then,

2πNiΓWZW[U ] ∼ N

240π2F 5
π

∫
d5xx5≥0εµνρστ tr ∂µπ∂νπ∂ρπ∂σπ∂τπ

=
N

240π2F 5
π

∫
d4xενρστ trπ∂νπ∂ρπ∂σπ∂τπ.

(6.63)

This means that the Wess-Zumino-Witten term predicts a five-point coupling among the pions,
involving an epsilon tensor, with a striking property that its strengthN is quantized to be an integer.

This term also explains why the Skyrmion is a fermion whenN is odd. The point is to consider
a skyrmion configuration at t = 0, and perform an adiabatic rotation by the angle 2π. This gives
a specific configuration of U defined on R4, and one simply evaluates ΓWZW[U ] on this specific
configuration. It turns out that the concrete computation gives ΓWZW[U ] = 1/2, and therefore

e2πNiΓWZW[U ] = (−1)N . (6.64)

This means that a Skyrmion produces the sign −1 when rotated by 2π when N is odd, meaning
that a Skyrmion is a fermion when N is odd.

Exercise 6.5. Perform this computation, following [Wit83b].
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The Wess-Zumino-Witten term is also necessary to reproduce the anomaly of QCD under
SU(Nf ) × SU(Ñf ) in the chiral Lagrangian. This can be done by coupling the gauge fields A
and Ã for the chiral flavor symmetry SU(Nf )× SU(Ñf ).16

7 Renormalizability, effective field theory, and UV complete-
ness

In this final section, let us discuss how to think about the (non)-renormalizability of the Lagrangian
of a quantum field theory.

7.1 Assigning dimensions to operators
We use natural unit systems. Every quantity then has an associated dimension. A quantity X is
said to have dimension d ifX/Ed is dimensionless, whereE is some energy scale. 17 This is often
denoted by writing [X] = d.

The action S of a system appears in the exponent of the integrand of the path integral eiS , and
therefore dimensionless. Writing S =

∫
ddxL, we see [S] = 0 and [ddx] = −d, meaning that

[L] = d. From this we conclude:

• A scalar field with the standard kinetic term L = (1/2)∂µφ∂
µφ then has [φ] = d/2− 1,

• similarly the gauge field has [A] = d/2− 1,

• while a fermion field with the standard kinetic term L = Ψγµ∂µΨ has [Ψ] = (d− 1)/2.

We can then assign any operator a dimension. For example, a Yukawa interaction ∼ φψψ has
dimension (3/2)d− 2. An operator O can appear in the Lagrangian in the form L ⊃ λO, where λ
is the coefficient. We see [O] + [λ] = d.

Suppose we study the system at the energy scaleE. The dimensionless quantity characterizing
the effect of the term L ⊃ λO at the scale E is then λ/Ed−[O]. This crude argument already tells
us that an operator has a totally different effect in the low-energy physics depending on [O] < d,
[O] = d, and [O] > d. We have special terminology for them:

[O] < d relevant (super-)renormalizable
[O] = d marginal renormalizable
[O] > d irrelevant non-renormalizable

(7.1)

16The WZW term with A and Ã given in Witten’s original paper [Wit83a] had many typos. This is quite rare for
Witten’s papers in my experience; usually his papers are trustworthy even in their details. In [Wit83a] he did not
provide a way to derive the WZW term with A and Ã other than saying that it can be found somewhat tediously by
trial and error. Systematic methods to obtain it was explained in several papers at the same time, see e.g. [KRS84,
CGWS84, KT84, Man85].

17This definition of dimension is sometimes referred to as the engineering dimension of a quantity in hep-th, when
there is a need to distinguish it from the scaling dimension of a quantity, which is about how it behaves under the
renormalization group flow. At our rough level of discussion in this section, we do not need to distinguish the two.
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Figure 16: A loop effect in the general scalar theory

where the middle column is used when one emphasizes its effect in the renormalization group flow
toward low energy and the right column is used when one emphasizes its effect in the renormaliz-
ability in the traditional sense.

Note that there is only a finite number n(∆) of operators with dimension below any number
∆; in particular, there is only a finite number of marginal or relevant operators. But there is an
infinite number of irrelevant operators.

The adjectives in the middle column can already be understood by considering how λ/Ed−[O]

behaves when E → 0. Our aim next is to explain the right column.

7.2 Renormalizability in the traditional sense
To get the idea, let us revisit the computation in Sec. 5.1, in a more general context. Consider the
action

S =

∫
d4x

1

2
∂µφ∂

µφ+
∑

λiφ
i. (7.2)

As we saw before, [φ] = 1 in d = 4, and therefore [λi] = 4− i.
Let us consider the contribution of the diagram shown in Fig. 16. Note that the combined effect

has i+ j − 4 legs, and therefore gives a quantum correction to λi+j−4. Very roughly, it is given by

δλi+j−4 ∼ λiλj

∫ Λ

d4p
1

p2

1

p2
∼ λiλj log Λ (7.3)

where Λ is the ultraviolet cutoff. Note also that the engineering dimensions of the right hand side
and of the left hand side are consistent, since [λi+j−4] = [λi] + [λj] + [log Λ]. This is infinite as we
remove the cutoff Λ → ∞. We need to add δλby handi+j−4 (Λ) in the original Lagrangian to cancel this.
Such a term is called a counterterm.

Next consider the contribution of the diagram shown in Fig. 17. Similarly we have

δλi−2 ∼ λi

∫ Λ d4p

p2
∼ λiΛ

2. (7.4)

Again we can check [δλi−2] = [λi] + [Λ2]. This correction is infinite as we remove the cutoff, and
therefore we need to add the counterterm δλby handi−2 (Λ) to cancel it.

79



Figure 17: Another loop effect in the general scalar theory

In general, any perturbative computation gives

δλO = (a polynomial of λO′ and Λn or log Λ ). (7.5)

when the cutoff is taken to Λ→∞. Two obvious remarks are in order:

• Engineering dimension of both sides of the equation should agree.

• The power of Λ is non-negative.

From these observations we find the following immediate conclusion: If the original Lagrangian
contains only operators O with [λO] ≥ 0, the perturbative divergences only appear in δλO′ with
[λO] ≥ 0. In other words, we have

If the original Lagrangian contains (super-)renormalizable operators, one needs to add coun-
terterms to (super-)renormalizable operators. In particular, one only needs a finite number of
counterterms in this case. Such a theory is called renormalizable in the traditional sense.

In contrast, if one has an operator with [λO] < 0, simply by using this operator many times in a
diagram, we can generate divergences in δλO′ with arbitrarily high dimensions. Paraphrasing, we
have

If the original Lagrangian contains even a single non-renormalizable operators, one needs
to specify infinitely many counterterms. Such a theory is called non-renormalizable in the
traditional sense.

7.3 Non-renormalizable theories as effective theories
Theories which are non-renormalizable in the traditional sense was not liked in the olden days,
because one needs to specify infinite number of counterterms by hand in the process of the com-
putations. This naively seemed to remove any predictability from the theory: if we have an infinite
number of knobs to tune, wewould be able to tune anything. But this is not the case as the following
example shows.

Consider a theory of fermions with the following action:

S =

∫
d4x[Ψγµ∂µΨ +G(ΨΨ)2 + · · · ], (7.6)
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Figure 18: A loop effect of the four-Fermi interactions

where [G] = −2 and therefore this interaction is irrelevant=non-renormalizable. This form of the
interaction is known as the 4-Fermi interaction.

Now consider the effect of the diagram shown in Fig. 18. This is quadratically divergent, since
it is of order G2

∫
d4k(1/k

/
)2. Then we have, by dimensional analysis, that

G+ δG(P ) ∼ G+G2(cΛ2 + c′P 2 + c′′P 2 log(Λ/P 2)) + · · · (7.7)

where c etc. are dimensionless constants which can be determined by explicit computations, and
P is the typical momentum scale of the diagram. Adding counterterms remove the dependence on
Λ, but we still have a logarithmic dependence on the momentum scale P

G(P ) ∼ G(P0) + c′′G(P0)2P 2 log(P 2/P 2
0 ) + · · · (7.8)

with a computable coefficient c′′.
Note that after the Fourier transformation to the position space, correction terms polynomial

in P 2 lead to delta-function potentials or its derivatives, whereas logarithmic terms can lead to
potentials of the form 1/r3. To see this, recall that themassless exchange 1/p2 leads to a Coulombic
force since ∫

d3peixp
1

p

2

∼ 1

r
, r = |x|. (7.9)

Then the correction of the order (p2)n leads to∫
d3peixp(p2)n ∼ (∂2)nδ(x). (7.10)

In contrast, the correction of the order log p2 corresponds to∫
d3peixp log(p2) ∼ 1

r3
. (7.11)

In this sense the terms logarithmic in the momentum p can directly affect the long-range potential.
Coming back to the general discussion, the point is that any local term in the Lagrangian is built

from fields and derivatives. Therefore all that a local counterterm can directly give is a polynomial
function in P , and a local term cannot produce logarithmic terms unless via loops. Therefore, the
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coefficient of the logarithmic term is a prediction which cannot be tuned by the infinite number of
knobs which are the coefficient of the non-renormalizable terms.

That said, the presence of the non-zero coefficient G for the non-renormalizable interaction
such as (ΨΨ)2 means that the perturbative computation in that theory stops being meaningful
when the energy scale E is so high that the dimensionless coefficient GE2 is of order 1. This
theory stops being meaningful (or effective) at this energy scale.

A quantum field theory which makes sense only below a certain energy scale is called an
effective field theory.18 whereas a quantum field theory which makes sense at an arbitrarily small
scale is called a UV complete theory.19

From our discussions above we see

{non-renormalizable theories} ⊂ {effective field theories} (7.12)

but not all renormalizable theories are UV complete. For example, the φ4 theory we discussed in
Sec. 5.1 and the QED in Sec. 5.2.2 are both renormalizable in the sense that the Lagrangian only
contains renormalizable terms. But we already saw there that there is a Landau pole in both cases,
and the theories make sense only up to some energy scale. Therefore they are not UV complete.

The QCD we discussed in Sec. 5.2.3 is renormalizable for anyN andNF . It has a Landau pole
when NF/N > 11/2, which means that it is an effective field theory. When NF/N < 11/2, the
system is asymptotically free, and therefore it is a UV complete theory.

7.4 ‘Completion’ of an effective theory
What happens at this scale when the effective field theory breaks down? One scenario is that there
is an interesting strongly-coupled dynamics which cannot be analyzed by perturbation theory. This
scenario is known to be realized in examples.

Another less drastic scenario is that there is a heavy particle whose mass M is around this
scale, i.e. so that GM2 ∼ 1, which needs to be taken into account. The 4-Fermi model was first
introduced to describe the decay of a neutron to a proton, an electron, and an anti-neutrino; this is
know known to be mediated by a W-boson. A simpler toy example is the following.

7.4.1 4-Fermi theory

Consider the theory of a scalar and a fermion with the Lagrangian

S =

∫
d4x[

1

2
∂µφ∂

µφ+
1

2
M2φ2 + Ψ∂

/
Ψ + yφΨΨ.] (7.13)

Note that the Yukawa interaction has [y] = 0 and therefore is marginal; this model is renormal-
izable. We now consider the tree level diagram shown in Fig. 19. We see that it generates the

18I do not think that the adjective ‘effective’ is not used here in the sense that “wow, this theory is very effective!”.
It is used rather in the sense that it works although not formally completely legit.

19Whether people mean a UV complete QFT or an effective QFT by the terminology ‘QFT’ without the adjective
depends on the subfield of physics and/or mathematical physics. One needs some caution, therefore, when one reads
textbooks and/or review articles on the general properties of QFTs from different subfields one is in.

82



Figure 19: A tree effect from the Yukawa interaction.

4-Fermi interaction of the strength

δG ∼ y2

p2 +M2
(7.14)

→ y2

M2
(7.15)

where we took the low energy limit |p|≪M . This operation of replacing the effect of a massive
particle by newly generated interaction vertices in a Lagrangian is called to integrate out the field
φ. This terminology is based on the path integral formalism, where we consider performing the
path integral of the field φ first.

This means that the 4-fermi theory (7.6) withG ∼ y2/M2 can be thought of as the low-energy
effective description of the system (7.13) of a massive scalar and a fermion. If one does not have
enough energy of orderM to create the φ particle, one cannot see the difference between the two
systems. But the fact that the 4-fermi theory (7.6) contains a non-renormalizable interaction means
that something must happen at a certain high energy.

7.4.2 Chiral Lagrangian

The chiral Lagrangian of pions we discussed to some extent in Sec. 6.4 is also an example of an
effective field theory. In the form

S =

∫
d4x

F 2
π

4
tr ∂µU∂

µU † (7.16)

it might look like it contains only the kinetic term, but in terms of the pion fields as in (6.43) and
(6.44), the Lagrangian contains infinitely many terms with arbitrarily high dimensions. This means
that this Lagrangian stops being meaningful or effective when the energy is too high. Indeed, we
now know that the system in the short distance limit is described by QCD, whose Lagrangian was
given in (6.2), which can be checked to be renormalizable.
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7.4.3 Perturbative unitarization

Here we note that the Yukawa interaction and the chiral Lagrangian were completed in a rather
different manner: The Yukawa interaction was saved by simply introducing another massive field,
which when integrated out would generate the non-renormalizable interaction. The chiral La-
grangian was saved rather by using a totally different Lagrangian of QCD in the ultraviolet.

The former method of UV completion is called the perturbative unitarization. The terminology
comes from the following. One effect of the non-renormalizable interaction is a too-fast growth
of the scattering amplitude in the high energy region, which at face value would correspond to
a scattering probability exceeding one, thus destroying the unitarity. Adding a massive particle
removes this problem, thus making the system unitary perturbatively.

Another famous example of perturbative unitarization is the following. Consider the 4-fermi
interaction

∼ GF (Ψpγ
µΨn)(ΨeγµΨν) (7.17)

describing the weak-decay process. (More precisely we need to include the chirality projector.)
This is non-renormalizable, and requires a UV completion. This can be achieved by introducing a
massive charged vector bosonW±

µ , just as the interactionG(ΨΨ)2 can be generated by the exchange
of a massive scalar.

Now, the interaction of the massive vector bosons themselves is known to lead to the violation
of perturbative unitarity in the high energy region. This is can be saved by introducing the Higgs
field, which generates the mass of the vector boson by the Higgs mechanism. If the Higgs boson
is too massive, the perturbative unitarity is violated before the Higgs boson comes to save the
day. In this manner one can predict the upper bound of the Higgs boson mass to be around 1 TeV
[LQT77a, LQT77b].

7.5 Standard Model as an effective field theory
Let us next consider the Standard Model we discussed in Sec. 2. The terms in the Lagrangian we
introduced there were all (super-)renormalizable. Therefore the StandardModel is renormalizable.
However, we know that there are more to our world than is contained in this Standard Model,
and therefore the Standard Model is an effective field theory. Even purely theoretically, the U(1)

coupling has a Landau pole, so the StandardModel is not UV complete, and can only be an effective
theory.

This means that one needs to study the Standard Model as an effective field theory. The first
step should then be to enumerate all possible operators one can potentially add to the Lagrangian,
from low dimensions to high dimensions. The importance was of course noticed from the early
days, and the task was carried out at dimension 5 by [Wei80], dimension 6 by [BW86, GIMR10,
AJMT13], dimension 7 and 8 by [Leh14, LM15] in an ad hoc manner. Somewhat surprisingly,
a systematic method to perform this computation was only introduced in [HLMM15, HLMM17].
One complication is that as a term in the Lagrangian, one needs to remove a total derivative, since

L =

∫
d4x∂µO

µ (7.18)
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Figure 20: Mass terms for νL = (φ`L) generated from the exchange of νR.

can be integrated by parts and vanishes under a usual choice of boundary conditions at infinity.

Exercise 7.1. Count how many non-renormalizable operators there are in the Standard Model, by
going through these papers.

At this point it is important to mention the following. In the Lagrangian of the standard model
we wrote in Sec. 2, we included in it the right-handed neutrino fields νRi and their Majorana mass
term

MijνR
iνR

j + c.c. (7.19)

This is definitely not the conventional way of saying things. Usually the standardmodel Lagrangian
refers to the state of affairs before the nonzero neutrino mass for νL was experimentally discovered
20 years ago. Without νR, one cannot write mass terms for the neutrino if we only allow (super)-
renormalizable terms in the Lagrangian. The neutrino is then automatically massless.

Exercise 7.2. Check this.

Oneway to have nonzero neutrinomass for νLwithout having νR is to allow for non-renormalizable
terms. Indeed, one can integrate out νR as in Fig. 20, leading to the operator of the form

(`L)uαφu(`L)vβφvε
αβ + c.c. (7.20)

whose coefficient is of order (Y neutrino)2/MMajorana. This operator, after φ is replaced by the vev,
generates the neutrino mass terms. Note that this operator is of dimension 5; in fact this operator
(together with the complex conjugate) is the only dimension 5 operator in the standard model.
The whole mechanism is known as the see-saw mechanism, since MMajorana of νR appears in the
denominator of the operator for the mass of νL.

We also note that the renormalizable standard-model Lagrangian without νR automatically
has the baryon number symmetry and the lepton number symmetry classically, where we assign
baryon charge B = +1/3 to Q, uR and dR, and lepton charge L = +1 to `L and eR. Because of
the anomaly, only the combination B − L is a quantum mechanical symmetry.
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Exercise 7.3. Check this.

TheMajoranamass termMνRνR breaks thisB−L symmetry, and therefore the renormalizable
Lagrangian with νR does not have this B − L symmetry unless the Majorana mass term is zero.
The operator (7.20) also breaks this B − L symmetry.

This means that the all of the baryon-number or lepton-number violating terms in the standard
model Lagrangian is non-renormalizable or irrelevant, which therefore carry naturally small coef-
ficients. This explains the experimental fact that the baryon and the lepton number are very well
conserved.

Exercise 7.4. The process which violates individual baryon and lepton number symmetry but
keeps theB−L symmetry exists in nature but is known to be a very small effect in practice. Study
about it.

7.6 Renormalizability of Yang-Mills and gravity in various dimensions
Let us next consider the renormalizability of Yang-Mills and gravity in various dimensions. The
Yang-Mills theory has the Lagrangian

SYM =

∫
ddx

1

2g2
trFµνF

µν (7.21)

where we used the geometric convention

Fµν = i[Dµ, Dν ], Dµ = ∂µ + Aµ. (7.22)

This forces [A] = 1 independent of the spacetime dimension d and put the dimensionality to the
coupling constant, [g] = (4− d)/2.

If we expand the Lagrangian and rescale Aµ to have the canonical dimension, one finds that

SYM ∼
∫
ddx[∂A∂A+ g∂AAA+ g2AAAA+ · · · ] (7.23)

which means that the dimension of g is what controls the renormalizability.20
This means that the Yang-Mills theory is super-renormalizable when d < 4, renormalizable

when d = 4, and non-renormalizable when d > 4. The dimension 4 is sometimes referred to as
the critical dimension of the gauge theory.

As for the gravity, the Einstein-Hilbert action is

Sgravity =

∫
ddx

1

16πGN

√
gR. (7.24)

20In the renormalizability of a gauge theory, one needs to make sure that the possible divergences can be absorbed
by gauge invariant counterterms, in order not to spoil the gauge invariance. This point was beautifully treated in
Hori-san’s installment of the QFT class [Hor18], which is highly recommended.
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d 1 2 3 4 5 6 . . .
Yang-Mills XX XX XX X 4 4

gravity XX X 4 4 4 4

Table 1: Renormalizability of Yang-Mills and gravity. XX: super-renormalizable, X: renor-
malizable,4: non-renormalizable.

Our convention is again geometric; the metric determines the proper length via

ds2 = gµνdx
µdxν , (7.25)

and therefore [gµν] = 0. Since R ∼ ∂∂g, we see that [GN ] = 2 − d. To perform perturbation
theory, we assume gµν is close to a flat metric

gµν = ηµν +
√
GNhµν . (7.26)

Then the action becomes

Sgravity ∼
∫
ddx[∂h∂h+

√
GN∂

2h3 + · · · ]. (7.27)

Therefore we see again that the renormalizability is controlled by the dimension of GN . We find
that the gravity is super-renormalizable when d < 2, renormalizable when d = 2, and non-
renormalizable when d > 2. The critical dimension of gravity is d = 2. The situation concerning
renormalizability of Yang-Mills and gravity is summarized in Table 1.

It is worth emphasizing that quantum gravity in d = 1 and in d = 2 is rather well-understood
using the standardmethods of quantumfield theory, to the same degree that we understand quantum
Yang-Mills gauge theory in d = 3 and d = 4. It is true that we do not yet know the UV completion
of the quantum gravity in d = 4, but the situation does not a priori require a conceptual revolution,
in contrast to what one would often read and hear in expository articles to general public, by string
theories or loop quantum gravity theorists.

One example illustrating this fact is that the logarithmic dependence on the momentum of the
gravitational coupling by the one-loop effects of graviton can be reliably computed, just as in the
case of the 4-Fermi theory we discussed in Sec. 7.3. By performing a Fourier transformation to
translate it into the gravitational potential, one finds [BBDH02]

V (r) = −Gm1m2

r

[
1 + 3

G(m1 +m2

r
+

41

10π

G

r2

]
+ · · · (7.28)

where the first term is the Newton potential, the second term is the classical general relativistic
correction, and the third term is the one-loop effect. Formore on the quantum gravity as an effective
field theory, see the excellent review article [Bur03].

As a final comment, I would like to mention the study of the perturbative unitarization of 4d
gravity by T.-C. Huang, Y.-T. Huang, and N. Arkani-Hamed [Hua16, AH16]. As 4d gravity is
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non-renormalizable, one might want to find a UV completion. One way would be a perturbative
unitarization, as in the case of the 4-Fermi interaction.

Recall that in the case of the 4-fermi interaction ΨγµΨΨγµΨ, it was a two-step process: one
first introduces a massive charged vector boson, and then one introduces a Higgs boson. In the
case of 4d gravity, they found that this process continues indefinitely: denoting the mass squared
of the first massive particle we add byM2, they found that perturbative unitarization requires an
addition of an infinite series of massive particles of mass squared, given by

m2
n = Nm2. (7.29)

This spectrum is a typical one for a perturbative string theory.
String theory is usually introduced by fiat by the assumption that things were made of strings.

The argument of [Hua16, AH16] shows that it arises naturally by trying to unitarize 4d gravity
perturbatively.
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