Lecture 1: Perturbative renormalization

Edward WitteA

October 1996

This lecture is a very elementary introduction to renormalization of Feynman integrals.
1.1. Perturbative expansion of a 2-point correlation function.

Consider a quantum field theory with one scalar bosonic #étjlon a Minkowski space\ (,))
of signature (1,n-1) (see Kazhdan'’s lectures). \’etV_ be the closures of the upper and the lower
part of the full cone of time-like vectors. L& be the Hilbert space of the theo# c H a dense
subspace, and : S(V) — End(®) be the quantization map. We assume that the triple®, ¢)
satisfies Wightman axioms. In this case we can define quantum ®#ells;= ¢(6x), which are
distributions onV with values in End). When it does not cause confusion, we will treat them
as usual EndD)-valued functions.

We can assume without loss of generality that the 1-point Wightman function of the theory
vanishes. Indeed, the 1-point function is a cons@nand we can redefine the mapby setting
@' (f) = o(f) - Cffdv. The mapy’ satisfies Wightman axioms as well and has a zero 1-point func-
tion.

We look at the time ordered 2-point Wightman function

11 W, (% Y) = (QT(GXR)B(Y))I)

Here the time ordering means the following. By the definition,

T(e()¢(Y)) = ¢(Y)¢(x)

if x—yeV_, and
T(e(X)e(y)) = ¢(X)&(Y)

otherwise. Since(x) commutes withp(y) whenx—yis space-like, the function (1.1) is even. Because
of the Poincare invariance axiom, (1.1) is a functiox efy. Denote this function by(x). It follows
from the Poincare invariance that the functix) actually depends only ox?.

Let H; be the closed subspace®fspanned by vectors of the foraff )Q, wheref is a Schwartz
function onV. The spaceH; is a representation of the Poincare group, and all its irreducible com-
ponents have spin zero, i.e. have the fdrf{0;"), whereOy}, is the upper sheet of the two-sheeted
hyperboloidk? = n? in the dual spac¥*. This happens because we have a homomorphism of repre-
sentationsS(V) — Hi, given byf — ¢(f)Q, whose image is dense ;.

Letp1 : P — Aut(H1) be the action of the Poincare groupffy. If x ¢ V_, we can writé\V(x) as

12 W(x) = lim)(pl(x)"S’ Ve), Ve = ¢(6:)€2,

whered, is a family of smooth Schwartz functions tending to dhfinction.
Assume first that; is an irreducible representation, i.e.

Hy = L20}).
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In this case, it is very easy to evaluate (1.2) explicitly. Indeed, the opegrgtgrin this case is just the
operator of multiplication by the function

ek (ke O c V).

It is easy to see that there exists a limiteaas> 0 of v, in the sense of distributions. BecauseRaf
invariance, this limit is ai®(V)-invariant distribution or0;,. Therefore, this limit equals to a constant
function onO};,. We can always normalize this constant to 1, by rescaling thegn@jpen from (1.2)
we will get

1.3 W(X) = Win(X) := f e Ndk x ¢ V_; W(=x) = W(X),
ford

wheredk is the O(V)-invariant measure o0y if k = (ko,ki), ko € R, k1 € R™1 thendk =
dki/ 4/kZ + n?, anddK is the Lebesgue measure Bf .

Let 5;, denote the delta function of the upper sheet of the hyperbgfoid n?, andéy, the delta
function of its lower sheet. Then (1.3) says ti&#(x) equals to the Fourier transform &f, in V.., of
dminV_, and to both of them in the rest bf(these Fourier transforms are equal outsid¥. ot V_).

It is clear from this description that it is more convenient to work with the Fourier transform of
the functionWn(X) than with this function itself. The Fourier transform \8k,(x) is obtained by a
direct computation, similar to one from Kazhdan’s lectures. The answer is called the Klein-Gordon
propagator:

[
k2 —m? +ig’

where by definitiom is the distribution of’vV* obtained as the weak limit cﬁm asa — +0.

Now we turn to the general case, whif is not an irreducible representationfafWe will define
the spectral measugeof H1 (onR) by the following rule. Letr € S(R) be a positive function. We
define the integraf a(s)du(s) by

1.4 Win(K) = Win(K?) =

15 f (9 = (f). o(F).

wheref is any function inS(V) such thatfa+ if12dk = a(s), (heref is the Fourier transform df). It
is easy to show that the r.h.s. of (1.4) does not depend on the chdicemthe measurg(s) is well
defined. By the definition qi(s), the functionW(x) can be expressed in the form

Wed = [ Wt
Therefore, the Fourier transform @f(x) has the form

It follows from scattering theory (See Kazhdan'’s lectures) thf ifias a subrepresentationff
isomorphic toL2(0;) then it has components of the folmd(O), occuring as continuous spectrum,
for all s > 2m. Therefore, one expects that for aftiently generic quantum field theory, the space
H will already contain some of this spectrum, and therefore it will be possible to see it looking at the
measurey, i.e. at the functiotW(x).



In the case when the field theogyis a small perturbation of the theopy of a free scalar field
of massmy, it is expected thel has aP-invariant subspace isomorphiclté(O;;) for m close tom,

a continuous spectrum fronm2to oo, and, possibly, a finite number of discrete components. This
assumtion can be tested by lookinguatit would mean thaj is supported afm} U [2m, o), has an
atom ats = m, and is absolutely continuous with respect to the Lebesgue measwge-f@m (the
new discrete spectrum makes an exponentially small contributionwiah respect to the deformation
parameter, and so it is not seen in the perturbation expansion).

In terms of the functiorw(s), this means the following. Let us analytically continwés) to a
complex analytic function. Then, the conjectural behavior of the spectrum that we described above
would mean thatv(s) has a pole as = n? and a cut from #? to +co, with jump —2rdu/ds when
crossing the cut from up to down at the pasnt

Now we will take a concrete quantum field theory and compute a perturbative expansion of the
functionw(k?), in order to find out if it really has such analytic properties.

1.2. Theg®-theory.
Now we consider the quantum field theory with the Lagrangian

16 L= f (%(w&)z - gqbz ; %¢3)d”x.

This theory is a perturbation of the theory of a free scalar field of nassth respect to a small
parameteq. It is called thep>-theory.
Remark. From physical point of view, theé3-theory is unsatisfactory, since the energy in this theory
is not bounded below, for any finite nonzero valuegof However, one can consider this theory
perturbatively, i.e. regard as an infinitesimal formal parameter, which in algebraic terms means
that we work over the rinC[[g]]. Using this theory as an example, we will do some Feynman
diagrams computations, which are done in a similar manner in more complicated but more physically
meaningful theories.

According to the rules of quantum mechanics, if thietheory actually existed, the correlation
functions of this theory would be given by the formal expression

l .
17 (QU0).- NI = 2 f 6(x0)... 6 (%) L9 Dy,
where
1.8 Z= f eL¥pg

is the partition function. As usual, these “formulas” do not apriori make sense, as the formal expres-
sione£@Dg does not represent a measure on the space of fields. Howayerf(the free theory),
we can use (1.7) as a definition: define the integral

19 f 6(x0)--. (%) LOD

to be equal tdQ|a(x1)...0(Xn)IQ). Further, forg # 0, we can expand (1.7) in a formal series in powers

of g, and successive cfigients will be expressed as finite-dimensional integrals of expressions of
the form (1.9). If we can compute these finite-dimensional integrals, we can get natural definition of
(1.7). This computation is done using the Feynman diagrammatic techniques. Unfortunately, it turns
out that some of these integrals are divergent and need to be renormalized.
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Remark. Strictly speaking, inp®-theory as we stated it, the 1-point function does not vanish. How-
ever, as we explained before, this problem can be removed by shifting the quantizatign imaipe
language of functional integral, it corresponds to adding an auxiliary linear term to the Lagrangian,
and in the language of Feynman diagrams it corresponds to ignoring graphs with one external ver-
tex, and all graphs which contain such graphs as subgraphs. In fact, this shifting procedure is not so
trivial, since the integral representing the 1-point function is divergennhfarl. Thus the shifting
procedure requires renormalization of some graphs with 1 external vertex. Therefore, we will come
back to this topic at the end of the lecture. Until then, we will assume that the 1-point function has
been normalized to zero.
1.3. Perturbative expansion of Feynman integrals

In this part of the lecture we will remind how to compute the perturbative expansion of Feynman
integrals. For simplicity consider the finite-dimensional case (Kazhdan’s lectures). Suppose we have
a finite dimensional real vector spaSawith a positive definite symmetric bilinear forBr Let dv be
a Lebesgue measure &rsuch that

1.10 f e BWI2gy = 1.
S
We want to learn to compute the integral
1.11 f P(v)e B2y,
S
whereP : § — R is a polynomial. This integral is a sum of integrals of the form

112 (fr..fdo Z=ff1(v)...fN(v)e‘B(V»V)/ZdV,
S

wherefy, ..., fy € S*. Itis clear that ifN is odd, this integral vanishes, as the integrand is an odd
function. Thus, it is enough to consider the case wiRea 2K. In this case, the answer is given by
the following formula, which is called the Wick formula.

Proposition 1.1

113 (fr..fondo = Z B~ (fs). fs2))---B™ (fsak -1, fax)).
€S [~

whereB™1 is the inverse form t8 on S*, Sx is the symmetric group, arsd ~ S, 51, S € S if they
define the same term in (1.13).
The proof is obvious: the right hand side of (1.13) is the only polylinear expressipmuariant
under the grou®(S) x Sk, up to a factor, and the normalization is deduced from the zase.. =
fox =f.
Remark. The setSk/ ~ is the set of pairings, i.e. splittings of the g&f..., 2K} into pairs. Thus,
terms of the r.h.s. of (1.13) are in 1-1 correspondence with pairings. In particular, the number of these
terms is equal to (@)!/2™m!.
Now consider a perturbation of this situation. Let

QW) = > amQm(v*™)/m,

n>1

wheregm are formal variables an@y, € S"S*. Consider the integral

1.14 (f1..f) = f f1(V)...fn (V) e B2+ QW gy € C[ gy, oo, G, ...]].
S
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This integral can be computed using Feynman graphs, as follows.

Letn = {ng, Nz, N3, Ng,...} be any sequence of nonnegative integers which is eventually zero. Let
G(N,n) be the set of equivalence classes of all graphs which hadevalent vertices labeled by
1,...,N, andn; unlabeledi-valent verticesj > 1. The labeled vertices are called external, and the
unlabeled ones internal.

Any graphI’ € G(N, n) defines a polylinear functioRr of fy, ..., fy which is defined as follows.

At the 1-valent vertex of labeled byi one places the vectdy, at every m-valent vertex one places
the tensoQn, and then takes contractions along edges using the Bofnfsee Kazhdan's lectures).
Then one has

Theorem 1.2

1.15 (o f= D [ ot D) AU Fr(fy, - fi),

i I'eG(N,n)

where Aufl’) denotes the group of automorphismd afhich fix the external vertices.

The proof is easy. First one observes that (1.13) is a special case of (1.15)nwhén Next,
one can think of eachvalent vertex of a grapl’ as a collection of 1-valent vertices which are
situated very close to each other. Then it is clear that any graphG(N, n) defines as many as
IAut(D)|~ [Ti!™ [] ;! different pairings of such 1-valent vertices. Thus, formula (1.13) implies (1.15).
1.4. Computation of a Feynman integral over functions on a Minkowski space.

Now we will try to compute the functiow(k?). Using formula (1.7), we get

1.16 W(x) = z71 f T(¢(X)$(0))e£ @Dy

Applying formula (1.15), we express the r.h.s. of (1.16) as a sum over graphs.The fu@@bipn
which was considered above for the finite dimensional case, is of theg_@g(qﬁ), whereQs is a
cubic form given by

Qa(¢) = (¢(a) ® ¢(b) ® ¢(C), i0a=b-c)-

Thus, we get a sum over all graphs with two external 1-valent vertices, and a number of internal
trivalent vertices.

Graphs which have components without external vertices will not occur in this sum, since we have
divided byZ. So there are two remaining types of graphs: connected and disconnected. Disconnected
graphs have two components, each having one external vertex.

It is easy to see that the sum over all disconnected graphs equals

(QIp(0)|2)? = .

Therefore, disconnected graphs can be ignored.
We see that the function(k?), can be written as a sum over connected graphs with two external
vertices. So, we can represav(k®) in the form

117 w(k?) = ) wi (i),

j=0
wherewd)(k?) is the sum over all connected graphs which are chaind gfarticle irreducible graphs.
We haven®(k?) = wy(k?) = 5—— (the free propagator), and

. W (k3
Y12y — h0) 1.2
118 w0 () = WOk )(w<0>(k2))‘
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Set

. WK

2y _

119 2(k%) = IW(O)(kZ)Z‘

(Itis easy to see thai(k?) is a real function). Summing the geometric progression in (1.17), we get
i

—-m2 - 2(k?) +ig’

1.19 w(k?) = 'z

Thus, it remains to comput(k?). We hope to find that(k?) is analytic neak? = n?, and has a
cut atk? > 4mP. This would confirm the expected analytic behaviong?).

In our setup, the bilinear forB=* from the previous section has the kerﬂgl_m, and the
3-tensorQs has the kernabj(k; + ko + k3). Therefore, the term corresponding to each giapmnthe
sum forx(k?) is an integral of a rational function over the spatqI’,R) ® V*. So the number of
integrations is proportional to the number of loops in the graph. Therefore, these integrals, over loop
parameters, are called loop integrals.

Now we will compute the first nontrivial cégcient of theg-expansion oE. We haveX = g°%, +
0O(g®), whereX; is the sum over all connected graphs with two trivalent vertices (there is no graph
with only one trivalent vertex). It is easy to see that there is only one such graph, namely the following
one:

o-k

So we must put an integration parameger V* on the only loop of the graph. Thus, the function
¥,(k?) can be represented as a single loop integral

oy _ | d"q/(2r)"
119 =)= |, @i P

(division by 2 arises from the automorphism groug pWwhich has order 2).
Remark 1. When we compute the group of automorphisms of a graph, we do not take into account
the orientation of edges. The arrows are put on edges arbitrarily, in order to balance the momenta
which are attached to edges. The distribution of momenta should satisfy the condition that the sum of
incoming momenta at each internal vertex should equal the sum of outgoing ones.
Remark 2. It may appear that the integral in (1.19) is real, but in fact it is not. It is easy to see that
for real negativek® the integral is imaginary, so the r.h.s. of (1.19) is real. This happens because of
addition ofie in the denominator.

Now we try to compute integral (1.19). The integrand is a fraction where the denominator is
a product of two dterent factors. For a general graph, the integrand will have a product of many
different factors in the denominator, which causes inconvenience. There is a remarkable trick, which



allows to convert this integral into an integral of a function whose denominator is a power of a single
factor. This trick is the “Feynman famous formula”:
Proposition 1.3

1 1 q
= — o,
Al"-AN (11+...+(YN:1 (Z G’|A|)N
wheredo is a Lebesgue measure on the simplex with volume 1.

Proof We prove the statement by inductionNh ForN = 1, the statement is obvious. Lit> 1.
Denote the r.h.s. of (1.20) by (A1, ..., An). Then from a homogeneity argument it follows that

1.20

1 1
1.21 f ————da1 A ... Ndany = ——In(A , ,A In t/S )
Ss<aq+...+an<t (Z a’iAj)N 1 N (N _ 1)| N( 1 N) ( )

Now observe that the N-form under the integral in (1.21) has the thspwhere

N .
= - =
122 W= 2. NIN= DA, aiAi)N‘ldal A ... Adaj A ... Ada.

Therefore, using Stokes’ formula, we get

~

i - LA A AN NS
= N(N N-1(Az, .., A, ., AN

1.23 - DANN-2)

= ———In(Ag, ... In(t/s).
N-D) N(AL ..., An) In(t/9)
(the integrals ofv over simplices’ a; = s, t cancel each other, and only the integrals dvéruncated
simplices remain). Using the induction assumption, we obtain (1320).
We will use formula (1.20) foN = 2. In this case it has the form

1 ! da
1.24 — = '
AB f(; (@A + (1 - a)B)?
Applying this formula to (1.19), and shifting the integration variable, we obtain
it 1 d"q
125 Xo=¢ da.
2 2[0 j; (@ +a(l-a)kk—mP+ig)? 0"

It is convenient now to perform a Wick rotation of the integration cycle. Write any vectow
as (o, du), do € R, gz € R™?, so thatg? = g2 — o? (whereq; is the usual squared norm). Consider
the 1-parameter family of integration cyclé&(t) = {(€"/2qo, o) € Vcl(qo, o) € V}, 0< t < 1. The
integral (1.25) is ove€(0). It is clear that during the deformati@{t) we do not pick up any poles of
the integrand in (1.25) (since> 0). Therefore, if (1.25) converges, the integral o@¢d) (which is
%») equals to the integral oveér(1).

The cycleC(1) is a real subspace Wt which carries a natural positive definite metfi2 = —g?.
Thus, integral (1.25) can be written as

126 ,(k?) = i—fl 1 a4,
' 22772 Jo Jpo (IR — a(1— a)k2 + M2 20



(i is no longer necessary, as the integrand is now smooth for negative
It is now an exercise to compute this integral explicitly in elementary functions. However, we are
more interested in qualitative properties of the answer. Namely, from formula (1.26) it is obvious that
1) X, is analytic neak? = n?.
2) X, has a cut at the set of those valuegdfor which the integrand is singular.
Since the functiony(1 — @) varies between 0 and/4 asa varies from 0 to 1, the cut occurs at
k? > 4n?. Thus, the functiorz, has the expected analytic behavior.
Remark. We could have considered from the very beginning a Euclidean theory. This nveens,
Euclidean space, the Lagrangian is

1 2 1 2 9 3
1.27 f(z(ws) + 2mz¢ * 3% )d",
The correlation functions are

1.28 ($(X)$(0)) = fa " $(\)$(0)e LDy,

the propagator i%, the cubic functional corresponding to a trivalentvertengﬁ(k1+k2+k3), and

the Fourier transform of (1.28) @fw where-X is computed as a sum over 1-particle irreducible
connected graphs. If we try to compuig, we will get exactly the same answer as given by (1.26),
i.e. xEuclidean)i2) = yMinkowski_k2) This is a general phenomenon: the Wick rotated answer for a
theory in the Minkowski space coincides with the answer for the corresponding Euclidean theory.
1.5. Renormalization of divergent graphs.

Unfortunately, the integrals (1.25), (1.26) are divergentrfer 4, since the integrand does not
decay rapidly enough at infinity. Renormalization techniques help to give meaning to these integrals
anyway.

From now until the end of the lecture we consider the caset, and the Euclidean picture. In this
case, the easiest way to make sense of (1.26) isfereitiate with respect 7. If we differentiate
under the integral sign, we will obtain a convergent integral, and then we can integrate it back, which
will define £, up to a constant. However, this is, in general, not the best way to proceed. The method
which is usually applied in renormalization theory is the following.

We will replace the propagatq;ﬁ with a more rapidly decreasing propagator depending on

a parameten, of the formP, = XIEIZ(ir/r\\:) wherey(k?, A?) is a smooth function with dficiently
rapid decay ak?® — oo for a fixedA, which tends to 1 ah — oo (it is called the cutff function).
For instance, one can talgk? A?) = (kﬁﬁ | € N. ComputingZ, for this new propagator, we
will obtain a convergent integral for each finite valuefgfand the answer will depend anin the

following way:

1.29 2ok, A, m) = —Aln(A/m) + O(1), A — o,

whereA is a positive constant. Of course, the limit of (1.29\as» o (which would be the value of
(1.26)) does not exist: one says that the integral is logarithmically divergent.

Now fix a constantn = mg > 0 (the renormalized mass). Giveén we will adjust the masey
of the theory in such a way that tiefunction Z(k?, A, mg, g) for the theory with this mass and the
propagatoP, has a pole exactly & = —mé. That is, definang(mg, g, A) = mr + O(g) by the

equation
Mg = NG + Z(-m&, A, M, g).
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It is clear the solution of this equation (modujd) has the formmg = mg — g?(-mg, A, M), so by
(1.29) it has the formmﬁe + g?AIn(CA/mR), whereC is a constant which depends only on the ¢to
functiony. Itis easy to see that there exists a limit

TR(K2, mg, @) = lim (K2, A, mp(Mg, 0, A), 9).

This limit is called the renormalizex-function. Of course, it depends on the choiceraf

Let us now understand what this renormalization does to the Feynman diagram expansion. The
new Lagrangian of the theory, with the mamsg differs from the old one (with mass = mg) by the
additional quadratic terréAg2 In(CA/mr)¢?. Therefore, according to the rules of Feynman calculus,
theg?-term of the perturbation expansion will now be the sum of terms corresponding to two Feynman
diagrams:

At the 2-valent vertex of the second diagram, we put the tensor
—~Ad IN(CA/MmR)é(K1 — ko).

This gives us an extra constant summandik?, A, mp), which compensates the divergence and
ensures that there exists a Iirﬁ@ of

2a(K2, A, mo(Mg, g, A))

asA — oo,
Remark. We have chosen our renormalization in such a way that the fumefic®) (modulog®) has
apole ak® = —m%. This is the reason that the constamtis called the renormalized mass.
1.6. Renormalization in higher orders.

Now let us consider the terms our Feynman diagrams expansion which come with a paver of
higher than 2. For example, consider the following graph,

which occurs withg®. It is easy to see that this graph defines a convergent integral fod. We
will see that this is also the case for more complicated graphs. Namely=ar, the more vertices a
graph has, the better is the rate of convergence of the corresponding integral.

Let us analyse the situation for arbitrarylt is convenient to introduce the following definitions.
Definition 1 The superficial divergence indev(I") of a graphI is the dfference of the degrees of
the numerator and denominator in the integrand of the corresponding integral.

Remark. By the definition, the degree of the integration varialgeasnd their diterentialsdg equals
1.

Definition 2 A graph is called superficially divergentdfiv(I') > 0 and superficially convergent if
div(l') < 0.



Remark. T is called logarithmically, linearly, quadratically,... divergendi#%(T’) = 0,1, 2, ....
Proposition 1.4 In the ¢3-theory,div(I') = (n - 6)by + 6 — 2E, whereb; is the number of loops, and
E the number of external vertices.

Proof Let M be the number of internal edges, addhe number of external vertices. Sinces
connected and has only trivalent internal vertices, we Mave 3%-E by = MZE tis easy to see that
the degree of the numerator in the integral correspondifdgab, (b; loop integrations ovek"), and
the degree of the denominator IZM quadratic factors). Thudjw(I') = nlby—2M = (n—6)b;+6—-2E.

Proposition 1.4 implies the following.

1) If n > 6, divergence worsens as the number of vertices grow.

2) If n = 6, all graphs witte = 2, 3 are equally bad (haw#iv(I') = 6 — 2E), while for E > 4 they
are superficially convergent.

3) Forn < 3, all graphs witlE > 2 are superficially convergent.

4) Forn = 4, the only superficially divergent graph wih> 2 isT',:

5) Forn = 5, there are finitely many superficially divergent graphs.

It is clear that superficial convergence of a graph is necessary but fiictent for convergence
of the corresponding integral. Indeed, a superficially convegent integral may have a subintegral that
diverges. However, one can formulate #isient condition for actual convergence in terms of super-
ficial convergence. This condition is given by Weinberg theorem.
Weinberg theorem LetT be a graph such that the integral of the corresponding function over any
subset of the set of loops Dfis superficially convergent. Then the integral corresponding ie
convergent.

Weinberg theorem gaurantees that in #ietheory all integrals are convergent for< 3. Let us
see what happens iif = 4. In this case, we have one superficially divergent gigphOf course,
there are infinitely many superficially convergent but still divergent graphs, namely, all graphs which
containI', as a subgraph, e.g.

However, we have renormalized the grdphi.e. compensated its divergence by adding another
auxiliary graph of the form
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As aresult, all graphs which are divergent because they cantaitill be renormalized automati-
cally and become convergent. That is, the divergence of each graph confgimiiidbe compensated
by a counterterm, in which, will be replaced by the above auxiliary graph. The fact that this ensures
convergence in all orders follows from the “Strong Weinberg theorem”, which states, roughly, that
if all graphs at orders: N (in g) have been renormalized, then all superficially convergent graphs at
orderN+1 are actually convergent. Thus, after mass renormalization all correlation functions become
well defined.
Remark. As we explain above, the procedure of setting the 1-point function to zerbtimeory also
requires renormalization. Namely, we have two graphs with one external vertex,

O ¢

among which the first is quadratically divergent and the second logarithmically. Consider a new La-
grangian of the forr?”’ = £+B(m, g, A) f #, whereB(m, g, A) = a(m, g)A%+b(m, g)A+c(m, g) In(A/m)+

d(m, g), and choose the constamtd, ¢, d in such a way that the limit of the 1-point function for this
Lagrangian, computed for the ctitgpropagator at\, tends to 0. The constandsb, c,d are deter-
mined by this condition uniquely, but they of course depend on thdfdutactiony. In the language

of Feynman graphs, this corresponds to compensating the divergence in the sum

0 <

by adding a third summand

B -5 (K

where at the vertex we put the linear functioBals(k). This reduces the problem of renormaliza-
tion of the¢® theory to renormalization of the graph, which was done above.
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Lecture 2: Perturbative renormalization (continued)

Edward WitteA
October 1996

2.1. Renormalizability of quantum field theories.

Last week we considered tigé theory and found that its renormalizability (i.e. how many graphs are
divergent, and how badly divergent they are) depends on whethd, n = 6, orn > 6. Now we will
see how to find that the critical value oin the ¢° theory is 6 without considering any graphs at all.

In order to find the critical value af, we will define and compute the homogeneity degree of all
terms in the Lagrangian. We recall that the Lagrangian is

21) [ Gwar s snte+ ey

(we are considering the Euclidean theory; in the Minkowski version, the story is the same). Consider
the dilationx — t~1x, t € R, x € V. Under this transformatiod™x — t""d"x, V — tV. If we want the
integral (2.1) to be invariant under this dilation, we must impose the following three transformation
laws: (Vo) — t"(Vg)2, mPg? — t'mPe2, go — tgeS. From the first law we get — t'2 ¢, from the
secondn — tm, and from the thirdy — t’z"g. In the future we will write these scaling laws like this:
22 M =10 =0V =10 = "2 m =1 = 25"
In other words, any homogeneous quantitycales as — tl@a under the dilation, and the number
[a] is called the dimension .
Remark. It is not difficult to define the notion of dimension completely formally (using the tensor
calculus on the tangent bundle\d§, but it is more illuminating to illustrate it on examples.

We see that the number 6 appears in the scaling lag. fistore precisely, we see that the behavior
of the ¢3 theory is determined by whetheg][is positive, zero, or negative. Namely, we have three
cases.

1. [g] > 0 (n < 6): there is a finite number of superficially divergent graphs (by graphs we always
mean connected graphs).

2. [g] = 0 (n = 6): the number of superficially divergent graphs is infinite, din{I") is bounded
from above.

3. [g] > 0 (n > 6): there are infinitely many graphs with any number of external vertices and
arbitrarily highdiv(I').

Now we will explain why this method works, and prove that it can be used to compute the critical
value of the dimension of the spacetime in a general field theory. In general, we can consider the
following setup. Suppose we have a quantum field theory with figlds, ¢y, and the Lagrangian

(23) £= [0+ Y 0ddn. . n)l
i k

whereQ; is a free (quadratic) part, anid are interaction (coupling) terms (tkrential monomials in
fields, cubic and higher). Each interaction term comes with a small paragaetehnich is called the
coupling constant.

’Notes by Pasha Etingof and David Kazhdan, TeXnical editing Misha Verbitsky
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Definition An interactionly is called subcritical iffgx] > 0, and critical if [gk] = O. A field theory

is called superrenormalizable if all interaction terms in the Lagrangian are subcritical, and is called
renormalizable, or critical, if all interaction terms are critical or subcritical, but not all of them are
subcritical. Otherwise, the theory is called non-renormalizable.

For example, the® theory is superrenormalizable for < 6, renormalizable fon = 6, and
non-renormalizable fon > 6.

We will assume that our theory is a perturbation of a free theory, (for the definition of a free theory,
see Kazhdan'’s lectures). In a free theory, one can easily see that the dimension of bosonic fields is
022 and of fermionic fields ig52. Since dimensions of fields are determined from the quadratic part
of the Lagrangian, these dimensions will be the same in the perturbed (classical) theory as well.

We will also assume that > 2 (In the quantum mechanical case- 1 renormalization theory is
not necessary). Theg] > O.

Theorem 2.1 (i) If a theory is superrenormalizable, there is a finite number of superficially divergent
graphs in its Feynman diagram expansion.

(ii) If a theory is renormalizable then the number of superficially divergent graphs is infinite, but
div(I') is bounded from above.

(iii). If a theory is non-renormalizable then there are infinitely many graphs with any number of
external vertices and arbitrarily higHiv(I').

Proof LetT" be a graph in the Feynman diagram expansion of our theory. Types of internal vertices
of such a graph correspond to interaction terms in the Lagrangian, and types of its external vertices
and edges correspond to fielfls Let g be the number of external vertices of ty@ae andvy be the
number of internal vertices of tyge. Then it is easy to show that

(24) div(n) =n- " algil - > wlakl.
i k

Statements (i)-(iii) of the theorem follows immediately from (2.4).
Definition A theory of the form (2.3) is called classically scale invariant if the n-form under the
integral in the Lagrangian is invariant under dilations.

For example, the theory of a free scalar field is scale invarititti$ massless.

It is clear that a massless theory is scale invariant if and only if it is purely critical,gi& = 0
for all k.
Remark. Scale invariant theories are always conformal. Indeed, the Lagrangian is always written
naturally in terms of the metric on the spacetime, and depends only on the fields and their first deriva-
tives. This implies that a scale invariant Lagrangian has to be invariant under conformal changes of
metric.

2.2. Critical dimensions of some field theories.

Now we will compute the critical dimension for several important field theories.
Example 1. Sigma-models.

LetM be a Riemannian manifold. The Lagrangian of the sigma-mode['onith the target space
M is

(25) £(8) = f d'xg; (474 - V.

Since this theory is conformal in two dimensions, 2 must be the critical dimension. Let us show by a
direct computation that this theory is not renormalizablafor2.
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Let ¢; be coordinates oNl near some point. If the metrg; is constant in these coordinates, the
theory is free. Consider a nonconstant metric of the form

(2.6) Gij (#) = S + &jkd* + rija 8 e’ + ...

(If we chose normal coordinates, we could get richpbut not ofr, asr in normal coordinates is the
Riemann curvature tensor). Substituting this into the Lagrangian, we findtia®]— n. This shows
that sigma-model is not renormalizable beyand 2, unless the metric is flat.
Example 2. Gravity.

In the theory of gravity the spacetime is the spBEavith a metric of the forng; = dj; + h; VG,
whereG is the Newton'’s constant (for us, it is just a formal parameter). The Lagrangian of the theory
is

@7 105 [ RO

whereR(g) is the scalar curvature of the metric. In termdpthis Lagrangian can be rewritten as
(2.8) L= f d"x((Vh)? + VGh(Vh)? + ...),

so we gethi] = ”%2 [G] = 2-n. Thus, as in the previous example, the theory is non-renormalizable
for n > 2 and critical fom = 2.
Remark. Hereh(Vh)? stands for an expression which is lineahiand quadratic irvh. It is easy to
compute what it is exactly, but it does not matter to us, since we are only interested in the dimension.
So we will use such sloppy notation.
Example 3. Gauge theory.

In gauge theory fields are conections in a fixed principddundle on the spade”, whereG is a
compact Lie group. The Lagrangian has the form

(2.9) L(A) = é f Tr(F5 A %Fz),

whereF; is the curvature of the connectidn and Tr is an invariant nondegenerate bilinear form on
the Lie algebra of G.

In the computation of dimension, we will assume that Gdoundle is trivial, so a connection is
represented by a 1-fordx A=d+A. ThenF = dA+AAA.

Consider the field = A/e. In terms ofB, the Lagrangian takes the form

L= f ((VB)? + eB’VB + €B*)d"x

We have B] = %52, so [B?VB] = 3 - 2, and f] = 5. Thus, if the grou is noncommutative,
the theory is superrenormalizable for< 4, renormalizable fon = 4, and non-renormalizable for
n> 4. Inn = 4, the theory is conformal (& is commutative, the theory is free).
Remark. Dimensions of fields in our computation agree with geometric dimensions. Indeed, in
geometry, sincel — td under the dilatiorx — t~1x, we have {l] = 1, so we must have}] = 1. This
coincides with our result:A] = [Bel = [B] + [e] = %52 + &0 = 1.
Example 4. Gauge theory with a scalar bosonic field or with a fermionic field.
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Consider the setting of Example 3, and \ebe a finite-dimensional representation@f Let ¢
be a section of the corresponding vector bundleR8r(associated with the abov@-bundle). The
Lagrangian of the gauge theory wighis

(2.10) LA =LA+ [ (T
whereL(A) is the Lagrangian (2.9). Writing in the formA = d + A, A = eB, we get
L= f ((VB)? + eB°VB + €°B* + (V¢)? + 26(V, Bp) + €2(Bg)?)d"x

For this formula we getB] = [¢] = ”%2 and (even whefs is commutative!) § = %. Thus, the
theory is superrenormalizable in< 4, renormalizable im = 4, and nonrenormalizable for > 4
(regardless of the commutativity &).

The same answer applies if we have a fermionic field.yLbe a section o¥/ ® S, whereSis the
spin bundle over the spacetime. The Lagrangian of the gauge theory igith

(211) £R) = LR+ f . Dap)d",

whereDj is (i times) the Dirac operator along the connectforT he critical dimension in this theory,
as before, is 4, for any nontrivial compact gra@p
Remark. If G = U(1) andV is the standard 1-dimensional representatiopthis theory is the
gquantum electrodynamics (QED).
Example 5. Theory of a scalar bosonic field.

Consider the Lagrangian

P
£@) = [ GoR+ G+ Qe

whereQ(¢) = Y. g#®. We already considered this type of Lagrangian in Lecture 1. In particular, the
¢>-theory is a special case of this situation, wi@is a cubic polynomial. We haveyf] = n — k2.
Thus, forn = 2 all terms in the Taylor expansion Qf(¢) are subcritical. Fon = 3, the termgX is
subcritical fork < 6, critical fork = 6, and non-renormalizable fér> 6. Forn = 4, the termﬁ" is
subcritical fork < 4, critical fork = 4, and non-renormalizable fér> 4. Forn = 5,6, the termsX,
k > 4 are non-renormalizable, and the tepﬁis subcritical fom = 5 and critical fom = 6.

In particular, the following theories are critical: thé theory in 6 dimensions, thgf-theory in 4
dimensions, and th¢® theory in 3 dimensions.
Example 6. Yukawa interaction.

Consider a theory with a scalar bosonic figldand a fermionic fieldy. We will consider the
Lagrangian

(212) L. ¥) = f ((V9)? + (v, Dy) + gy, y1)d"x

(v takes values in a vector bundié which is a direct sum of several copies of the spin bundle; (,),[.]
are a symmetric and a skew-symmetric form\liwhich are invariant under gauge transformations).
The cubic termp[y, ] is called the Yukawa interaction. Let us compute the dimension of itficoe
cientg.
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We have §] = 52, [y] = 52, so [g] = 2. So this theory is critical in dimension 4, superrenor-
malizable in dimensior 4, and non-renormalizable in dimensiort.

We observe that in dimension 4 all interactions exgépp* andg[y, ¥] are “bad” (non-renormalizable).
Example 7. Standard model.

Let us now try to write down the most general renormalizable theory that lives in our 4-dimensional
physical world. According to the above examples, we cannot include graviiynoodel, but we can
include connections, bosons with terms up to degree 4, and fermions with Yukawa interaction If we
only take these fields, these are the only renormalizable terms we can write. Thus the most general
Lagrangian we can write in dimension 4 giving a renormalizable theory is

(2.13) LA, ¥) = f (e72F3 + (¥, DY) + (Vo)? + g16* + g2gpy? + lower termsi*x.

The Standard Model is a theory which belongs to this family, with the g@apntainingSU(3) x
SU(2) x U(1).

2.3. Perturbative renormalization of critical theories.

From now on we will consider only critical theories. As a model example we can congidieeory
in 4 dimensions, which has one critical interactw‘n or its extension containing fermions, which has
an additional critical interactiogy? (the Yukawa interaction).

Consider the Lagrangian ef-theory:

(2.14) L= f (%(w)z ; §¢2 + %¢4)d”x.

As before, we want to study the Schwinger funct{afx;)...¢(xn)) (it is enough to consider only
evenN, as the Schwinger function vanishes for ddl)d As usual, it is more convenient to consider its
Fourier transform. This Fourier transform has the faBgika, ..., kn)o(k: + ... + ky), whereGy is a
function on the hyperplang + ... + ky = 0.

Consider the Feynman diagram expansion of the funa®ignin ¢* theory we have to sum over
graphs whose internal vertices have 4 edges. As usual, we can restrict ourselves to connected graphs,
as the sum over disconnected graphs expresses via Schwinger functions with fewer insertion points. In
fact, as shown in Kazhdan'’s lectures, we can always restrict to 1-particle irreducible graphs (i.e. those
which cannot be split by cutting one edge). So from now on we only consider connected, 1-particle
irreducible graphs.

From formula (2.4) we get that the superficial divergence index of any graph equ&swhere
E is the number of external edges. Thus, any graph with 2 external edges is quadratically divergent,
any graph with 4 external edges is logarithmically divergent, and any graph-witbxternal edges is
superficially convergent.

Now we will explain how to renormalize al-point functions at all orders ig.

First of all, we can exclude graphs with 2 external edges which connect to the same internal vertex,

e.g.
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and all those which contain such a loop-like graph as a subgraph. Indeed, these graphs produce
a constant function of?, so they can be removed by renormalization of mass. More precisely, there
exists a functiorP(A, g) = gP1(A) + g?Po(A) + ..., such that the sum of terms corresponding to all
graphs for the theory with mass?, computed with the cufd propagator (see lecture 1) equals the
sum of terms corresponding only to graphs without loop-like subgraphs, but withM{@gssuch
thatM? = n? + P(A, g). So we can assume from the beginning that we have a theory withM{ags
and not worry about loop-like graphs.

Now we have no divergent graphs with one internal vertex, so we have no corrections to make in
the first order ing. Let us look at the second ordergnin this case we have the following bad graphs:

A N
N

Denote the first graph by, and the second bly;.

Thus, in orderg? we have a problem in the 2-point and the 4-point functions. The problem in
the 2-point function is created ly. The graph’, diverges quadratically. Therefore, the term cor-
responding td» computed using the cufiopropagator is a function d&, A of the formg?z,(k2, A),
where

(2.15) ¥o(k%, A) = AR In(A/u) + B(A) + O(1), B(A) = BoA%(1 + 0(1)), A — +co

This asymptotics follows from the fact that the first derivative of (2.15) with respdétitlogarith-
mically divergent, and the second one is convergent.

Another problem we have is in the 4-point function, created by the gfaphThis graph is
logarithmically divergent. This means, if we compute the term corresponding to this graph using the
cutoff propagator, we will get a function &f, A of the formg?®,(ky, ko, ks, A), where

(2.16) Oo(ky, ko, k3, A) = CIn(A/u) + O(1), A — +o0

This asymptotics follows the fact that the derivative of the integral correspondifigwath respect
to k; is convergent.

In order to renormalize the 2- and 4- point functions in ogfewe choose renormalized functions
2R(K?), ©R(ky, ko, ks). HerezR is an arbitrary function ok? whose second derivative is given by the

2
(convergent!) integral obtained by applyi(rgi—z) to the quadratically divergent integral correspond-

ing to I'y. Analogously,®2R is an arbitrary function okj, ko, ks whose derivatives are given by the
convergent integrals obtained byfférentiating the logarithmically divergent integral corresponding
toT4. Itis clear that the functioﬁzR is defined uniquely up to addition of a functionldfof the form
ak?® + b, and the functio@§ is defined uniquely up to addition of a constant.

Now we will make second order corrections to the fiioents of ¥¢)?, ¢ and* in the La-
grangian. Namely, we will consider a new Lagrangian of the form
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Let Z’Z(kz, A, a,B,7), @’Z(kl, ko, ks, A, @, B, y) be the functionX,, ®, for this Lagrangian and the cuto
propagator. We will choose the functiomss, y in such a way that

lim 52, A, ma(A), BA), ¥(A) = Z5(<),

(2.18) _ , R
Aanm 05(ka, k2, ks, A, m a(A), B(A), ¥(A)) = O5(Ke, ko, ks),

As we are working modulg?, we can choose, S,y in the forma = g?as, 8 = ¢%B2, ¥ = GPyo,
whereas, 82, y» are independent af. It is easy to check that in order for (2.18) to hold, the functions
a2, 82, v2 should have the following asymptotics:

@z = g°(AIN(A/m) + D1) + o(1), B2 = g?(~B(A) + Dy) + o(1),

(2.19) )
v2 =g (CIn(A/m) + D) + o(1), A — +o0,

whereD;, D, depend on the choice d)‘; andD depends on the choice @‘; Of course, there are
many ways to choose such functions, but they are unique up to addingdéna — oo.

Thus, we have renormalized the graphsI's. This removes divergence in all correlation func-
tions modulog®. Thus, all correlation functions of our theory are now defined mod#ilo

Now we proceed inductively in the order @f Suppose we have removed divergences and defined
all correlation functions modulgX. Consider the R-point function (for the deformed Lagrangian
and the cutff propagator) modulg<+?:

K-1
(2.20) Fon = > dFR; + dFank
j=0

(the superscripR means that the corresponding ffaeent has already been renormalized). The term
Fonk is represented by the sum over all graphs Wtlnternal vertices. This sum has superficial
divergence index 4 2N. Therefore, the second derivativefef by k2, the first partial derivatives of
F4, andFan, N > 3, are superficially convergent. The crucial fact for renormalization theory, which
follows from the “Strong Weinberg Theorem” (see Lecture 1), is
Propositié)n 2.2 There exists finite limits, & — oo, of the function&an k (K1, ..., kKon-1, A), VkFak (K1, k2, k3, A),
and(%) Fak (K3 A)N > 3.
Remark. For ¢* theory, this proposition holds for the term corresponding to each particular graph,
but in general (for example, for theories with gauge fields) this is not the case: the sum over all graphs
may have a meaning while each individual graph does not. However, an analogue of Proposition 2.2
(for the sum over all graphs) holds in any renormalizable theory.

Proposition 2.2 allows us to fulfil the induction step. It shows that the funétjofin the limit)
is defined up to addingk2 + b, the functionF4 is defined up to adding a constant, dfg,, N > 3,
is defined uniquely. So one can choose renormalized funcﬁ§@§ and make corrections in the
Lagrangiang — a + gfak, B — B+ d%Bk, ¥ — v + gfyk, to compensate the divergenceFisy k
and obtairFE‘,\LK instead of it. This procedure is completely analogous to the one for gfdér this
way we will complete the renormalization in order
Remark 1. At every step of our renormalization procedure we had to choose 3 constants of inte-
gration. This may create an impression that we get a family of theories parametrized by 3 infinite
sequences of constants. However, it is easy to see that in fact we get a family of theories parametrized
by only 3 constants. This means that any 4 invariants attached to the theory (for example, values of
the 2-point function at 4 points in spacetime) are linked by a universal functional relation.
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Remark 2. Even if in the original theory certain critical or subcritical interactions were not present,
they may appear in the process of renormalization. In general, renormalization brings in all missing
critical and subcritical terms, unless there is a symmetry which prevents it from doing so. Let us
demonstrate it by a few examples.

Example 1. In the process of renormalization of the Lagrangian (2.12) in 4 dimensions we will be
forced to introduce the subcritical ter¢¥ and the critical terny®, in order to remove logarithmic

divergence in the graphs

ST

where wavy lines correspond to bosons and straight ones to fermions. However, the critical term
$°V¢ will not appear, since there is no Poincare invariant expression of this form. In terms of graphs,
this means that the graph

whose superficial divergence is linear, in fact diverges only logarithmically, because of cancella-
tions in the integrand caused by Poincare symmetry; so there is no linear divergence to compensate
and hence no need f@fV¢ to appear.
Example 2.In ¢* theory in 4 dimensions, the subcritical te#idoes not appear in renormalization,
since it is not preserved by the symmegry— —¢ of the original theory. In the language of graphs,
this is clear: there is no graphs with 3 external edges, so there is no divergence to compepdate by

In a general field theory, every type (in terms of external edges) of a superficially divergent graph
corresponds to a number of critical and subcritical terms in the Lagrangian, which should be renor-
malized in order compensate the divergence in the corresponding graph. More precisely, divergent
terms which are quadratic kcorrespond to terms in the Lagrangian which have two derivatives by
X, linear terms irk correspond to terms with one derivative, and constant divergencies correspond to
terms without derivative.
Remark. It follows from formula (2.4) that in a renormalizable theory, all divergence$ in2-point
correlation function are no worse than quadratic. So thefic@nt ofk? in the 2-point function if
divergent at most logarithmically. Therefore, if the quadratic fofnsave to be renormalized (like
in ¢* theory), they will be multiplied by cd&cients which depend on the ctitparameten at worst
logarithmically. This shows that the dimension@fand hence o; survives renormalization to all
finite orders in the asymptotic expansion.
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Lecture 3: Perturbative renormalization (continued)

Edward WitteA

October 1996

In this lecture we will discuss composite operators, their renormalization and operator product
expansion (OPE).
3.1. Local functionals in a classical field theory.

Consider am-dimensional classical field theory with spacetivieand a Lagrangia of the
form (2.3), with fieldsgs, ..., ¢n. Let X be the space of classical solutions for this theory. We want to
consider functions oiX called local functionals, which are defined as follows.

Letx € V be a point in the spacetime.
Definition A local functional atx is a function of the fields and finitely many derivatives of the fields,
evaluated ak.
Example In the theory of a scalar bosonic field,

' (%), ¢ (%2 $2(XN)¢’ (x)2

are local functionals, but(x) + #(2x) is not.

From the previous lecture it is clear how to define dimension of a local functional. We want
to consider only homogeneous functionals of finite dimension and their finite linear combinations.
Therefore, if a field has positive dimension (which is always the case>if2), we only consider
polynomial functionals of this field. However, in 2-dimensional theories, where bosonic fields are
dimensionless, it is reasonable and useful to consider more general functions of them (for example,
the Lagrangians of Toda theories contain expressions of thedtyrm

If n> 2, the space of all functionals of a given dimension is finite-dimensional, buti, it is
infinite-dimensional.

Since elements of satisfy the classical field equations, the same local functional can be written
in different ways. For example, iff-theory the classical field equation is

(3.1) A = P + %ﬁ,

so the left and the right hand sides of (3.1) evaluatex atV represent the same local functionals

of ¢. Thus, local functionals are all possiblefdrential expressions i modulo the classical field
equations.

Remark 1. One should be careful to distinguish between twiedént notions of field dimension
which arise in field theory. The first is “the engineering dimension” and says in what units the field
is measured (if the units aeT9 then the engineering dimensionds The second is “the scaling
dimension”, which is the dimension we have been talking about. These two dimensions are not always
the same. For example, in the theory of one figldkefined by (3.1) the engineering dimension of the
field mP¢ is 3 (it is measured ionT3), while the scaling dimension is the same as that, éfe. 1.

It is the basic principle of physics that all meaningful expressions and equations are homogeneous
with respect to the engineering dimension. In particular, it is true for the field equations in field
theory (e.g. (3.1)), which implies that engineering dimension defines a grading on the space of local
functionals. On the other hand, whenever a field theory is not scale invariant, its field equations are not

SNotes by Pasha Etingof and David Kazhdan, TeXnical editing Misha Verbitsky
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homogeneous with respect to the scaling dimension, so scaling dimension defines a filtration, rather
than a grading, on the space of local functionals. This means, the space of all local functionals is a
union of subspaces of functionals of dimensioml, and a functional is said to be of dimensidif

it is of dimension< d but not< d — 1. On the other hand, if the theory happens to be scale invariant,
scaling dimension does define a filtration on the space of local functionals.

In this lecture, we will not use engineering dimension, and the word “dimension” will always
mean scaling dimension.

Remark 2. From a local functionaD one can obtain more general functionalsXmwf the form
fO(qS, x)du(x), wheredu(x) is a (generalized) density ovi. Using this operation, one can obtain
from any local functional all derivatives of thus functional (it is enough to takelfgx) all possible
densities supported &). Therefore, without loss of information we could consider local functionals
modulo the image of derivatives. However, for the purposes of this lecture this is not necessary.
3.2. Quantization of local functionals in a free theory

We have seen (see Bernstein's Lectures and Witten's problem sets) that thé&Xsgfadassical
solutions of a meaningful classical field theory always carries a natural closed Zolfrthis form
is nondegenerates is a symplectic manifold. In this case, suitable functionsXoform a Poisson
algebra.

In the quantum theory, the spa¥eshould be quantized, and the Poisson algebra of functions on
X should become the algebra of operators (observables) in some Hilbert space of states. In particular,
we should be able to assign an operator to every local functional.

If V is a Minkowski space, and the field theory satisfies the Wightman axioms (for example,
the free theory), the Hilbert space of stafi¥ss constructed as described in Kazhdan’s lectures. In
this case, Wightman fields(x) are distributions orV with values in the space of operators on the
subspaceD c ‘H of muptiparticle states. This means, for any Schwarz fundtion V there is an
honest operatap(f) on D.

However, we would like to have more general operators of the t®), (V¢)?(x), etc. which
correspond to local functionals in the classical theory. That is, for any Schwarz fuhetiervant to
have operatorgN(f), (V)?3(f), etc.

Unfortunately, such operators are not automatically defined. For examplep&fedoes not, in
general, make sense. Indeeddet e ™*/¢(2x/£)"V2 be the smooth approximation to tidunction,
and letp®y be the operator-valued distribution ¥ixV given bypeo(f1®f;) = ¢(f1)¢(f2). The natural
definition ofw?(f) would be thaty?(f) is the limit, ass — 0, of the operatap?(f) := p@¢(f (X)d(X-Y))

(in the sense of convergence of matrix elements). However, it is easy to see that this limit does not
usually exist, as Wightman functions usually have singularities on the diagonals.

One way to deal with this problem is to say that an “opera#oi3 just a collection of its matrix
elements, i.e. a collection of correlation functiofagy.)...0(Y)IAI¢(z1)...¢(z)). If we accept this
point of view, we might as well forget about the Hilbert space of states, i.e. perform a Wick rotation
from Minkowski space to Euclidean space, and consider Schwinger functions instead of Wightman
functions.

So from now on we will consider only the Euclidean situation, in which we will mean by an
operatorA a collection of functions

(@(y1)...0(M)IAP(22)...0(z))

with certain properties. Roughly, an operator is just a symbol which can be inserted in a correlation
function.
Remark. Of course we should remember at all times thad not really an operator and does not act
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in any Hilbert space. However, the information we get from studyimg the Euclidean situation can
be used (after Wick rotation) for studying the Minkowski situation.

Consider now the problem of quantization of local functionals. By the definition, in order to
gquantize the local function@(x), we should say what the functiofg(ys)...0(y)IOX)|¢(z1)...¢(z))
are. As our theory is Euclidean, the order of factors in the correlation function does not matter (any
two distinct points are space-like separated). So, in order to défixie it is enough to define the
correlation functiongg(y1)...¢(y; JO(X)) for all r.

Consider the theory of a scalar bosonic fielehin 2 dimensions, with the Lagrangian

32 0= [GEar+ o+ e

We will give all definitions and constructions for this example. In other field theories, everything is
done in a similar manner.

We first consider the case when the theory is fl@e=(0). In a free theory, quantization is done
with the help of normal ordering, as follows. Consider a local functiéhafl degreel in ¢. According
to Feynman rules, in order to compute the correlation fungggy)...4(y: )O(X)), we should consider
all graphs withr external vertices and only one internal vertexvhich has] edges. We should put a
certain function at the vertex and compute the term (amplitude) corresponding to this graph as usual
in Feynman calculus. B > 1, we will run into trouble: we will get some graphs with loops going
from v to itself, and the integration over the loops is divergent. The easiest remedy is to ignore all
such graphs. Then we obtain certain correlation functions, which define some operator. This operator
is denoted by O(x) : and called the normal ordering 6X(x). Apriori, O(x) does not make sense as
an operator, while O(x) : does. We call operators of the fornd(x) : composite operators. When no
confusion is possible, we will drop the dots and wiitx).

Thus, we have assigned canonically to eadfedéntial polynomialO in ¢ an operator :O :
in the free theory. However, recall that twdfdrent polynomial®;, O, might define the same local
functional. So does the m&p—: O : actually define canonically a quantization of the local functional
represented b®? The answer turns out to be positive: whenever polynordial®), define the same
local functional, the operators); :,: O, : coincide. To check this is an easy exercise. For example,
the polynomial®); = pA$, O, = mP¢? define the same local functional, and the operat@rad :,
: MP¢? : coincide.
3.3. Multiplication of composite operators.

It is easy to multiply composite operators supported fietént points. That means, given two
composite operator9, O’, and pointsx, X’ € V, x # X, it is easy to define an operato(x)0’ (X’),
using the Feynman diagram expansion. In this case we will have two special vertiteand we
should sum over all ways of connecting them which involve no loops from a vertex to itself. However,
multiplication of two composite operatod O’ at the same poirnt cannot be defined in the same
way: on each edge connectimgvith v, we will have to evaluate the Green’s functionxatq, where
it is singular.

To avoid this problem, one can try to smear the operators, i.e. consider the opg(fgtos
f f(x)O(x)d"x, wheref is a compactly supported smooth function\dnSuch smeared operators can
sometimes be multiplied: for example, we can define the praglfiot..4¢(fs). (see Kazhdan lectures).

However, most composite operators cannot be multiplied, even after smearing. Indeed, it can
be deduced from reflection positivity that for any complex oper@gO(x)0*(x')) ~ |x — x|~
x — X' where [J] is the dimension of@], andO* is the conjugate of). On the other hand, for a
real operato0, in order for the produad(f)O(f’) to be defined, it is necessary andfguent that the
functions(g(y1)...6(yr)O(X)O(X')) be distributions. The functiofx|”' defines a distribution (without
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regularization) if and only if it is locally !, i.e. iff | < n. Thus, the produad(f)O(f’) is automatically
defined it [O] < n/2.
Remark. If the Minkowski situation, the produe@@(f)O(f’) exists (in the sense of correlation func-
tions) if and only if the “operatorO(x) is an operator-valued distribution, so tli({) is actually an
honest operator (i.e. matrix elementdff) are matrix elements of some operator©Oh Indeed, the
“if” part is clear. The “only if” part: for anyfy, ..., fy we can regard the produt= O(f)¢(f1)...(fn)
as a linear functional o®. The fact thaO(f)? is defined implies that this functional has finité-
norm, agiX|1? = (e(fn)...o(F)OF)2e(f1)...o(fn)). Therefore X corresponds to a vector iH, Q.E.D.
3.4. Operator product expansion (OPE) in the free theory

Composite operators in a reasonable field theory have an important algebraic property, which is
called the operator product expansion (OPE). This is a property of algebraic nature, saying roughly
that composite operators form an algebra of a certain kind. It does not follow obviously from Wight-
man axioms, but on the other hand is often satisfied when Wightman axioms fail. This property is
actually useful in practice.

We will now define and compute the OPE for the free theory of a scalar bosonic field. The idea
is to formalize the behavior of the produ@(x)0’(x’) asx — X. In the classical theory, this is
accomplished by the usual Taylor series. Indeed, we have

(3.3) OO (X) = O(X)O'(X) + (X - X )3, 0(X )0 (X) + ...

Thus, for any two local functional®, O’ the producO(X)O’(x’) decomposes in a series in products
of powers of K — x’), whose cofficients are other local functionals.

In the quantum theory, the produad(x) :: O’(X’) :, as we have seen, is singulaxat x’. Thus,
we have to compute the asymptotic expansion of this producbtnear.

We will assume thaD, O’ are represented by some monomialg &nd its derivatives. According
to Feynman rules, we should assign to botl0’ a vertex, sayw andv'. The numbers of edges at
v,V arel, J’, whereJ,J’ are the degrees @, 0’ as monomials of. At bothv, V', we have to place
symmetric distributions i, J’ variables corresponding 1@,0’. Now we have to sum amplitudes
over all ways of connecting some edges going frowith some edges going fromi. The amplitude
of each particular graph is computed as follows: at each edge goingvftom we put the function
D(y — 2), the two-point Schwinger function of the free theory (the Green’s function for the Helmholtz
equation). On each remaining external edge weggyt Then we compute formally the product of
things on vertices and edges, and put it under the normal ordering sign. Since for each Kumber
of connecting edges, we have only one possible graph, we should just compute the amplitude of this
graph, and then multiply it by the number of ways to get this graph, i.8!BYy/K!(J — K)I(J' - K)!.

This will give us a formula of the form

L
(3.4) 0X) O'(X) = Z : 5k(x)(§’k(x’) D Ex(X = X),
k=1

where :Ox :,: (5’k : are some local functionals, aig(y) are polynomial dferential operators iB(y).
Here :0(X)O’(X') : is the amplitude of the graph in which the verticesndv’ are not connected.

Now we can use the Taylor formula (3.3) inside of the normal ordering, to get the following
(already infinite) expansion:

(3.5) :0X) :: O(X) = Z 1 0s(X) : Dg(X = X),

S
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whereQ;s is local functional, andDs(y) is a product of the functioky(y) for somek and a polynomial
iny.
Definition. Expansion (3.5) is called the operator product expansion (OPE).

Now recall that the Green’s functidR(x) has the following behavior at = 0: D(x) ~ [x>™".
Therefore, all functionsi(x) have the propertydc(x)] < Ckx« for smallx, where the numbens;
are almost all positive. This proves an important property of the OPE: only finitely many terms are
singular. However, these singular terms carry the most interesting information in many situations.
Remark. We see that the operator product expansion (3.5) is in fact the quantum analogue of the
Taylor expansion (3.3). Indeed, it is an expansion of the form similar to (3.3), but also involving
finitely many singular terms at= x’.

Let us now consider examples of OPE (we will always write the finite formula (3.4)). Let us first
computep(X)¢(X’). Using the above rules, we get two graphs:

which yields the formula
(3.6) d(Q)P(X) = p(X)(X) : +D(x = X).

Now we compute $2(X)¢%(x’) :. This product gives us three graphs:

AT <

so we get the formula
(3.7) L 2(X) 1 p2(X) =1 p2(X)P2(X) 1 +4 : p(X)p(X) : D(X - X) + 2D?(x — X).
In general, it is easy to prove that

min(J,J’) I

(3.8) 007 () = KZ:;) KI(I - K)I(3 —K)1 <

x D(x=X)" 1 7 (x)¢” " (x) :

The last formula can be written more nicely using generating functions:
(3.9) - @10 - POX) - BDX) . () BHX) -

wherea, 8 are constants.

If we takea, 8 to be any diferential operators ovi with constant coicients, this formula remains
valid. (@ acts onx, 8 onx’). In this form, formula (3.7) represents the most general OPE for the free
theory of a scalar bosonic field.

Remark. Dimensions of fields in quantum theory mayfdr from the dimensions of their classical
analogues. For example, in a (2-dimensional) classical field theory, if adieddd-dimensional,
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so isf(¢), wheref : R — R is any function. However, in quantum theory a renormalized composite
operatoif (¢) may acquire a nontrivial (anomalous) dimension. For example, in the free 2-dimensional
theory of a massless scalar bosonic fi@¢y) = — Inly|, so we have from (3.9):

( o0 - griadl) -y — |y e,

But we know thatO(x)0*(y)) ~ |x — y|29l. Thus, the scaling dimension ef¢ is d(a) = a?/2.
Observe that the functiod is not linear ina, so for quantum dimensions, to the contrary with the
classical dimensions, 010, :] #[: O1:] +[: Oz 1].

The dimension functiod(a) = /2 appears in the theory of vertex operator algebras, namely, in
the Frenkel-Kac vertex operator construction.

In an interacting theory, even polynomial fields can hafiedint dimensions quantum-mechanically
than they do classically. This is essential, however, mostly in the non-perturbative setting. In the per-
turbative setting we can count dimensions as in the classical theory, since dimensional anomalies are
infinitesimally small.

3.5. Normal ordering and renormalization.

Now we will reformulate the definition of normal ordering in the free theory in terms of renor-
malization theory. This reformulation will be crucial in understanding what is the analogue of normal
ordering in interacting theories.

At the beginning of this lecture, we defined normal ordering of a local functional by formally
throwing away graphs with self-loops, which produced divergence. Another way of dealing with self-
loops is renormalizing them, as we did in two previous lectures. Suppose we want to renormalize
all local functionals of dimensiog d. For this purpose we replace the standard propag@éﬁé

. I . . . .
with a cutdf propagatorm (ﬁ;) , Wherel is suficiently big. Now all the loop integrals con-

verge, and for any local functionél of degree< d we can consider the cufocorrelation function
(P(Y1)...0(Y )OX))A. If we takeA — oo, we will of course find that the limit does not exist. However,
it is not diffucult to prove the following.

Let Aq be the space of local functionals of dimensiod.
Proposition 3.1. There exists &-dependent linear magy : Aq — Aq, Strictly triangular with respect
to the filtration of Ay by dimension, such that for any local functiodak Aq there exists a limit

(310) lim (6(41)..40ROM) .

Thus, Proposition 3.1 allows us to assign to every local functiOnah operato(j, which is, by
definition, the operator whose matrix elements are the limits of the corresponding matrix elements
of RAO. However, giverO, the operatoé is defined apriori noncanonically, as the nfgpis not
unique: it is defined up to left multiplication with/&-independent strictly triangular map.

That is,O is defined uniquely up to adding composite operators of lower dimension. This shows
that the space of composite operators is naturally a filtered object (by dimension), and not a graded
object.

Remark. Of course, if the theory is not classically scale invariant, we saw that there is no grad-
ing on functionals already at the classical level. The statement here is that even for a classically
scale-invariant theory, where the space of classical functionals automatically has a grading by scal-
ing dimension, the grading is usually lost in the process of quantization. An exception is a free
scale-invariant theory, where there is a canonical quantization by normal ordering, and therefore the
grading survives quantization.
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Thus, in general we may be able to quantize naturally the space of local functionals of dimension
< d, but not every functional separately.
3.6. Composite operators in an interacting critical theory.

Now consider an interacting renormalizable field theory. As a model example we consider the
Lagrangian (3.2) and tak®(¢) = m¢4. Let O be any local functional represented by a monomial.
To quantizeD, we proceed as in the free case, but we will formulate everything in a sligtibreit
language.

We want to consider correlation functiot&ys)...¢(y:)O(2)). These correlation functions can be
viewed as the-codficient in the usual Schwinger functions for a perturbed Lagrangian, of the form

(311) Le(¢) = L(¢) +£0(¢.2),

whereg is a formal variable such thaf = 0. In the language of Feynman diagrams, this means that
we are introducing an additional vertexcorresponding t@, and summing over all graphs which
contain exactly one such vertex (with no self-loops at this vertex) and are otherwise as usual.
Remark. One should remember that there is no momentum conservation at thewertex

In general, such an alteration will worsen the divergence properties of the Feynman graphs. More
precisely, now the superficial divergence of a graph \Eittxternal edges is given ldiv(l') = [O] —
E. However, we can renormalize these divergences, using thé& gutpagator considered in the
previous section. Then, analogously to Proposition 3.1, one can prove the following.
Proposition 3.2. There exists a\-dependent linear magy : Ay — Aq, triangular (in general, not
strictly) with respect to the filtration o,y by dimension, such that for any local functioale Aq
there exists a limit

(312) Jim (p(y1)-- 4 )RAOXDa,

As in the free theory, this Proposition allows to quantize the space of local functionals of dimen-
sion < d, but in general there is no canonical quantum analogue for each classical local functional.
This non-uniqueness is not only due to the non-uniqueness of renormalization, but also due to the
non-uniqueness of representation of a given functional bytardntial polynomial.

Example. Let O = ¢?/2. Let us compute the renormalization@fof orderg. The only divergent
graphs we have in this order are

DO K

Let us call the first graph bl and the second bly,. The grapHg is quadratically divergent. If
we replace the usual propagator with the ¢ilppoopagator, the integral will converge t\adependent
constant of the forngC,, whereC,, which grows quadratically in.

Now consider the graph,. As usual, it is more convenient to work in the momentum space, i.e.
consider the Fourier transform of the term corresponding to this graplky ket k be the correspond-
ing momentum variables. Then the Fourier transform of the term correspondingsof the form
F26(ky + ko + K), whereF; is a function on the plank, + k, + k = 0. Setk; = r, thenk, = —r — k (on
this plane). Thusk, = F»(r, k), and its ordeg correction is the amplitude of the Feynman diagram

26



q q+k

This amplitude is given by the integral

g (" d%q 1
(313) =3 f @) (@ + M) (A + K2+ D)’

This integral is logarithmically divergent. If we replace the usual propagator with thé& putpaga-
tor, the integral will converge to a functidp(k), which has the asymptotic behavior

|A(k) = —%\In(A/,u) + O(l),[\ — 00
whereA is a constant.

This shows that if instead @ /2 we use the renormalized functional

¢2

9 9A
7, = G G - go

(3.14) ( 9
the matrix elements will have a finite limit modugg. Observe that the constamtcan be chosen
arbitrarily, so the renormalization is not canonical already in this case.

3.7. Stability of the classical field equations under quantization

In a free theory, we know that the classical field equations are also satisfied quantum-mechanically.
This means, if the classical equations Bre= 0, whereP is a linear diferential operator, then the
correlation functions in the quantum theory satisfy the equaign(y1)...¢(yr)¢(X)) = 0 outside of
the diagonalx = y;. For example, the Green’s functid(x — y) = (¢(X)¢(y)) is the fundamental
solution of the equatioRf = 0.

In an interacting theory, there are some problems. Namely, since the classical field equations for
an interacting theory are nonlinear (e.g. (3.1)), they do not make sense quantum-mechanically in the
setting of Wightman axioms. However, in the OPE setting they make sense in a suitable interpretation,
and one can show that they are satisfied.

Remark. We will say that the equatioR(¢) = 0 is satisfied in quantum theory (whdfds a renor-
malized local functional) if the functio@(y1)...¢(y: )F(¢(X))) vanishes outside of the diagonals ;.

We will show that the classical field equations are satisfieg*itheory. Consider the space of
classical local functionals of dimensien3, which are Poincare-invariant and odd under the symmetry
¢ — —¢. This space is 2-dimensional: it has 3 generatysA¢, and ¢, but they are linearly
dependent, since they satisfy relation (3.1).

Now consider the quantum theory. Consider composite operators of dimen8iomith the same
invariance properties as above. In this space we have renormalized oparatgrg®. Our goal is to
show that, like in the classical theory, they are linearly dependent. This is equivalent to the statement
that¢ satisfies the field equatid®¢® = AA¢ + Bg.
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We will first prove the validity of the field equation for the theory with the ¢tippopagator, since
in this theory we do not have divergence problems. In thefEtheory, the classical field equation is

(315) PAd = S0%Pa = (A-P)(1- ).

Proposition 3.3Equation (3.15) holds in the quantum theory with the fipoopagator, where and
¢° are regarded as composite operators.
Proof. Consider the correlation functiga(y1)...¢(y;)Pad(X)). Consider the graph decomposition of
this function. We should consider all possible graphs wigxternal edges, any humber of 4-valent
internal vertices, and a special vertewith 1 outgoing edge. These graphs can be of two kinds: 1)
graphs in whichv connects to an external vertex; 2) graphs in whiclonnects to an internal vertex.
The sum over graphs of the first type is the corresponding correlation function for the free theory,
so it is supported on the union of diagonals: y;. Thus, outside of the diagonals we have to sum
only over graphs of the second kind. But graphs of the second kindNwitkternal edges are in 1-1
correspondence with usual Feynman graphs (witkipwith N+ 3 external edges (this correspondence
is obtained by biting fi the vertexv and the vertex it connects to). This shows that the sum over graphs
of the second kind is jusgi(¢(y1)...¢(yr)¢3(x)>. Thus, the field equation is satisfied, Q.E.D.
Proposition 3.3 shows that for amy, the composite operat(%¢3 is linearly dependent of com-
posite operators which are lineardn This property has to be preserved in the limit»> co. This
shows that in the renormalized theory we have an equati@y?® = P, whereP is a linear diferen-
tial operator with constant céiecients, andC is a constant. Since the r.h.s. of this equation can only
have terms of dimension 3, the operatoP has to be of the formA + B. Thus in the quantum theory
we have the equation

(3.16) C¢° = AA¢ + Bo

Remark. Of course, the constants B, C are not uniquely defined, as they depend on the choice of
the renormalization. The statement is only that for any choice of renormalization, some nontrivial
equation of the form (3.16) holds. In other words, the statement is that the space of Poincare invariant,
odd composite operators of dimensign3 is 2-dimensional, i.e. has the same dimension as the
corresponding space of classical local functionals.

In general, one can consider the space of local functionals of dimengibrDenote its dimension
by d(N). One can prove the following proposition.

Proposition 3.4The space of composite operators of dimensidd is also equal tal(N).

Thus, all diferential equations which are satisfied classically, have quantum analogues.
3.8. Operator product expansion in an interacting theory.

In a free theory, once we defined composite operators, it was no problem to define the product of
several of them supported affidirent points. The same is true in the interacting theory. Namely, if
01, ...,Oy are renormalized composite operators, &nd., Xy € V distinct points, then the correlation
function{(a(y1)...0(y:)®(X1)...0(Xn)) is just the cofficient ofe1...ey in the usual Schwinger function
(d(y)...4(yr)) for the Lagrangian

(3.17) Ley..en(@) = L(9) +

N
£0i(#, %),
=1

Wheregi2 = 0. This Schwinger function is, by definition, the limit of the corresponding function
computed with the cutdpropagator. It is easy to see, by looking at Feynman diagrams, that this limit
is always finite.
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Remark. Roughly speaking, this means that once we renormalized each of the opélators
automatically renormalized the product

01(X1)...ON(XN), Xi # X.

Thus, now we are in as good shape as we were in the free theory before we defined OPE. It turns
out, we can define OPE in the interacting theory as well. Namely, for any two composite operators
0,0’ and for anyr € R there exists a finite collection of composite operat@ss..., O; such that

|
O(X)O(X) = " Os(X)Ds(x — X) + O(x - X|").
s=1

We will show how to partially compute the OPE on examples.
First we consider the produg(x)¢(x’), and compute its asymptotics as~ X'. In this case the
expansion is of the form:

(3.18) d(N)B(X) = p(X)F(x = X') + h(x - X') + regular part

Whereqﬁ% is the renormalized operate? defined by (3.17). (recall thasz is defined non-uniquely).
Let us find functiond, h.

The functionh(z) can be found by looking at the 0-point function for the operatp)a(x’).
Indeed, sincegb%(x)) = 0 by the definition, we gdi(x — X’) = (¢(X)¢(X)). If we compute the answer
modulog?, we get no corrections to the free theory answeh(gp= D(2) (see lecture 2).

Now let us findf (2) (we remember that it is defined up to scaling> a(g)f, wherea = 1 modg).
This function is found from the 2-point function ¢tx)¢(x’). We havef (2) = 1 + gfi(2) + O(g?). The
only graph that contributes t@(2) is

The amplitude of this graph (in the position space) is

g f D(x - 2D(X — 2D(y1 - 2D(yz - 2dz

A x-X
(3.19) _ 97 In|=—=ID(y1 — X)D(y2 - X)

+ regular part

(Ais the same constant as in (3.17)). This showsfil{at = —% In |X‘TX'|, and thus

A _ /
H090(X) = R~ InI =

+ regular part+ O(g?).

(3.20) ) + D(x-X)
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Now consider a more complicated operator product, for example

BROVPRX).
In this case the expansion is of the form

PROVBR(X) = FRX)fL(X — X) + (VPR (X )f2(X — X)
(3.21) + &X' )f3(x = X) + f4(x = X)
+ regular part

where the subscrif® means “renormalized composite operator”. Of course the functionsf, will
depend on the choice of the renormalization, but they are well defined up to an upper triangular linear
transformation.

For the sake of brevity we will only compute the expansion modd{x — x’|~%). Thus, the
functionsfy, f, can be ignored, and we only have to compgt®& moduloO(|x — xX'| ™).

The functionf, is defined canonically up to multiplication by a scalar. As before, this function is
computed using the 0-point functiof(x — X') = <¢§(x)¢§(x’)). The only graph that contributes to
the 1-st order irg of f4 is

K o T ok
N N7

This shows that .
f4(2) = 2D(2)? + gS(K) + regular part+ O(g?),

whereS(k) is the amplitude (in the momentum space) of the above graph, and hat denotes the Fourier
transform. The functio®(k) equalsT (k)?, whereT(K) is the renormalized integral

. dg
Tl = CfR @+ ) (k-2 + 1P

Remark. SinceT(K) is defined up to adding a constafi(2) is defined up to adding a multiple
of gT(k) SlnceT(k) is proportional toD?(zZ) whenz # 0, adding such multiple is equivalent to
multiplying f4 by 1+ cg. This freedom is natural, dsis defined up to multiplying by % cg.

Now let us try to computés(2), which is also defined canonically up to a scalar. For this purpose
we should consider the 2-point function of

PR(VPR(X),

(B(Y1)B(Y2)$R(X)PR(X)).

We will work with the Fourier transform of this function, which we denoteMyps1, p2, g, q) (here
p1, P2, 0, q" are the dual variables #a, y», X, X).

We will try to compute the functiofg(2) by looking at the asymptotic expansionref(p1, p2, g, r —
) as|gl — oo, and using the following fact from calculus:

Claim Letf be anLl-fynction on an n-dimensional Euclidean spatevhose Fourier transforrfi
satisfies the inequality(q)| < Clg™""N"¢, & > 0. Thenf € C"(V).

By doing so we will be able to finf(2) moduloC*-functions, which is all we want at this point.
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We havefz(2) = 4D(z)+gf31(z). Looking at the Feynman diagram expansion of the 2-point function
in the first order ofy, we see terms of two kinds: 1) terms where the special verticésre directly
connected with an edge; 2) terms wheye are not connected.

The only graph of the first kind that contributesf{as

O

and the only graph of the second kind contributing31tds

@)

(this graph occurs 4 times, with 4ftBrent labelings of vertices). It is easy to check directly that
both graphs contribute fé(q) aterm of the fornCq? In |q/u|+O(q~*¢), whereC is a constant. Thus,
f1(2) is the Fourier transform of the functid®In |q/u|/g? moduloO(|x — x'|)~* andO(g?). As before,
the constant: depends on the choice of renormalization; changing of this constant is equivalent to
adding a multilple ofD(2) to f31(z), which is the same as multiplyinig(z) by a scalar of the form
1+cg
Remark: Operator product expansion in conformal field theory.

In a 2-dimensional conformal field theory, the OPE of composite operators has especially simple
form. In this casey = C, and the space of functions &h\ 0 has a “bigrading”: the functior’z’ has
bidegree §,b) (a— b € Z). The space of composite operators also has a bigrading: to any homoge-
neous operatad one assigns two numbers — the holomorphic dimend{@l and antiholomorphic
dimensiond(O’) (d—d € Z). Therefore, il0(2)0’'(Z) = >.x Dk(z—Z)Ok(Z), thenDy(z- Z') has degree
(dk, dy), wheredy = d(0)+d(0")-d(Ok), dk = d(0)+d(0O’)—d(Ok). This implies thaDy(z) = CZ%Zk.

Also, the action of the Virasoro algebra allows to reduce the problem of computing OPE of arbitrary
operators to the problem of computing OPE for primary fields only, i.e. for fields which are highest
weight vectors for the Virasoro algebra. In a rational conformal field theory, one has a chiral algebra
of symmetries (for example, arffime Lie algebra) which is so big that there are only finitely many
fields which are primary with respect to this algebra. This fact allows to treat a rational 2-dimensional
conformal field theory in a purely algebraic setting, and reduce many of its problems to problems in
algebraic geometry.
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Appendix to Lecture 4: Remarks on renormalization and asymptotic freedom

Edward Witten

December 1996

1. Ambiguity in operator products. In the last lecture we considered Lagrangians of the form
1 m? g
_ by = 2 2.9 4 _ _
L—fd x(2(V¢) + 2(/) +4!¢ + Ei & (X)0i(X)),

whereQ; are local functionals. We saw that defining correlation functions of such Lagrangians to the
first order ingi(X) (i.e. gig; = 0) is equivalent to defining composite operators correspondiig.to

Now let us work to the second order # (sigjex = 0). This corresponds to considering products

of composite operators. Before we considered products of composite operators at non-coinciding
pointsx,y, and saw that such a produ@i(x)O;(y) is defined automatically once we have defidgd
and0;. Now we will allow the pointsx andy to coincide. Then, as we know, the product is not
automatically defined, and its definition requires additional renormalization. This means, we have to
introduce counterterms in the Lagrangian, i.e. consider a new Lagrangian of the form

L'=L+ Z Lkei () Rk () Wk(A, 9)Ok(X),
ik

wherelLy, R¢ are diferential operators (i) with constant cogicients, and\ are some functions
which diverge asA — oo. The functionsW are usually not uniquely determined and cannot be
chosen canonically.

Let us consider an example. In one of the homework problems we computed the 1-loop correction
to the 1-particle irreducible bosonic 2-point functibin QED. We discussed that this correction can
be computed (in momentum space) as

| ea.093,0ax

whereJ,(X) = Jyﬂglr is the operator of current, and the correlator in (1) is in the theory of a free
fermion. Now, as follows from the above discussion, the produ@dJ, (x) is defined up to operators
of lower order, and the expectation vakdg(x)J,(0)) is non-uniquely defined, which causes an ambi-
guity in the computation of (1). However, this non-uniqueness occurs oRrly & In fact, its is easy
to show that the functioxJ,(x)J,(0)) is well defined up to adding a multiple 6¢x). Therefore, the
ambiguity in (1) is a constant (i.e. is independenk)of

In QED, to preserve gauge invariance, it is necessary to choose this constant in such a way that
the conditionk“X,, (k) = 0 is satisfied. This gives a unique way to fix the constant.
2. Symmetry breaking. A symmetry that exists in a classical field theory may be lost in a particular
renormalization scheme for the corresponding quantum theory. Of course it is possible that there
exists a better scheme which preserves this symmetry, but it is also possible that there exists no such
scheme, i.e. the symmetry is broken at the quantum level. For example, caNdider massless
fermionsy, ...¢N, with Lagrangiany, (v, Dy), ¥i € S;, ¥_ € S.. In this theory we have B(N)
symmetry. Let us add interactions in such a way that part of this symmetry is preserved. For example,

“Notes by Pavel Etingof and David Kazhdan
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add a gauge field (i.e. regard the fermions together to make a seafiofithe vector bundl&, ® E,
whereE is anN-dimensional Hermitian vector bundle over the spacetime), which takes values in the
Lie algebra of a subgroud c U(N), and consider the Lagrangiai, Day), whereDy is the Dirac
operator along the connectigh The classical symmetry of this theory is the centralizéf) of

H. In quantum theory, however, this symmetry may fail for topological reasons. In other words, a
topological anomaly may appear.

3. An oversimplified version of experimental confirmation of asymptotic freedom.

Consider a field theory with electromagnetic and strong interactions, which contains electrons
(which interact only electromagnetically), and quarks (which interact both electromagnetically and
strongly). The Lagrangian of such a theory can be written as follows. The fields are:

(i) An SU(3)-connectiomg (the field of strong interactions),

(i) A U(1)-connectiorA. (the electromagnetic field),

(iii) Quarksq; and an electrom (which are fermions with values i&i® andC respectively).

The Lagrangian is

. —. 1 1
[ a0+ Ay A= m)ey + D + A=z + 5P+ F),
J

Hereeis the charge of the electron agds the coupling of the strong interaction.

Now suppose that we scatter two electrons against each other with mopagmtaand measure
the amplitude of the event that after scattering they will have momgntg. As we know, this
amplitude is defined by the 4-point functidn(ps, p2, g1, d2). Let us try to compute this function and
thus predict the result of measurement.

First of all, we can use the fact thettis small. This means, we can trust the perturbative expansion
in powers ofe.

To ordere?, we can assume that the electrons, during scattering, exchange only one photon, which
does not interact while it moves from one electron to the other. This corresponds to the following
Feynman diagram:

Thus we have
T4(P1, P2, 1, G) = €4(Go((p1 - 1)?) + Ga((p1 — 2)?)),

whereG;(p?) is the free photon propagator. HeBe is regarded as an operator fré® Sto S® S,
whereSis the space of spinors.
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Remark. In principle, we should include the diagrams where one of the electrons exchanges a photon
with itself, but we will not consider them, regarding them as absorbed in the electron propagator.

To ordere?, we have two possiblities.
1) The electrons could exchange two non-interacting photons. The amplitude of the corresponding

1-loop diagram

can be computed within the framework of QED.
2) The electrons could exchange only one photon, but on its way it could split in an electron and
positron, or in a quark and an antiquark. The first splitting scenario

is harmless, since it gives only one 1-loop diagram with no strong interactions, and we can com-
pute the amplitude of this diagram as in QED. However, the second scenario (with quarks) really gives
us trouble. Indeed, the coupling constgruf the strong interaction is not small, so we cannot trust
the perturbation expansion gnand thus have to take into account infinitely many Feynman diagrams
with any number of loops:
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(here dotted lines denote the field of strong interaction).

However, we know that the theory of strongly interacting quarks is asymptotically free (when the
number of quarks is not too large). Thus, we should expect that the perturbative expansion in the
effective couplinggest ~ g(In p?)~Y/2 should be valid at high momenta. This would mean that at high
momenta we can restrict to the 1-loop diagrams, which involve no strong interactions. Since we have
one such diagram for each type of quark,

the total amplitude of these diagramsjjselzzi(p), whereg are charges of quarks, ai are
amplitudes of the corresponding diagrams for a particle with charge 1. Of course, the fuBigf@ns
depend on the (unmeasurable!) massesf quarks, but at high momenta masses are irrelevant, and
all functions; are approximately equal to each other. Thus, the amplitublgp)¢>; €?), whereZ(p)
is a universal function computed from QED (as in one of the homework exercises).

It follows from asymptotic freedom that the (relative) error of this computation is of ordent.
If we compute the two-loop correction (still working to ord#), we will get an additional term of the
order ¥/ Inp?, and the error will be of order/In? p2. More generally, if we take into accouNtloop
diagrams, the error will be of order/ InN p?. Thus, we get an asymptotic series, with very slowly
decaying terms, but at very highone can hope that it gives a reasonably good approximation to the
4-point scattering amplitude. This approximation (to the 0-th order) could in principle be checked
experimentally, and can be regarded as a confirmation of asymptotic freedom.
Remark. In practice, asymptotic freedom was checked experimentally irffareint way, but the
ideology is similar to the one described above.
Correction to the text of lecture 3 (by Pavel Etingof)

Unfortunately, in Section 3.3 of Lecture 3 there is a wrong statement (noticed by D.Freed).
Namely, the statement*.0O(X)O(X)) ~ |x — X'|719-191" js incorrect. For example, it fails i =
andQ is a nontrivial operator. This statement is true, howeve® i= O, which is enough to make
the point which was being made in the text.
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Lecture 4: Scattering Theory

Edward WitteA

December 1996

Abstract

This lecture is an introduction to Scattering Theory in Quantum Mechanics. After introducing
the asymptotic conditions and explaining their interpretation in terms of observable quantities,
we introduce the Lippmann-Schwinger equation and the Born approximation. We then discuss
Feynman diagrams and soméfdiences between the non-relativistic and relativistic propagation
of signals and particles.

1 Non-relativistic scattering theory

1.1 The asymptotic conditions.

We start by considering a particle of massmnoving in R in the time-dependent potentis(X, t)
(whose support is not a priori assumed to be localized in the spatial directions). The evolution of the
wave functiony(X, t) is determined by the time-dependent Schinger equation

.0
|a%ﬁ(2 t) = H'ﬁ(x t)? (1)

where the Hamiltonian is defined by = —5-A + V. We will assume for a while thah = 1.

We want to analyse the solutions of (1) with a certain behaviour in the far past and the far future. In
the far past, we require that the solutions approach-as-co, a solution of the Sclixdinger equation
corresponding to th&ee HamiltonianHp = —%A. Solutions of the free Schdinger equation have
the general form

d3l_() o i K2
1) = | ——=f(ReE2Y, 2
oy - [ ! 0 )
wheref(E) represents the distribution of momenta at time 0. More specifically, we want to
consider those solutions of (2) corresponding approximately to an incoming particle with vélocity
which means thdt(k) is localized neaky = V (since n=1); a possible choice fdris

() = exp(- (k~ ko)) ©

with smalla. For larget, the integral in (2) is highly oscillatory so the main contribution comes from
stationary phase; varying the exponent with respektg'weslz = X/t; if @ is small therk has to be
close toko, and the conditio® = kot does indeed describe a free moving particle with veldzz;jty

In the far future, we can no longer expect the wave funcijoio be localised near a definite
momentum because of the scatteritipet of the potential, so we will instead look for solutions of
(1) which behave asymptotically like a sum of a localised solution of (2) and an outgoing spherical
wave.

In order to find solutions of (1) we will first solve an eigenvalue problem for the Hamiltonian. We
assume that there are no bound states, i.e Hi®s no discrete spectrum. For e&ole will search

SNotes by Radu Constantinescu
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for a solution/(X) of the equationHy(X) = %nglz(i) with the following asymptotic behaviour at large
distances:

() =5 &%+ ﬁé“" MEL(Q) + o(p(%). (4)
The plus sign in the exponent of the second term is important, it will be needed in the construction of
anoutgoingwave solution of (1). The complex-valued functibpis defined on the sphere of radius
1 and the notatiof is a shorthand for a vecterdn the sphere. Alternatively we can regé&igas a
function F(l?’, IZ) defined foﬂl?’| = |I2|.

The functionsy, can be used to construct exact solutions of the time-dependenbdiuer
equation, namely

Bk . K2
ue = [ St @ue 5 ©)

Let us use (4) and (5) to see how daetook at infinity if f is assumed to be of the form (3). For
[t - oo and|x] — oo two terms contribute to the stationary phase; one of them isi;(@xp?— k%t/2)
and has already been analysed- the stationary phase condiierkig. The other one has, for large
IX], the phasqﬂ -|IX| — k?t/2 + argF; varying with respect t¢k| we find that the stationarity condition is

0
X =kt + 7K argk; (6)
Notice that if we ignored the term involvirig we would getx = kt, which cannot be satified for
negativet— in agreement with the fact that we only want to haveatgoingspherical wave.
The extra term in the right-hand side is a finite time advance or delay describing the fact that the
moment when the scattered particles arrive at a detectdieisted by the interaction with the target.
The stationarity condition shows that the advddetay is the radial derivative of the phaseFaf
called thephase shift

1.2 Relation with experiments.

Itis now time to relate the above constructions to quantities which are actually measurable in scattering
experiments. The functioR(Q2) is called thescattering amplitude The reason for this is that the
measuréF(Q)[2d’Q on the spher&; = {|x = 1} can be interpreted as the number of scattered particles
per unit solid angle if there is one incident particle per unit ad& (denotes the usual measure on

the 2-sphere). Notice that only the absolute valuE o relevant here. The integral

_ 242
o= L|F(Q)| d’Q (7)

is called thetotal cross-sectioand represents the total number of scattered particles (per unit incom-
ing particle in unit area). As such; can also be viewed as tlgfective cross-sectional areaf the

target: if the target is thought to remove a fraction of the incoming particles of momégtuhenc

is the total number of removed particles if there is one particle per unit area. The relationship between

o andF is usually written as

&~ F@P ®
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1.3 The Lippmann-Schwinger equation.

We have so far used the eigenfunctions of the Hamiltonian to solve the time-dependdédiiGydnmr
equation. The question now is how to solve the eigenvalue problerd.foDne possibility is to
start from the free HamiltoniaHg = —%A whose eigenfunctions are eip(X) (corresponding to the
eigenvalues?/2). We will search for eigenfunctiong, of H of the formy; = eprIZ- X) + a;. Since

H = Hp + V we have

k2 k2
OZ(H_E)%Z:V‘”IZJF(HO_E)QR 9)
which implies
1
o= ———z Vi, (10)
Ho- %

where the operator/{Ho — k?/2) is supposed to be a right-inverseHg — k?/2.
Although the operatoHy — k?/2 is not invertible, we still can construct a right-inverse of it In
momentum space, for instance, the opertlgr k?/2 is roughly speaking a multiplication operator

2
(Ho - kE) g = %(q2 — K2)edX (11)

so we should have 1 1
;=1 . (12)
Ho-% 3(?-K)

Because of the pole, there are several ways of making sense of the above; one possibility, in the usual
notation, is:

1 1
2~ 1 —- (13)
Ho-% 3(a?-K2)—ie
The conversion to position space is realised through the following
Exercise.Show that the integral kernel (in position space) of the operator defined by (13) is

1 dlkix-yl
GXY) = — . 14
()9 =~ =yl (14)
By using the exercise, (10) leads to thippmann-Schwinger equation
- 1 glk-x-yl
_ dkx_ 3 }
009 = 54— [ ), 1)

If the potentialV has compact support then any solution of (15) has the boundary conditions required
by the asymptotic condition built in. This can be seen by using the fact that for|kgedy in a
compact set we hayg-y| = [x| —X- ¥+ O(1/|x]), whereX'= X/|x|. Indeed, if we use this approximation
then (15) becomes

o1 dikid

‘”R’(Y) — gkx _ ZW fd:%ye—ilklfoy\/(y)wlz(y) + O(X_lz) , (16)

which shows the existence of a scattered wave of the promised type.
Remark. The procedure used in (13) for going around the pole is chosen precisely in order to guar-
antee the existence of the outgoing spherical wave.
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Notice that (16) gives an expression for the scattering amplitude: for any QowtX on the
sphere of radius 1 we have

F@) =57 [ 5 ), a7)

Remark. We can reinterpret the functidnas a function ok’ andk such thatk’| = |k, in agreement

with the idea that after scattering the particle moves inktbig€ction with the same speed as before.
Although the Lippmann-Schwinger equation cannot be solved exactly, it can be used to compute

Y in perturbation theory as an expansion in the powers of the potential (assumed ttidiersly

weak). This can be done by an iterative procedure: we first calaujatie orderV by using the free

eigenfunction exp@- y) in the right-hand side of (15) instead ¥f(y); once we know}, to orderV
we plug it back into (15) to get the answer to ord&rand so on.

1.4 The Born approximation.

We have seen above an expression of the scattering amplitude in terms of the eigenfunctidre
first Born approximationis the computation of the scattering amplitude withreplaced in (17) by

the free plane wave exiﬁ(- y). We have seen that the scattered wave travels with the same speed as
the incoming one so we can write, filf| = |K|,

FRR) = -5 [ e ® V0. (19

In the first Born approximation this becomes
FR Rean =57 [ e E03(), (19)

If we introduce themomentum transfeg = K' — Kk we see thaE(K', K)gorn is the Fourier transform of

the potential in the] variable.

Remark. This fact is important since it shows that the less sm&bi$, the less rapidly dod%(E’, R)

decay as a function & — k (for fixed k). This led Rutherford to postulate the existence of the atomic
nucleus (based on his scattering experiments). Later on, when similar experiments were performed
with protons instead of atoms, the same reasoning suggested the composite structure of the proton
(existence of quarks).

There are also higher Born approximations for the transition amplitudes: it is enough to use the
successive approximationsig in the expression (17) &¥(K, K). It turns out that in general the Born
approximations lead to very precise computations.

Remark. Instead of considering a particle incident on a target we can regard our previous discussion
as a description of the interaction of two particles. The center of mass decouples and the same results
go through for the relative motion of the particles.

Remark. We can also generalize the preceding arguments for the casiatefacting particles. Let

us note that this time we won't be able to simultaneously normalize the masses to 1 and that we need
one spherical wave centered at each interaction point. The exact solutions of theisgsrequation

YRk will be sums of free and spherical waves away from the diagonals (i.e. Whermeﬂd% for

,,,,,
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1.5 Feynman diagrams.

Starting from (17) and the Lippmann-Schwinger equation we can compute the transition amplitude as
an infinite sum

FRB = -5 [ ® v
i 3 —ik'-% Ky
-~ f Py ¥ AV (RGR, HV(H)e
e f PrPyelze V(G YV (TG, V()R
8r

Given our experience with Feynman diagrams, it is easy to see that the terms of the sum can be

represented graphically (for instance, the graphs corresponding to the first three terms in the sum are
shown below).

k’ k’ k’
MU\ V(X)
MU\ V(X) G(Xx,y)
MU\ V(x) G(X,y) MU\ V(y)
MU\ V(y) G(y,2)
M\ V(2
k k k

Each curly line represents an interaction due to the pote¥tialn-between interactions, the
particles move freely (hence the free propag#&i6x, y)). The incoming and outgoing particles have
definite momentuml?( K, respectively). The diagrams can be thought to encode either the relative
motion of two particles or the evolution of one particle scattered by a fixed target. Notice that only
very simple (ladder) diagrams appear, corresponding to that fact that there are no eatiiation
phenomena in this non-relativistic description.

2 Relativistic versus non-relativistic scattering theory

We will now analyse some fierences between the non-relativistic picture we have been considering
so far and the relativistic treatment of scattering theory.

2.1 Propagation of particles

Going back to the time-dependent Sathinger equation (1), we can try to solve it directly by imitating

the method used in 1.3 to derive the Lippmann-Schwinger equation. We can use the plane wave
solutions exp')(E- X— k—zzt) of thefree Schiddinger equation to transform the Seétimger equation for

H into an integral equation: any solution of the perturbed 8dimger equation satisfies the following
analogue of Lippmann-Schwinger:

p=dkxE0_ 2 vy (20)
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As in Subsection 1.3., the easiest way of making sense of the inve'rgp{)f%A is in momentum
space. Since

.0 1\ G P\ s
~ _ = (@%-EY) _ (g _ 1| d(G%-EY
(Iat ZA)e' (E z)e' , (21)

an inverse (in momentum space) can be found by prescribing the way to go around tEe=pgi¢2.
For instance, we could use

1 e|(q.)?—Et) - JZ' ei(q-Y—Et)‘ (22)
i -3 E-% +ie

The integral kernel of the chosen inverse, in position space, is given by the inverse Fourier transform

d q» —|E(t —t’)
GR R, 1) = 4éq*f dE (23)
(27) ~ % e
The only pole of theE integral is atE = — —ieand sojf t —t’ < O we getG = O(because we

can then avoid the pole by closing the |ntegrat|on contour in the upper half-plane). This result has an
important implicationparticles can only travel forward in time

This is no longer true in a relativistic context: we have seen that the typical propagator of a particle
of a massnis

1
05— g2+ P +ie
in momentum space; in position space, the inverse Fourier transform gives=(fx t))
d d e—iE(t—t/)
G(x,X) = e'qxf dE . 24
Gex) f(27T)4 o GE-g2+nP+ie (24)

No matter whether we close the integration contour in the upper or lower half-plane, we cannot avoid
both poles, therefore it is no longer true tiawanishes if the time coordinates of the poirtand

X' satisfyt < t'. As a consequence, particles can make zig-zags in time, a phenomenon which is
interpreted as the creation or annihilation of parfeteiparticle pairs (the particles traveling forward

in time and the antiparticles backwards).

2.2 Propagation of signals

Non-relativistically, interactions are instantaneous. However, this is no longer true in the relativistic
case.

Let us consider the example of the electromagnetic field; the interaction is transmitted by photons
traveling at the speed of light (since the interaction is not instantaneous, we model it by some patrticles
moving at finite speed).

The photon propagator in momentum space equﬁ(b%l— G2 + i€), an expression whose non-
relativistic limit (given bygy — 0) is formally —1/g2. This has to be reinterpreted since non-
relativistically there is no creation and annihilation of particles (so the only way we can think about the
photon non-relativistically is to consider that it only exists at the tignghen the interaction occurs).

Notice that the (four-dimensional) inverse Fourier transformbfg? equals

d*q €9y 1

e - Oy (29)
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which is precisely a delta-function in time multiplied by the Coulomb potential. Therefore the non-
relativistic limit corresponds to anstantaneousteraction (i.e. scattering in the Coulomb potential).

Relativistically, . _
d eay
- e (20
0
is no longer supported at a fixed point in time, so the interaction is not instantaneous.

We can also illustrate the results on the propagation of particles and interactions in perturbation
theory. It was shown that non-relativistically only ladder diagrams are encountered; intuitively, if time
flows in the vertical direction, these diagrams represent particles moving forward with the horizontal
curly lines being instantaneous interactions.

TIME

By contrast, in the relativistic case interactions travel at the speed of light and gartigarticle
pairs can appear, so more complicated Feynman diagrams such as the ones below have to be consid-
ered.

This diagram illustrates the fact that photons traveling at the speed of light replace the non-
relativistic instantaneous interaction. The curly line which represents the interaction in the non-
relativistic case is relativistically a photon. In the second diagram we show the creation and anni-
hilation of particle pairs. (Of course there are also diagrams in which lifgbts are present.) The
diagram also illustrates another important fact: in a local theory, the presence of ¢faxsitsan
pairs makes it impossible to count ‘the total number of particles in the universe’. The totality of
electrons can be accounted for by a single electron zig-zagging in time or even a sigle closed loop.
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The diagram also illustrates another important fact: in a local theory, the presence of ghesitoomm
pairs makes it impossible to count ‘the total number of particles in the universe’. The totality of elec-
trons can be accounted for by a single electron zig-zagging in time or even a single closed loop.
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