
Lecture 1: Perturbative renormalization
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This lecture is a very elementary introduction to renormalization of Feynman integrals.
1.1. Perturbative expansion of a 2-point correlation function.

Consider a quantum field theory with one scalar bosonic fieldφ(x) on a Minkowski space (V, (, ))
of signature (1,n-1) (see Kazhdan’s lectures). LetV+,V− be the closures of the upper and the lower
part of the full cone of time-like vectors. LetH be the Hilbert space of the theory,D ⊂ H a dense
subspace, andϕ : S(V) → End(D) be the quantization map. We assume that the triple (H ,D, φ)
satisfies Wightman axioms. In this case we can define quantum fieldsφ(x) := ϕ(δx), which are
distributions onV with values in End(D). When it does not cause confusion, we will treat them
as usual End(D)-valued functions.

We can assume without loss of generality that the 1-point Wightman function of the theory
vanishes. Indeed, the 1-point function is a constantC, and we can redefine the mapϕ by setting
ϕ′(f ) = ϕ(f ) − C

∫
f dv. The mapϕ′ satisfies Wightman axioms as well and has a zero 1-point func-

tion.
We look at the time ordered 2-point Wightman function

1.1 WT
2 (x, y) = 〈Ω|T(φ(x)φ(y))|Ω〉

Here the time orderingT means the following. By the definition,

T(φ(x)φ(y)) = φ(y)φ(x)

if x− y ∈ V−, and
T(φ(x)φ(y)) = φ(x)φ(y)

otherwise. Sinceφ(x) commutes withφ(y) whenx−y is space-like, the function (1.1) is even. Because
of the Poincare invariance axiom, (1.1) is a function ofx− y. Denote this function byW(x). It follows
from the Poincare invariance that the functionW(x) actually depends only onx2.

LetH1 be the closed subspace ofH spanned by vectors of the formφ(f )Ω, wheref is a Schwartz
function onV. The spaceH1 is a representation of the Poincare group, and all its irreducible com-
ponents have spin zero, i.e. have the formL2(O+

m), whereO+
m is the upper sheet of the two-sheeted

hyperboloidk2 = m2 in the dual spaceV∗. This happens because we have a homomorphism of repre-
sentationsS(V)→ H1, given byf → φ(f )Ω, whose image is dense inH1.

Let ρ1 : P→ Aut(H1) be the action of the Poincare group inH1. If x < V−, we can writeW(x) as

1.2 W(x) = lim
ε→0
〈ρ1(x)vε, vε〉, vε = ϕ(δε)Ω,

whereδε is a family of smooth Schwartz functions tending to theδ-function.
Assume first thatH1 is an irreducible representation, i.e.

H1 = L2(O+
m).

1Notes by Pasha Etingof, TeXnical editing Misha Verbitsky
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In this case, it is very easy to evaluate (1.2) explicitly. Indeed, the operatorρ1(x) in this case is just the
operator of multiplication by the function

ei(k,x), (k ∈ O+
m ⊂ V∗).

It is easy to see that there exists a limit asε → 0 of vε in the sense of distributions. Because ofP-
invariance, this limit is anO(V)-invariant distribution onO+

m. Therefore, this limit equals to a constant
function onO+

m. We can always normalize this constant to 1, by rescaling the mapϕ. Then from (1.2)
we will get

1.3 W(x) = Wm(x) :=
∫

O+
m

ei(k,x)dk, x < V−; W(−x) = W(x),

wheredk is the O(V)-invariant measure onO+
m: if k = (k0, k1), k0 ∈ R, k1 ∈ Rn−1, then dk =

dk1/
√

k2
1 + m2, anddk′ is the Lebesgue measure onRn−1.

Let δ+
m denote the delta function of the upper sheet of the hyperboloidk2 = m2, andδ−m the delta

function of its lower sheet. Then (1.3) says thatWm(x) equals to the Fourier transform ofδ+
m in V+, of

δ−m in V−, and to both of them in the rest ofV (these Fourier transforms are equal outside ofV+ ∪V−).
It is clear from this description that it is more convenient to work with the Fourier transform of

the functionWm(x) than with this function itself. The Fourier transform ofWm(x) is obtained by a
direct computation, similar to one from Kazhdan’s lectures. The answer is called the Klein-Gordon
propagator:

1.4 W̃m(k) = wm(k2) =
i

k2 −m2 + iε
,

where by definition 1
k2−m2+iε

is the distribution onV∗ obtained as the weak limit of 1
k2−m2+ia

asa→ +0.
Now we turn to the general case, whenH1 is not an irreducible representation ofP. We will define

the spectral measureµ of H1 (onR) by the following rule. Letα ∈ S(R) be a positive function. We
define the integral

∫
α(s)dµ(s) by

1.5
∫

α(s)dµ(s) = 〈ϕ(f ), ϕ(f )〉,

wheref is any function inS(V) such that
∫
O+

s
|f̃ |2dk = α(s), (heref̃ is the Fourier transform off ). It

is easy to show that the r.h.s. of (1.4) does not depend on the choice off , so the measureµ(s) is well
defined. By the definition ofµ(s), the functionW(x) can be expressed in the form

W(x) =

∫
Ws(x)dµ(s).

Therefore, the Fourier transform ofW(x) has the form

W̃(k) = w(k2) =

∫
idµ(s)

k2 − s2 + iε
.

It follows from scattering theory (See Kazhdan’s lectures) that ifH has a subrepresentation ofP
isomorphic toL2(O+

m) then it has components of the formL2(O+
s ), occuring as continuous spectrum,

for all s ≥ 2m. Therefore, one expects that for a sufficiently generic quantum field theory, the space
H1 will already contain some of this spectrum, and therefore it will be possible to see it looking at the
measureµ, i.e. at the functionW(x).
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In the case when the field theoryϕ is a small perturbation of the theoryϕ0 of a free scalar field
of massm0, it is expected thetH has aP-invariant subspace isomorphic toL2(O+

m) for m close tom0,
a continuous spectrum from 2m to ∞, and, possibly, a finite number of discrete components. This
assumtion can be tested by looking atµ: it would mean thatµ is supported at{m} ∪ [2m,∞), has an
atom ats = m, and is absolutely continuous with respect to the Lebesgue measure fors ≥ 2m (the
new discrete spectrum makes an exponentially small contribution toµ, with respect to the deformation
parameter, and so it is not seen in the perturbation expansion).

In terms of the functionw(s), this means the following. Let us analytically continuew(s) to a
complex analytic function. Then, the conjectural behavior of the spectrum that we described above
would mean that ˜w(s) has a pole ats = m2 and a cut from 4m2 to +∞, with jump−2πdµ/ds when
crossing the cut from up to down at the points.

Now we will take a concrete quantum field theory and compute a perturbative expansion of the
functionw(k2), in order to find out if it really has such analytic properties.
1.2. Theφ3-theory.

Now we consider the quantum field theory with the Lagrangian

1.6 L =

∫ (1
2

(∇φ)2 − m2

2
φ2 +

g
3!
φ3

)
dnx.

This theory is a perturbation of the theory of a free scalar field of massm with respect to a small
parameterg. It is called theφ3-theory.
Remark. From physical point of view, theφ3-theory is unsatisfactory, since the energy in this theory
is not bounded below, for any finite nonzero value ofg. However, one can consider this theory
perturbatively, i.e. regardg as an infinitesimal formal parameter, which in algebraic terms means
that we work over the ringC[[g]]. Using this theory as an example, we will do some Feynman
diagrams computations, which are done in a similar manner in more complicated but more physically
meaningful theories.

According to the rules of quantum mechanics, if theφ3-theory actually existed, the correlation
functions of this theory would be given by the formal expression

1.7 〈Ω|φ(x1)...φ(xN)|Ω〉 =
1
Z

∫
φ(x1)...φ(xn)eiL(φ)Dφ,

where

1.8 Z =

∫
eiL(φ)Dφ

is the partition function. As usual, these “formulas” do not apriori make sense, as the formal expres-
sioneiL(φ)Dφ does not represent a measure on the space of fields. However, ifg = 0 (the free theory),
we can use (1.7) as a definition: define the integral

1.9
∫

φ(x1)...φ(xn)eiL(φ)Dφ

to be equal to〈Ω|φ(x1)...φ(xN)|Ω〉. Further, forg , 0, we can expand (1.7) in a formal series in powers
of g, and successive coefficients will be expressed as finite-dimensional integrals of expressions of
the form (1.9). If we can compute these finite-dimensional integrals, we can get natural definition of
(1.7). This computation is done using the Feynman diagrammatic techniques. Unfortunately, it turns
out that some of these integrals are divergent and need to be renormalized.
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Remark. Strictly speaking, inφ3-theory as we stated it, the 1-point function does not vanish. How-
ever, as we explained before, this problem can be removed by shifting the quantization mapϕ. In the
language of functional integral, it corresponds to adding an auxiliary linear term to the Lagrangian,
and in the language of Feynman diagrams it corresponds to ignoring graphs with one external ver-
tex, and all graphs which contain such graphs as subgraphs. In fact, this shifting procedure is not so
trivial, since the integral representing the 1-point function is divergent forn ≥ 1. Thus the shifting
procedure requires renormalization of some graphs with 1 external vertex. Therefore, we will come
back to this topic at the end of the lecture. Until then, we will assume that the 1-point function has
been normalized to zero.
1.3. Perturbative expansion of Feynman integrals

In this part of the lecture we will remind how to compute the perturbative expansion of Feynman
integrals. For simplicity consider the finite-dimensional case (Kazhdan’s lectures). Suppose we have
a finite dimensional real vector spaceS with a positive definite symmetric bilinear formB. Let dv be
a Lebesgue measure onS such that

1.10
∫

S
e−B(v,v)/2dv = 1.

We want to learn to compute the integral

1.11
∫

S
P(v)e−B(v,v)/2dv,

whereP : S → R is a polynomial. This integral is a sum of integrals of the form

1.12 〈f1...fN〉0 :=
∫

S
f1(v)...fN(v)e−B(v,v)/2dv,

wheref1, ..., fN ∈ S∗. It is clear that ifN is odd, this integral vanishes, as the integrand is an odd
function. Thus, it is enough to consider the case whenN = 2K. In this case, the answer is given by
the following formula, which is called the Wick formula.
Proposition 1.1

1.13 〈f1...f2N〉0 =
∑

s∈S2K/∼
B−1(fs(1), fs(2))...B

−1(fs(2K−1), fs(2K)),

whereB−1 is the inverse form toB onS∗, S2K is the symmetric group, ands1 ∼ s2, s1, s2 ∈ S2K if they
define the same term in (1.13).

The proof is obvious: the right hand side of (1.13) is the only polylinear expression infi invariant
under the groupO(S) × S2K , up to a factor, and the normalization is deduced from the casef1 = ... =

f2K = f .
Remark. The setS2K/ ∼ is the set of pairings, i.e. splittings of the set{1, ..., 2K} into pairs. Thus,
terms of the r.h.s. of (1.13) are in 1-1 correspondence with pairings. In particular, the number of these
terms is equal to (2m)!/2mm!.

Now consider a perturbation of this situation. Let

Q(v) =
∑

n≥1

gmQm(v⊗m)/m!,

wheregm are formal variables andQm ∈ SmS∗. Consider the integral

1.14 〈f1...fN〉 =

∫

S
f1(v)...fN(v)e−B(v,v)/2+Q(v)dv ∈ C[[g1, g2,g3, ...]] .
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This integral can be computed using Feynman graphs, as follows.
Let n = {n1,n2,n3,n4, ...} be any sequence of nonnegative integers which is eventually zero. Let

G(N, n) be the set of equivalence classes of all graphs which haveN 1-valent vertices labeled by
1, ...,N, andni unlabeledi-valent vertices,i ≥ 1. The labeled vertices are called external, and the
unlabeled ones internal.

Any graphΓ ∈ G(N, n) defines a polylinear functionFΓ of f1, ..., fN which is defined as follows.
At the 1-valent vertex ofΓ labeled byi one places the vectorfi , at every m-valent vertex one places
the tensorQm, and then takes contractions along edges using the formB−1 (see Kazhdan’s lectures).
Then one has
Theorem 1.2

1.15 〈f1, ..., fN〉 =
∑

n

∏

i

gni
i

∑

Γ∈G(N,n)

|Aut(Γ)|−1FΓ(f1, ..., fN),

where Aut(Γ) denotes the group of automorphisms ofΓ which fix the external vertices.
The proof is easy. First one observes that (1.13) is a special case of (1.15), whenn = 0. Next,

one can think of eachi-valent vertex of a graphΓ as a collection ofi 1-valent vertices which are
situated very close to each other. Then it is clear that any graphΓ ∈ G(N, n) defines as many as
|Aut(Γ)|−1 ∏

i!ni
∏

ni ! different pairings of such 1-valent vertices. Thus, formula (1.13) implies (1.15).
1.4. Computation of a Feynman integral over functions on a Minkowski space.

Now we will try to compute the functionw(k2). Using formula (1.7), we get

1.16 W(x) = Z−1
∫

T(φ(x)φ(0))eiL(φ)Dφ

Applying formula (1.15), we express the r.h.s. of (1.16) as a sum over graphs.The functionQ(φ),
which was considered above for the finite dimensional case, is of the formg

3!Q3(φ), whereQ3 is a
cubic form given by

Q3(φ) = 〈φ(a) ⊗ φ(b) ⊗ φ(c), iδa=b=c〉.
Thus, we get a sum over all graphs with two external 1-valent vertices, and a number of internal
trivalent vertices.

Graphs which have components without external vertices will not occur in this sum, since we have
divided byZ. So there are two remaining types of graphs: connected and disconnected. Disconnected
graphs have two components, each having one external vertex.

It is easy to see that the sum over all disconnected graphs equals

〈Ω|φ(0)|Ω〉2 = 0.

Therefore, disconnected graphs can be ignored.
We see that the functionw(k2), can be written as a sum over connected graphs with two external

vertices. So, we can representw(k2) in the form

1.17 w(k2) =

∞∑

j=0

w(j)(k2),

wherew(j)(k2) is the sum over all connected graphs which are chains ofj 1-particle irreducible graphs.
We havew(0)(k2) = wm(k2) = i

k2−m2+iε
(the free propagator), and

1.18 w(j)(k2) = w(0)(k2)
(w(1)(k2)

w(0)(k2)

)j
.
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Set

1.19 Σ(k2) = i
w(1)(k2)

w(0)(k2)2
.

(It is easy to see thatΣ(k2) is a real function). Summing the geometric progression in (1.17), we get

1.19 w(k2) =
i

k2 −m2 − Σ(k2) + iε
.

Thus, it remains to computeΣ(k2). We hope to find thatΣ(k2) is analytic neark2 = m2, and has a
cut atk2 ≥ 4m2. This would confirm the expected analytic behavior ofw(k2).

In our setup, the bilinear formB−1 from the previous section has the kernel i
(k1−k2)2−m2+iε

, and the
3-tensorQ3 has the kerneliδ(k1 + k2 + k3). Therefore, the term corresponding to each graphΓ in the
sum forΣ(k2) is an integral of a rational function over the spaceH1(Γ,R) ⊗ V∗. So the number of
integrations is proportional to the number of loops in the graph. Therefore, these integrals, over loop
parameters, are called loop integrals.

Now we will compute the first nontrivial coefficient of theg-expansion ofΣ. We haveΣ = g2Σ2 +

O(g3), whereΣ2 is the sum over all connected graphs with two trivalent vertices (there is no graph
with only one trivalent vertex). It is easy to see that there is only one such graph, namely the following
one:

k

q

k

q-k

So we must put an integration parameterq ∈ V∗ on the only loop of the graph. Thus, the function
Σ2(k2) can be represented as a single loop integral

1.19 Σ2(k2) =
i
2

∫

V

dnq/(2π)n

(q2 −m2 + iε)((q− k)2 −m2 + iε)
.

(division by 2 arises from the automorphism group ofΓ, which has order 2).
Remark 1. When we compute the group of automorphisms of a graph, we do not take into account
the orientation of edges. The arrows are put on edges arbitrarily, in order to balance the momenta
which are attached to edges. The distribution of momenta should satisfy the condition that the sum of
incoming momenta at each internal vertex should equal the sum of outgoing ones.
Remark 2. It may appear that the integral in (1.19) is real, but in fact it is not. It is easy to see that
for real negativek2 the integral is imaginary, so the r.h.s. of (1.19) is real. This happens because of
addition ofiε in the denominator.

Now we try to compute integral (1.19). The integrand is a fraction where the denominator is
a product of two different factors. For a general graph, the integrand will have a product of many
different factors in the denominator, which causes inconvenience. There is a remarkable trick, which
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allows to convert this integral into an integral of a function whose denominator is a power of a single
factor. This trick is the “Feynman famous formula”:
Proposition 1.3

1.20
1

A1...AN
=

∫

α1+...+αN=1

1
(
∑
αiAi)N

dσ,

wheredσ is a Lebesgue measure on the simplex with volume 1.
ProofWe prove the statement by induction inN. ForN = 1, the statement is obvious. LetN > 1.
Denote the r.h.s. of (1.20) byIN(A1, ...,AN). Then from a homogeneity argument it follows that

1.21
∫

s≤α1+...+αN≤t

1
(
∑
αiAi)N

dα1 ∧ ... ∧ dαN =
1

(N − 1)!
IN(A1, ...,AN) ln(t/s).

Now observe that the N-form under the integral in (1.21) has the formdω, where

1.22 ω =

N∑

j=1

(−1)j

N(N − 1)Aj(
∑
αiAi)N−1

dα1 ∧ ... ∧ d̂αj ∧ ... ∧ dαN.

Therefore, using Stokes’ formula, we get

1.23

N∑

j=1

1
N(N − 1)Aj

1
(N − 2)!

IN−1(A1, ..., Âj , ...,AN) ln(t/s)

=
1

(N − 1)!
IN(A1, ...,AN) ln(t/s).

(the integrals ofω over simplices
∑
αi = s, t cancel each other, and only the integrals overN truncated

simplices remain). Using the induction assumption, we obtain (1.20).�
We will use formula (1.20) forN = 2. In this case it has the form

1.24
1

AB
=

∫ 1

0

dα

(αA + (1− α)B)2
.

Applying this formula to (1.19), and shifting the integration variable, we obtain

1.25 Σ2 =
i
2

∫ 1

0

∫

V

1

(q2 + α(1− α)k2 −m2 + iε)2

dnq
(2π)ndα.

It is convenient now to perform a Wick rotation of the integration cycle. Write any vectorq ∈ V
as (q0,q1), q0 ∈ R, q1 ∈ Rn−1, so thatq2 = q2

0 − q2
1 (whereq2

1 is the usual squared norm). Consider
the 1-parameter family of integration cycles,C(t) = {(eπit/2q0,q1) ∈ VC|(q0,q1) ∈ V}, 0 ≤ t ≤ 1. The
integral (1.25) is overC(0). It is clear that during the deformationC(t) we do not pick up any poles of
the integrand in (1.25) (sinceε > 0). Therefore, if (1.25) converges, the integral overC(0) (which is
Σ2) equals to the integral overC(1).

The cycleC(1) is a real subspace ofVC which carries a natural positive definite metric,|q|2 = −q2.
Thus, integral (1.25) can be written as

1.26 Σ2(k2) =
i
2

∫ 1

0

∫

Rd

1

(|q|2 − α(1− α)k2 + m2)2

dnq
(2π)ndα.
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(iε is no longer necessary, as the integrand is now smooth for negativek2).
It is now an exercise to compute this integral explicitly in elementary functions. However, we are

more interested in qualitative properties of the answer. Namely, from formula (1.26) it is obvious that
1) Σ2 is analytic neark2 = m2.
2) Σ2 has a cut at the set of those values ofk2 for which the integrand is singular.
Since the functionα(1 − α) varies between 0 and 1/4 asα varies from 0 to 1, the cut occurs at

k2 ≥ 4m2. Thus, the functionΣ2 has the expected analytic behavior.
Remark. We could have considered from the very beginning a Euclidean theory. This means,V is a
Euclidean space, the Lagrangian is

1.27
∫

(
1
2

(∇φ)2 +
1
2

m2φ2 +
g
3!
φ3)dnx,

The correlation functions are

1.28 〈φ(x)φ(0)〉 =

∫

S(V)
φ(x)φ(0)e−L(φ)Dφ,

the propagator is 1
k2+m2 , the cubic functional corresponding to a trivalent vertex is− 1

3!δ(k1+k2+k3), and

the Fourier transform of (1.28) is 1
k2+m2+Σ

, where−Σ is computed as a sum over 1-particle irreducible
connected graphs. If we try to computeΣ2, we will get exactly the same answer as given by (1.26),
i.e. ΣEuclidean

2 (|k|2) = ΣMinkowski
2 (−k2). This is a general phenomenon: the Wick rotated answer for a

theory in the Minkowski space coincides with the answer for the corresponding Euclidean theory.
1.5. Renormalization of divergent graphs.

Unfortunately, the integrals (1.25), (1.26) are divergent forn ≥ 4, since the integrand does not
decay rapidly enough at infinity. Renormalization techniques help to give meaning to these integrals
anyway.

From now until the end of the lecture we consider the casen = 4, and the Euclidean picture. In this
case, the easiest way to make sense of (1.26) is to differentiate with respect tok2. If we differentiate
under the integral sign, we will obtain a convergent integral, and then we can integrate it back, which
will define Σ2 up to a constant. However, this is, in general, not the best way to proceed. The method
which is usually applied in renormalization theory is the following.

We will replace the propagator 1
k2+m2 with a more rapidly decreasing propagator depending on

a parameterΛ, of the formPΛ =
χ(k2,Λ2)
k2+m2 , whereχ(k2,Λ2) is a smooth function with sufficiently

rapid decay atk2 → ∞ for a fixedΛ, which tends to 1 atΛ → ∞ (it is called the cutoff function).
For instance, one can takeχ(k2,Λ2) = Λ4

(k2+Λ2)l , l ∈ N. ComputingΣ2 for this new propagator, we
will obtain a convergent integral for each finite value ofΛ, and the answer will depend onΛ in the
following way:

1.29 Σ2(k2,Λ,m) = −A ln(Λ/m) + O(1),Λ→ ∞,

whereA is a positive constant. Of course, the limit of (1.29) asΛ→ ∞ (which would be the value of
(1.26)) does not exist: one says that the integral is logarithmically divergent.

Now fix a constantm = mR > 0 (the renormalized mass). GivenΛ, we will adjust the massm0

of the theory in such a way that theΣ-functionΣ(k2,Λ,m0,g) for the theory with this mass and the
propagatorPΛ has a pole exactly atk2 = −m2

R. That is, definem0(mR,g,Λ) = mR + O(g) by the
equation

m2
R = m2

0 + Σ(−m2
R,Λ,m0, g).
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It is clear the solution of this equation (modulog3) has the formm2
0 = m2

R − g2Σ2(−m2
R, λ,m0), so by

(1.29) it has the formm2
R + g2A ln(CΛ/mR), whereC is a constant which depends only on the cutoff

functionχ. It is easy to see that there exists a limit

ΣR
2(k2,mR,g) = lim

Λ→∞
Σ(k2,Λ,m0(mR, g,Λ),g).

This limit is called the renormalizedΣ-function. Of course, it depends on the choice ofmR.
Let us now understand what this renormalization does to the Feynman diagram expansion. The

new Lagrangian of the theory, with the massm0, differs from the old one (with massm = mR) by the
additional quadratic term1

2Ag2 ln(CΛ/mR)φ2. Therefore, according to the rules of Feynman calculus,
theg2-term of the perturbation expansion will now be the sum of terms corresponding to two Feynman
diagrams:

+

At the 2-valent vertex of the second diagram, we put the tensor

−Ag2 ln(CΛ/mR)δ(k1 − k2).

This gives us an extra constant summand inΣ2(k2,Λ,m0), which compensates the divergence and
ensures that there exists a limitΣR

2 of

Σ2(k2,Λ,m0(mR,g,Λ))

asΛ→ ∞.
Remark. We have chosen our renormalization in such a way that the functionw(k2) (modulog3) has
a pole atk2 = −m2

R. This is the reason that the constantmR is called the renormalized mass.
1.6. Renormalization in higher orders.

Now let us consider the terms our Feynman diagrams expansion which come with a power ofg
higher than 2. For example, consider the following graph,

which occurs withg4. It is easy to see that this graph defines a convergent integral forn = 4. We
will see that this is also the case for more complicated graphs. Namely, forn = 4, the more vertices a
graph has, the better is the rate of convergence of the corresponding integral.

Let us analyse the situation for arbitraryn. It is convenient to introduce the following definitions.
Definition 1 The superficial divergence indexdiv(Γ) of a graphΓ is the difference of the degrees of
the numerator and denominator in the integrand of the corresponding integral.
Remark. By the definition, the degree of the integration variablesqi and their differentialsdqi equals
1.
Definition 2 A graph is called superficially divergent ifdiv(Γ) ≥ 0 and superficially convergent if
div(Γ) < 0.
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Remark. Γ is called logarithmically, linearly, quadratically,... divergent ifdiv(Γ) = 0, 1, 2, ....
Proposition 1.4 In theφ3-theory,div(Γ) = (n− 6)b1 + 6− 2E, whereb1 is the number of loops, and
E the number of external vertices.

Proof Let M be the number of internal edges, andN the number of external vertices. SinceΓ is
connected and has only trivalent internal vertices, we haveM = 3N−E

2 , b1 = N+2−E
2 . It is easy to see that

the degree of the numerator in the integral corresponding toΓ is nb1 (b1 loop integrations overRn), and
the degree of the denominator is 2M (M quadratic factors). Thus,div(Γ) = nb1−2M = (n−6)b1+6−2E.

Proposition 1.4 implies the following.
1) If n > 6, divergence worsens as the number of vertices grow.
2) If n = 6, all graphs withE = 2,3 are equally bad (havediv(Γ) = 6− 2E), while for E ≥ 4 they

are superficially convergent.
3) Forn ≤ 3, all graphs withE ≥ 2 are superficially convergent.
4) Forn = 4, the only superficially divergent graph withE ≥ 2 isΓ2:

5) Forn = 5, there are finitely many superficially divergent graphs.
It is clear that superficial convergence of a graph is necessary but not sufficient for convergence

of the corresponding integral. Indeed, a superficially convegent integral may have a subintegral that
diverges. However, one can formulate a sufficient condition for actual convergence in terms of super-
ficial convergence. This condition is given by Weinberg theorem.
Weinberg theorem Let Γ be a graph such that the integral of the corresponding function over any
subset of the set of loops ofΓ is superficially convergent. Then the integral corresponding toΓ is
convergent.

Weinberg theorem gaurantees that in theφ3-theory all integrals are convergent forn ≤ 3. Let us
see what happens ifn = 4. In this case, we have one superficially divergent graphΓ2. Of course,
there are infinitely many superficially convergent but still divergent graphs, namely, all graphs which
containΓ2 as a subgraph, e.g.

However, we have renormalized the graphΓ2, i.e. compensated its divergence by adding another
auxiliary graph of the form
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As a result, all graphs which are divergent because they containΓ2 will be renormalized automati-
cally and become convergent. That is, the divergence of each graph containingΓ2 will be compensated
by a counterterm, in whichΓ2 will be replaced by the above auxiliary graph. The fact that this ensures
convergence in all orders follows from the “Strong Weinberg theorem”, which states, roughly, that
if all graphs at orders≤ N (in g) have been renormalized, then all superficially convergent graphs at
orderN+1 are actually convergent. Thus, after mass renormalization all correlation functions become
well defined.
Remark. As we explain above, the procedure of setting the 1-point function to zero inφ3-theory also
requires renormalization. Namely, we have two graphs with one external vertex,

,

among which the first is quadratically divergent and the second logarithmically. Consider a new La-
grangian of the formL′ = L+B(m,g,Λ)

∫
φ, whereB(m, g,Λ) = a(m, g)Λ2+b(m, g)Λ+c(m, g) ln(Λ/m)+

d(m, g), and choose the constantsa,b, c, d in such a way that the limit of the 1-point function for this
Lagrangian, computed for the cutoff propagator atΛ, tends to 0. The constantsa, b, c,d are deter-
mined by this condition uniquely, but they of course depend on the cutoff functionχ. In the language
of Feynman graphs, this corresponds to compensating the divergence in the sum

+

by adding a third summand

.B  (k)δ

where at the vertex we put the linear functionalB · δ(k). This reduces the problem of renormaliza-
tion of theφ3 theory to renormalization of the graphΓ2, which was done above.
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Lecture 2: Perturbative renormalization (continued)

Edward Witten2

October 1996

2.1. Renormalizability of quantum field theories.

Last week we considered theφ3 theory and found that its renormalizability (i.e. how many graphs are
divergent, and how badly divergent they are) depends on whethern < 6, n = 6, orn > 6. Now we will
see how to find that the critical value ofn in theφ3 theory is 6 without considering any graphs at all.

In order to find the critical value ofn, we will define and compute the homogeneity degree of all
terms in the Lagrangian. We recall that the Lagrangian is

(2.1)
∫

(
1
2

(∇φ)2 +
1
2

m2φ2 +
g
3!
φ3)dnx,

(we are considering the Euclidean theory; in the Minkowski version, the story is the same). Consider
the dilationx→ t−1x, t ∈ R, x ∈ V. Under this transformationdnx→ t−ndnx, ∇ → t∇. If we want the
integral (2.1) to be invariant under this dilation, we must impose the following three transformation
laws: (∇φ)2→ tn(∇φ)2, m2φ2→ tnm2φ2, gφ3→ tngφ3. From the first law we getφ→ t

n−2
2 φ, from the

secondm→ tm, and from the thirdg→ t
6−n

2 g. In the future we will write these scaling laws like this:

(2.2) [x] = −1, [dnx] = −n, [∇] = 1, [φ] =
n− 2

2
, [m] = 1, [g] =

6− n
2

.

In other words, any homogeneous quantitya scales asa → t[a]a under the dilation, and the number
[a] is called the dimension ofa.
Remark. It is not difficult to define the notion of dimension completely formally (using the tensor
calculus on the tangent bundle ofV), but it is more illuminating to illustrate it on examples.

We see that the number 6 appears in the scaling law forg. More precisely, we see that the behavior
of theφ3 theory is determined by whether [g] is positive, zero, or negative. Namely, we have three
cases.

1. [g] > 0 (n < 6): there is a finite number of superficially divergent graphs (by graphs we always
mean connected graphs).

2. [g] = 0 (n = 6): the number of superficially divergent graphs is infinite, butdiv(Γ) is bounded
from above.

3. [g] > 0 (n > 6): there are infinitely many graphs with any number of external vertices and
arbitrarily highdiv(Γ).

Now we will explain why this method works, and prove that it can be used to compute the critical
value of the dimension of the spacetime in a general field theory. In general, we can consider the
following setup. Suppose we have a quantum field theory with fieldsφ1, ..., φN, and the Lagrangian

(2.3) L =

∫
(
∑

i

Qi(φi) +
∑

k

gkIk(φ1, ..., φN))dnx,

whereQi is a free (quadratic) part, andIk are interaction (coupling) terms (differential monomials in
fields, cubic and higher). Each interaction term comes with a small parametergk, which is called the
coupling constant.

2Notes by Pasha Etingof and David Kazhdan, TeXnical editing Misha Verbitsky
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Definition An interactionIk is called subcritical if[gk] > 0, and critical if [gk] = 0. A field theory
is called superrenormalizable if all interaction terms in the Lagrangian are subcritical, and is called
renormalizable, or critical, if all interaction terms are critical or subcritical, but not all of them are
subcritical. Otherwise, the theory is called non-renormalizable.

For example, theφ3 theory is superrenormalizable forn < 6, renormalizable forn = 6, and
non-renormalizable forn > 6.

We will assume that our theory is a perturbation of a free theory, (for the definition of a free theory,
see Kazhdan’s lectures). In a free theory, one can easily see that the dimension of bosonic fields is
n−2

2 , and of fermionic fields isn−1
2 . Since dimensions of fields are determined from the quadratic part

of the Lagrangian, these dimensions will be the same in the perturbed (classical) theory as well.
We will also assume thatn ≥ 2 (In the quantum mechanical casen = 1 renormalization theory is

not necessary). Then [φi ] ≥ 0.
Theorem 2.1 (i) If a theory is superrenormalizable, there is a finite number of superficially divergent
graphs in its Feynman diagram expansion.

(ii) If a theory is renormalizable then the number of superficially divergent graphs is infinite, but
div(Γ) is bounded from above.

(iii). If a theory is non-renormalizable then there are infinitely many graphs with any number of
external vertices and arbitrarily highdiv(Γ).
Proof Let Γ be a graph in the Feynman diagram expansion of our theory. Types of internal vertices
of such a graph correspond to interaction terms in the Lagrangian, and types of its external vertices
and edges correspond to fieldsφi . Let ei be the number of external vertices of typeφi , andvk be the
number of internal vertices of typeIk. Then it is easy to show that

(2.4) div(Γ) = n−
∑

i

ei [φi ] −
∑

k

vk[gk].

Statements (i)-(iii) of the theorem follows immediately from (2.4).
Definition A theory of the form (2.3) is called classically scale invariant if the n-form under the
integral in the Lagrangian is invariant under dilations.

For example, the theory of a free scalar field is scale invariant iff it is massless.
It is clear that a massless theory is scale invariant if and only if it is purely critical, i.e. [gk] = 0

for all k.
Remark. Scale invariant theories are always conformal. Indeed, the Lagrangian is always written
naturally in terms of the metric on the spacetime, and depends only on the fields and their first deriva-
tives. This implies that a scale invariant Lagrangian has to be invariant under conformal changes of
metric.

2.2. Critical dimensions of some field theories.

Now we will compute the critical dimension for several important field theories.
Example 1. Sigma-models.

Let M be a Riemannian manifold. The Lagrangian of the sigma-model onRn with the target space
M is

(2.5) L(φ) =

∫
dnxgij (φ)∇φi · ∇φj .

Since this theory is conformal in two dimensions, 2 must be the critical dimension. Let us show by a
direct computation that this theory is not renormalizable forn > 2.
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Let φi be coordinates onM near some point. If the metricgij is constant in these coordinates, the
theory is free. Consider a nonconstant metric of the form

(2.6) gij (φ) = δij + aijkφ
k + r ijklφ

kφl + ...

(If we chose normal coordinates, we could get rid ofa, but not ofr, asr in normal coordinates is the
Riemann curvature tensor). Substituting this into the Lagrangian, we find that [r] = 2− n. This shows
that sigma-model is not renormalizable beyondn ≥ 2, unless the metric is flat.
Example 2. Gravity.

In the theory of gravity the spacetime is the spaceRn with a metric of the formgij = δij + hij
√

G,
whereG is the Newton’s constant (for us, it is just a formal parameter). The Lagrangian of the theory
is

(2.7) L(g) =
1
G

∫
R(g)dnx,

whereR(g) is the scalar curvature of the metric. In terms ofh, this Lagrangian can be rewritten as

(2.8) L =

∫
dnx((∇h)2 +

√
Gh(∇h)2 + ...),

so we get [h] = n−2
2 , [G] = 2− n. Thus, as in the previous example, the theory is non-renormalizable

for n > 2 and critical forn = 2.
Remark. Hereh(∇h)2 stands for an expression which is linear inh and quadratic in∇h. It is easy to
compute what it is exactly, but it does not matter to us, since we are only interested in the dimension.
So we will use such sloppy notation.
Example 3. Gauge theory.

In gauge theory fields are conections in a fixed principalG-bundle on the spaceRn, whereG is a
compact Lie group. The Lagrangian has the form

(2.9) L(Ã) =
1

e2

∫
Tr(FÃ ∧ ∗FÃ),

whereFÃ is the curvature of the connectioñA, and Tr is an invariant nondegenerate bilinear form on
the Lie algebrag of G.

In the computation of dimension, we will assume that ourG-bundle is trivial, so a connection is
represented by a 1-formA: Ã = d + A. ThenF = dA+ A∧ A.

Consider the fieldB = A/e. In terms ofB, the Lagrangian takes the form

L =

∫
((∇B)2 + eB2∇B + e2B4)dnx

We have [B] = n−2
2 , so [B2∇B] = 3n

2 − 2, and [e] = 4−n
2 . Thus, if the groupG is noncommutative,

the theory is superrenormalizable forn < 4, renormalizable forn = 4, and non-renormalizable for
n > 4. In n = 4, the theory is conformal (IfG is commutative, the theory is free).
Remark. Dimensions of fields in our computation agree with geometric dimensions. Indeed, in
geometry, sinced→ td under the dilationx→ t−1x, we have [d] = 1, so we must have [A] = 1. This
coincides with our result: [A] = [Be] = [B] + [e] = n−2

2 + 4−n
2 = 1.

Example 4. Gauge theory with a scalar bosonic field or with a fermionic field.
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Consider the setting of Example 3, and letV be a finite-dimensional representation ofG. Let φ
be a section of the corresponding vector bundle onRn (associated with the aboveG-bundle). The
Lagrangian of the gauge theory withφ is

(2.10) L′(Ã, φ) = L(Ã) +

∫
(∇Ãφ)2dnx,

whereL(Ã) is the Lagrangian (2.9). Writing̃A in the formÃ = d + A, A = eB, we get

L′ =

∫
((∇B)2 + eB2∇B + e2B4 + (∇φ)2 + 2e(∇φ,Bφ) + e2(Bφ)2)dnx

For this formula we get [B] = [φ] = n−2
2 , and (even whenG is commutative!) [e] = 4−n

2 . Thus, the
theory is superrenormalizable inn < 4, renormalizable inn = 4, and nonrenormalizable forn > 4
(regardless of the commutativity ofG).

The same answer applies if we have a fermionic field. Letψ be a section ofV ⊗ S, whereS is the
spin bundle over the spacetime. The Lagrangian of the gauge theory withψ is

(2.11) L′′(Ã, ψ) = L(Ã) +

∫
(ψ,DÃψ)dnx,

whereDÃ is (i times) the Dirac operator along the connectionÃ. The critical dimension in this theory,
as before, is 4, for any nontrivial compact groupG.
Remark. If G = U(1) andV is the standard 1-dimensional representation ofG, this theory is the
quantum electrodynamics (QED).
Example 5. Theory of a scalar bosonic field.

Consider the Lagrangian

L(φ) =

∫
(
1
2

(∇φ)2 +
m2

2
φ2 + Q(φ))dnx,

whereQ(φ) =
∑

gkφ
k. We already considered this type of Lagrangian in Lecture 1. In particular, the

φ3-theory is a special case of this situation, whenQ is a cubic polynomial. We have [gk] = n− kn−2
2 .

Thus, forn = 2 all terms in the Taylor expansion ofQ(φ) are subcritical. Forn = 3, the termφk is
subcritical fork < 6, critical for k = 6, and non-renormalizable fork > 6. Forn = 4, the termφk is
subcritical fork < 4, critical fork = 4, and non-renormalizable fork > 4. Forn = 5, 6, the termsφk,
k ≥ 4 are non-renormalizable, and the termφ3 is subcritical forn = 5 and critical forn = 6.

In particular, the following theories are critical: theφ3 theory in 6 dimensions, theφ4-theory in 4
dimensions, and theφ6 theory in 3 dimensions.
Example 6. Yukawa interaction.

Consider a theory with a scalar bosonic fieldφ and a fermionic fieldψ. We will consider the
Lagrangian

(2.12) L(φ, ψ) =

∫
((∇φ)2 + (ψ,Dψ) + gφ[ψ, ψ])dnx

(ψ takes values in a vector bundleW which is a direct sum of several copies of the spin bundle; (,),[,]
are a symmetric and a skew-symmetric form onW which are invariant under gauge transformations).
The cubic termφ[ψ, ψ] is called the Yukawa interaction. Let us compute the dimension of its coeffi-
cientg.
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We have [φ] = n−2
2 , [ψ] = n−1

2 , so [g] = 4−n
2 . So this theory is critical in dimension 4, superrenor-

malizable in dimension< 4, and non-renormalizable in dimension> 4.
We observe that in dimension 4 all interactions exceptφ3, φ4 andφ[ψ, ψ] are “bad” (non-renormalizable).

Example 7. Standard model.
Let us now try to write down the most general renormalizable theory that lives in our 4-dimensional

physical world. According to the above examples, we cannot include gravity orΣ-model, but we can
include connections, bosons with terms up to degree 4, and fermions with Yukawa interaction If we
only take these fields, these are the only renormalizable terms we can write. Thus the most general
Lagrangian we can write in dimension 4 giving a renormalizable theory is

(2.13) L(A, φ, ψ) =

∫
(e−2F2

A + (ψ,Dψ) + (∇φ)2 + g1φ
4 + g2φψ

2 + lower terms)d4x.

The Standard Model is a theory which belongs to this family, with the groupG containingSU(3)×
SU(2)× U(1).

2.3. Perturbative renormalization of critical theories.

From now on we will consider only critical theories. As a model example we can considerφ4-theory
in 4 dimensions, which has one critical interactionφ4, or its extension containing fermions, which has
an additional critical interactionφψ2 (the Yukawa interaction).

Consider the Lagrangian ofφ4-theory:

(2.14) L =

∫ (1
2

(∇φ)2 +
m2

2
φ2 +

g
4!
φ4

)
dnx.

As before, we want to study the Schwinger function〈φ(x1)...φ(xN)〉 (it is enough to consider only
evenN, as the Schwinger function vanishes for oddN). As usual, it is more convenient to consider its
Fourier transform. This Fourier transform has the formGN(k1, ..., kN)δ(k1 + ... + kN), whereGN is a
function on the hyperplanek1 + ... + kN = 0.

Consider the Feynman diagram expansion of the functionGN. In φ4 theory we have to sum over
graphs whose internal vertices have 4 edges. As usual, we can restrict ourselves to connected graphs,
as the sum over disconnected graphs expresses via Schwinger functions with fewer insertion points. In
fact, as shown in Kazhdan’s lectures, we can always restrict to 1-particle irreducible graphs (i.e. those
which cannot be split by cutting one edge). So from now on we only consider connected, 1-particle
irreducible graphs.

From formula (2.4) we get that the superficial divergence index of any graph equals 4− E, where
E is the number of external edges. Thus, any graph with 2 external edges is quadratically divergent,
any graph with 4 external edges is logarithmically divergent, and any graph with> 4 external edges is
superficially convergent.

Now we will explain how to renormalize allN-point functions at all orders ing.
First of all, we can exclude graphs with 2 external edges which connect to the same internal vertex,

e.g.
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and all those which contain such a loop-like graph as a subgraph. Indeed, these graphs produce
a constant function ofk2, so they can be removed by renormalization of mass. More precisely, there
exists a functionP(Λ,g) = gP1(Λ) + g2P2(Λ) + ..., such that the sum of terms corresponding to all
graphs for the theory with massm2, computed with the cutoff propagator (see lecture 1) equals the
sum of terms corresponding only to graphs without loop-like subgraphs, but with massM(Λ) such
thatM2 = m2 + P(Λ,g). So we can assume from the beginning that we have a theory with massM(Λ)
and not worry about loop-like graphs.

Now we have no divergent graphs with one internal vertex, so we have no corrections to make in
the first order ing. Let us look at the second order ing. In this case we have the following bad graphs:

Denote the first graph byΓ2 and the second byΓ4.
Thus, in orderg2 we have a problem in the 2-point and the 4-point functions. The problem in

the 2-point function is created byΓ2. The graphΓ2 diverges quadratically. Therefore, the term cor-
responding toΓ2 computed using the cutoff propagator is a function ofk2,Λ of the formg2Σ2(k2,Λ),
where

(2.15) Σ2(k2,Λ) = Ak2 ln(Λ/µ) + B(Λ) + O(1),B(Λ) = B0Λ2(1 + o(1)),Λ→ +∞

This asymptotics follows from the fact that the first derivative of (2.15) with respect tok2 is logarith-
mically divergent, and the second one is convergent.

Another problem we have is in the 4-point function, created by the graphΓ4. This graph is
logarithmically divergent. This means, if we compute the term corresponding to this graph using the
cutoff propagator, we will get a function ofki ,Λ of the formg2Θ2(k1, k2, k3,Λ), where

(2.16) Θ2(k1, k2, k3,Λ) = C ln(Λ/µ) + O(1),Λ→ +∞

This asymptotics follows the fact that the derivative of the integral corresponding toΓ4 with respect
to ki is convergent.

In order to renormalize the 2- and 4- point functions in orderg2, we choose renormalized functions
ΣR

2(k2), ΘR
2(k1, k2, k3). HereΣR

2 is an arbitrary function ofk2 whose second derivative is given by the

(convergent!) integral obtained by applying
(

d
dk2

)2
to the quadratically divergent integral correspond-

ing to Γ2. Analogously,ΘR
2 is an arbitrary function ofk1, k2, k3 whose derivatives are given by the

convergent integrals obtained by differentiating the logarithmically divergent integral corresponding
to Γ4. It is clear that the functionΣR

2 is defined uniquely up to addition of a function ofk2 of the form
ak2 + b, and the functionΘR

2 is defined uniquely up to addition of a constant.
Now we will make second order corrections to the coefficients of (∇φ)2, φ2 andφ4 in the La-

grangian. Namely, we will consider a new Lagrangian of the form

(2.17) L =

∫ (1
2

(∇φ)2 +
M2

2
φ2 +

g
4!
φ4 +

α(Λ)
2

(∇φ)2 +
β(Λ)

2
φ2 +

γ(Λ)
4!

φ4
)
dnx,
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Let Σ′2(k2,Λ, α, β, γ), Θ′2(k1, k2, k3,Λ, α, β, γ) be the functionsΣ2, Θ2 for this Lagrangian and the cutoff

propagator. We will choose the functionsα, β, γ in such a way that

(2.18)
lim

Λ→∞
Σ′2(k2,Λ,m, α(Λ), β(Λ), γ(Λ)) = ΣR

2(k2),

lim
Λ→∞

Θ′2(k1, k2, k3,Λ,m, α(Λ), β(Λ), γ(Λ)) = ΘR
2(k1, k2, k3),

As we are working modulog3, we can chooseα, β, γ in the formα = g2α2, β = g2β2, γ = g2γ2,
whereα2, β2, γ2 are independent ofg. It is easy to check that in order for (2.18) to hold, the functions
α2, β2, γ2 should have the following asymptotics:

(2.19)
α2 = g2(A ln(Λ/m) + D1) + o(1), β2 = g2(−B(Λ) + D2) + o(1),

γ2 = g2(C ln(Λ/m) + D) + o(1),Λ→ +∞,

whereD1,D2 depend on the choice ofΣR
2 , andD depends on the choice ofΘR

2 . Of course, there are
many ways to choose such functions, but they are unique up to adding termso(1), Λ→ ∞.

Thus, we have renormalized the graphsΓ2, Γ4. This removes divergence in all correlation func-
tions modulog3. Thus, all correlation functions of our theory are now defined modulog3.

Now we proceed inductively in the order ofg. Suppose we have removed divergences and defined
all correlation functions modulogK . Consider the 2N-point function (for the deformed Lagrangian
and the cutoff propagator) modulogK+1:

(2.20) F2N =

K−1∑

j=0

gjFR
2N,j + gKF2N,K

(the superscriptRmeans that the corresponding coefficient has already been renormalized). The term
F2N,K is represented by the sum over all graphs withK internal vertices. This sum has superficial
divergence index 4− 2N. Therefore, the second derivative ofF2 by k2, the first partial derivatives of
F4, andF2N, N ≥ 3, are superficially convergent. The crucial fact for renormalization theory, which
follows from the “Strong Weinberg Theorem” (see Lecture 1), is
Proposition 2.2 There exists finite limits, asΛ→ ∞, of the functionsF2N,K(k1, ..., k2N−1,Λ),∇kF4,K(k1, k2, k3,Λ),

and
(

d
dk2

)2
F2,K(k2,Λ) N ≥ 3.

Remark. For φ4 theory, this proposition holds for the term corresponding to each particular graph,
but in general (for example, for theories with gauge fields) this is not the case: the sum over all graphs
may have a meaning while each individual graph does not. However, an analogue of Proposition 2.2
(for the sum over all graphs) holds in any renormalizable theory.

Proposition 2.2 allows us to fulfil the induction step. It shows that the functionF2 (in the limit)
is defined up to addingak2 + b, the functionF4 is defined up to adding a constant, andF2N, N ≥ 3,
is defined uniquely. So one can choose renormalized functionsFR

2N,K and make corrections in the

Lagrangian,α → α + gKαK , β → β + gKβK , γ → γ + gKγK , to compensate the divergence inF2N,K

and obtainFR
2N,K instead of it. This procedure is completely analogous to the one for orderg2. In this

way we will complete the renormalization in orderK.
Remark 1. At every step of our renormalization procedure we had to choose 3 constants of inte-
gration. This may create an impression that we get a family of theories parametrized by 3 infinite
sequences of constants. However, it is easy to see that in fact we get a family of theories parametrized
by only 3 constants. This means that any 4 invariants attached to the theory (for example, values of
the 2-point function at 4 points in spacetime) are linked by a universal functional relation.
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Remark 2. Even if in the original theory certain critical or subcritical interactions were not present,
they may appear in the process of renormalization. In general, renormalization brings in all missing
critical and subcritical terms, unless there is a symmetry which prevents it from doing so. Let us
demonstrate it by a few examples.
Example 1. In the process of renormalization of the Lagrangian (2.12) in 4 dimensions we will be
forced to introduce the subcritical termφ3 and the critical termφ4, in order to remove logarithmic
divergence in the graphs

,

where wavy lines correspond to bosons and straight ones to fermions. However, the critical term
φ2∇φ will not appear, since there is no Poincare invariant expression of this form. In terms of graphs,
this means that the graph

whose superficial divergence is linear, in fact diverges only logarithmically, because of cancella-
tions in the integrand caused by Poincare symmetry; so there is no linear divergence to compensate
and hence no need forφ2∇φ to appear.
Example 2. In φ4 theory in 4 dimensions, the subcritical termφ3 does not appear in renormalization,
since it is not preserved by the symmetryφ → −φ of the original theory. In the language of graphs,
this is clear: there is no graphs with 3 external edges, so there is no divergence to compensate byφ3.

In a general field theory, every type (in terms of external edges) of a superficially divergent graph
corresponds to a number of critical and subcritical terms in the Lagrangian, which should be renor-
malized in order compensate the divergence in the corresponding graph. More precisely, divergent
terms which are quadratic ink correspond to terms in the Lagrangian which have two derivatives by
x, linear terms ink correspond to terms with one derivative, and constant divergencies correspond to
terms without derivative.
Remark. It follows from formula (2.4) that in a renormalizable theory, all divergences inN ≥ 2-point
correlation function are no worse than quadratic. So the coefficient of k2 in the 2-point function if
divergent at most logarithmically. Therefore, if the quadratic formsQi have to be renormalized (like
in φ4 theory), they will be multiplied by coefficients which depend on the cutoff parameterΛ at worst
logarithmically. This shows that the dimension ofQi and hence ofφi survives renormalization to all
finite orders in the asymptotic expansion.
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Lecture 3: Perturbative renormalization (continued)

Edward Witten3

October 1996

In this lecture we will discuss composite operators, their renormalization and operator product
expansion (OPE).
3.1. Local functionals in a classical field theory.

Consider ann-dimensional classical field theory with spacetimeV and a LagrangianL of the
form (2.3), with fieldsφ1, ..., φN. Let X be the space of classical solutions for this theory. We want to
consider functions onX called local functionals, which are defined as follows.

Let x ∈ V be a point in the spacetime.
Definition A local functional atx is a function of the fields and finitely many derivatives of the fields,
evaluated atx.
Example In the theory of a scalar bosonic field,

φl(x), φ′(x)2, φ2(x)φ′(x)2

are local functionals, butφ(x) + φ(2x) is not.
From the previous lecture it is clear how to define dimension of a local functional. We want

to consider only homogeneous functionals of finite dimension and their finite linear combinations.
Therefore, if a field has positive dimension (which is always the case ifn > 2), we only consider
polynomial functionals of this field. However, in 2-dimensional theories, where bosonic fields are
dimensionless, it is reasonable and useful to consider more general functions of them (for example,
the Lagrangians of Toda theories contain expressions of the formeφ).

If n > 2, the space of all functionals of a given dimension is finite-dimensional, but ifn = 2, it is
infinite-dimensional.

Since elements ofX satisfy the classical field equations, the same local functional can be written
in different ways. For example, inφ4-theory the classical field equation is

(3.1) ∆φ = m2φ +
g
3!
φ3,

so the left and the right hand sides of (3.1) evaluated atx ∈ V represent the same local functionals
of φ. Thus, local functionals are all possible differential expressions inφ modulo the classical field
equations.
Remark 1. One should be careful to distinguish between two different notions of field dimension
which arise in field theory. The first is “the engineering dimension” and says in what units the field
is measured (if the units arecm−d then the engineering dimension isd). The second is “the scaling
dimension”, which is the dimension we have been talking about. These two dimensions are not always
the same. For example, in the theory of one fieldφ defined by (3.1) the engineering dimension of the
field m2φ is 3 (it is measured incm−3), while the scaling dimension is the same as that ofφ, i.e. 1.

It is the basic principle of physics that all meaningful expressions and equations are homogeneous
with respect to the engineering dimension. In particular, it is true for the field equations in field
theory (e.g. (3.1)), which implies that engineering dimension defines a grading on the space of local
functionals. On the other hand, whenever a field theory is not scale invariant, its field equations are not

3Notes by Pasha Etingof and David Kazhdan, TeXnical editing Misha Verbitsky
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homogeneous with respect to the scaling dimension, so scaling dimension defines a filtration, rather
than a grading, on the space of local functionals. This means, the space of all local functionals is a
union of subspaces of functionals of dimension≤ d, and a functional is said to be of dimensiond if
it is of dimension≤ d but not≤ d − 1. On the other hand, if the theory happens to be scale invariant,
scaling dimension does define a filtration on the space of local functionals.

In this lecture, we will not use engineering dimension, and the word “dimension” will always
mean scaling dimension.
Remark 2. From a local functionalO one can obtain more general functionals onX of the form∫
O(φ, x)dµ(x), wheredµ(x) is a (generalized) density onV. Using this operation, one can obtain

from any local functional all derivatives of thus functional (it is enough to take fordµ(x) all possible
densities supported atx). Therefore, without loss of information we could consider local functionals
modulo the image of derivatives. However, for the purposes of this lecture this is not necessary.
3.2. Quantization of local functionals in a free theory

We have seen (see Bernstein’s Lectures and Witten’s problem sets) that the spaceX of classical
solutions of a meaningful classical field theory always carries a natural closed 2-formΩ. If this form
is nondegenerate,X is a symplectic manifold. In this case, suitable functions onX form a Poisson
algebra.

In the quantum theory, the spaceX should be quantized, and the Poisson algebra of functions on
X should become the algebra of operators (observables) in some Hilbert space of states. In particular,
we should be able to assign an operator to every local functional.

If V is a Minkowski space, and the field theory satisfies the Wightman axioms (for example,
the free theory), the Hilbert space of statesH is constructed as described in Kazhdan’s lectures. In
this case, Wightman fieldsφ(x) are distributions onV with values in the space of operators on the
subspaceD ⊂ H of muptiparticle states. This means, for any Schwarz functionf on V there is an
honest operatorϕ(f ) onD.

However, we would like to have more general operators of the formφN(x), (∇φ)2(x), etc. which
correspond to local functionals in the classical theory. That is, for any Schwarz functionf we want to
have operatorsϕN(f ), (∇ϕ)2(f ), etc.

Unfortunately, such operators are not automatically defined. For example, evenϕ2(f ) does not, in
general, make sense. Indeed, letδε = e−|x|

2/ε(2π/ε)n/2 be the smooth approximation to theδ-function,
and letϕ⊗ϕ be the operator-valued distribution onV×V given byϕ⊗ϕ(f1⊗f2) = ϕ(f1)ϕ(f2). The natural
definition ofϕ2(f ) would be thatϕ2(f ) is the limit, asε→ 0, of the operatorϕ2

ε(f ) := ϕ⊗ϕ(f (x)δε(x−y))
(in the sense of convergence of matrix elements). However, it is easy to see that this limit does not
usually exist, as Wightman functions usually have singularities on the diagonals.

One way to deal with this problem is to say that an “operator”A is just a collection of its matrix
elements, i.e. a collection of correlation functions〈φ(y1)...φ(yl)|A|φ(z1)...φ(zr )〉. If we accept this
point of view, we might as well forget about the Hilbert space of states, i.e. perform a Wick rotation
from Minkowski space to Euclidean space, and consider Schwinger functions instead of Wightman
functions.

So from now on we will consider only the Euclidean situation, in which we will mean by an
operatorA a collection of functions

〈φ(y1)...φ(yl)|A|φ(z1)...φ(zr )〉

with certain properties. Roughly, an operator is just a symbol which can be inserted in a correlation
function.
Remark. Of course we should remember at all times thatA is not really an operator and does not act
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in any Hilbert space. However, the information we get from studyingA in the Euclidean situation can
be used (after Wick rotation) for studying the Minkowski situation.

Consider now the problem of quantization of local functionals. By the definition, in order to
quantize the local functionalO(x), we should say what the functions〈φ(y1)...φ(yl)|O(x)|φ(z1)...φ(zr )〉
are. As our theory is Euclidean, the order of factors in the correlation function does not matter (any
two distinct points are space-like separated). So, in order to defineO(x), it is enough to define the
correlation functions〈φ(y1)...φ(yr )O(x)〉 for all r.

Consider the theory of a scalar bosonic field inn > 2 dimensions, with the Lagrangian

(3.2) L(φ) =

∫
(
1
2

(∇φ)2 +
m2

2
φ2 + Q(φ))dnx,

We will give all definitions and constructions for this example. In other field theories, everything is
done in a similar manner.

We first consider the case when the theory is free (Q = 0). In a free theory, quantization is done
with the help of normal ordering, as follows. Consider a local functionalO of degreeJ in φ. According
to Feynman rules, in order to compute the correlation function〈φ(y1)...φ(yr )O(x)〉, we should consider
all graphs withr external vertices and only one internal vertexv, which hasJ edges. We should put a
certain function at the vertexv, and compute the term (amplitude) corresponding to this graph as usual
in Feynman calculus. IfJ > 1, we will run into trouble: we will get some graphs with loops going
from v to itself, and the integration over the loops is divergent. The easiest remedy is to ignore all
such graphs. Then we obtain certain correlation functions, which define some operator. This operator
is denoted by :O(x) : and called the normal ordering ofO(x). Apriori, O(x) does not make sense as
an operator, while :O(x) : does. We call operators of the form :O(x) : composite operators. When no
confusion is possible, we will drop the dots and writeO(x).

Thus, we have assigned canonically to each differential polynomialO in φ an operator :O :
in the free theory. However, recall that two different polynomialsO1,O2 might define the same local
functional. So does the mapO →: O : actually define canonically a quantization of the local functional
represented byO? The answer turns out to be positive: whenever polynomialsO1,O2 define the same
local functional, the operators :O1 :, : O2 : coincide. To check this is an easy exercise. For example,
the polynomialsO1 = φ∆φ, O2 = m2φ2 define the same local functional, and the operators :φ∆φ :,
: m2φ2 : coincide.
3.3. Multiplication of composite operators.

It is easy to multiply composite operators supported at different points. That means, given two
composite operatorsO, O′, and pointsx, x′ ∈ V, x , x′, it is easy to define an operatorO(x)O′(x′),
using the Feynman diagram expansion. In this case we will have two special verticesv, v′, and we
should sum over all ways of connecting them which involve no loops from a vertex to itself. However,
multiplication of two composite operatorsO,O′ at the same pointx cannot be defined in the same
way: on each edge connectingv with v′, we will have to evaluate the Green’s function at (x, x), where
it is singular.

To avoid this problem, one can try to smear the operators, i.e. consider the operatorO(f ) =∫
f (x)O(x)dnx, wheref is a compactly supported smooth function onV. Such smeared operators can

sometimes be multiplied: for example, we can define the productφ(f1)...φ(fs). (see Kazhdan lectures).
However, most composite operators cannot be multiplied, even after smearing. Indeed, it can

be deduced from reflection positivity that for any complex operatorO 〈O(x)O∗(x′)〉 ∼ |x − x′|−2[O] ,
x → x′ where [O] is the dimension of [O], andO∗ is the conjugate ofO. On the other hand, for a
real operatorO, in order for the productO(f )O(f ′) to be defined, it is necessary and sufficient that the
functions〈φ(y1)...φ(yr )O(x)O(x′)〉 be distributions. The function|x|−l defines a distribution (without
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regularization) if and only if it is locallyL1, i.e. iff l < n. Thus, the productO(f )O(f ′) is automatically
defined iff [O] < n/2.
Remark. If the Minkowski situation, the productO(f )O(f ′) exists (in the sense of correlation func-
tions) if and only if the “operator”O(x) is an operator-valued distribution, so thatO(f ) is actually an
honest operator (i.e. matrix elements ofO(f ) are matrix elements of some operator onD). Indeed, the
“if” part is clear. The “only if” part: for anyf1, ..., fN we can regard the productX = O(f )ϕ(f1)...ϕ(fN)
as a linear functional onD. The fact thatO(f )2 is defined implies that this functional has finiteL2-
norm, as||X||2 = 〈ϕ(fN)...ϕ(f1)O(f )2ϕ(f1)...ϕ(fN)〉. Therefore,X corresponds to a vector inH , Q.E.D.
3.4. Operator product expansion (OPE) in the free theory

Composite operators in a reasonable field theory have an important algebraic property, which is
called the operator product expansion (OPE). This is a property of algebraic nature, saying roughly
that composite operators form an algebra of a certain kind. It does not follow obviously from Wight-
man axioms, but on the other hand is often satisfied when Wightman axioms fail. This property is
actually useful in practice.

We will now define and compute the OPE for the free theory of a scalar bosonic field. The idea
is to formalize the behavior of the productO(x)O′(x′) as x → x′. In the classical theory, this is
accomplished by the usual Taylor series. Indeed, we have

(3.3) O(x)O′(x′) = O(x′)O′(x′) + (x− x′)µ∂µO(x′)O′(x′) + ...

Thus, for any two local functionalsO,O′ the productO(x)O′(x′) decomposes in a series in products
of powers of (x− x′)µ whose coefficients are other local functionals.

In the quantum theory, the product :O(x) :: O′(x′) :, as we have seen, is singular atx = x′. Thus,
we have to compute the asymptotic expansion of this product nearx = x′.

We will assume thatO,O′ are represented by some monomials inφ and its derivatives. According
to Feynman rules, we should assign to bothO,O′ a vertex, sayv andv′. The numbers of edges at
v, v′ areJ, J′, whereJ, J′ are the degrees ofO,O′ as monomials ofφ. At both v, v′, we have to place
symmetric distributions inJ, J′ variables corresponding toO,O′. Now we have to sum amplitudes
over all ways of connecting some edges going fromv with some edges going fromv′. The amplitude
of each particular graph is computed as follows: at each edge going fromv to v′ we put the function
D(y− z), the two-point Schwinger function of the free theory (the Green’s function for the Helmholtz
equation). On each remaining external edge we putφ(y). Then we compute formally the product of
things on vertices and edges, and put it under the normal ordering sign. Since for each numberK
of connecting edges, we have only one possible graph, we should just compute the amplitude of this
graph, and then multiply it by the number of ways to get this graph, i.e. byJ!J′!/K!(J−K)!(J′ −K)!.

This will give us a formula of the form

(3.4) : O(x) :: O′(x′) :=
L∑

k=1

: Õk(x)Õ′k(x′) : Ek(x− x′),

where :Õk :, : Õ′k : are some local functionals, andEk(y) are polynomial differential operators inD(y).
Here :O(x)O′(x′) : is the amplitude of the graph in which the verticesv andv′ are not connected.

Now we can use the Taylor formula (3.3) inside of the normal ordering, to get the following
(already infinite) expansion:

(3.5) : O(x) :: O(x′) :=
∑

s

: Os(x
′) : Ds(x− x′),

23



whereOs is local functional, andDs(y) is a product of the functionEk(y) for somek and a polynomial
in y.
Definition. Expansion (3.5) is called the operator product expansion (OPE).

Now recall that the Green’s functionD(x) has the following behavior atx = 0: D(x) ∼ |x|2−n.
Therefore, all functionsdk(x) have the property|dk(x)| ≤ Ck|x|rk for small x, where the numbersrk

are almost all positive. This proves an important property of the OPE: only finitely many terms are
singular. However, these singular terms carry the most interesting information in many situations.
Remark. We see that the operator product expansion (3.5) is in fact the quantum analogue of the
Taylor expansion (3.3). Indeed, it is an expansion of the form similar to (3.3), but also involving
finitely many singular terms atx = x′.

Let us now consider examples of OPE (we will always write the finite formula (3.4)). Let us first
computeφ(x)φ(x′). Using the above rules, we get two graphs:

,

which yields the formula

(3.6) φ(x)φ(x′) =: φ(x)φ(x′) : +D(x− x′).

Now we compute :φ2(x)φ2(x′) :. This product gives us three graphs:

,,

so we get the formula

(3.7) : φ2(x) :: φ2(x′) :=: φ2(x)φ2(x′) : +4 : φ(x)φ(x′) : D(x− x′) + 2D2(x− x′).

In general, it is easy to prove that

(3.8)
: φJ(x) :: φJ′(x′) :=

min(J,J′)∑

K=0

J!J′!
K!(J − K)!(J′ − K)!

×

× D(x− x′)K : φJ−K(x)φJ′−K′(x′) :

The last formula can be written more nicely using generating functions:

(3.9) : eαφ(x) :: eβφ(x′) := eαβD(x−x′) : eαφ(x)eβφ(x′) :,

whereα, β are constants.
If we takeα, β to be any differential operators onV with constant coefficients, this formula remains

valid. (α acts onx, β on x′). In this form, formula (3.7) represents the most general OPE for the free
theory of a scalar bosonic field.
Remark. Dimensions of fields in quantum theory may differ from the dimensions of their classical
analogues. For example, in a (2-dimensional) classical field theory, if a fieldφ is 0-dimensional,
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so isf (φ), wheref : R → R is any function. However, in quantum theory a renormalized composite
operatorf (φ) may acquire a nontrivial (anomalous) dimension. For example, in the free 2-dimensional
theory of a massless scalar bosonic field,D(y) = − ln |y|, so we have from (3.9):

〈: eiαφ(x) :: e−iαφ(y) :〉 = |x− y|−α2
.

But we know thatO(x)O∗(y)〉 ∼ |x − y|−2[O] . Thus, the scaling dimension ofeiαφ is d(α) = α2/2.
Observe that the functiond is not linear inα, so for quantum dimensions, to the contrary with the
classical dimensions, [:O1O2 :] , [: O1 :] + [: O2 :].

The dimension functiond(α) = α2/2 appears in the theory of vertex operator algebras, namely, in
the Frenkel-Kac vertex operator construction.

In an interacting theory, even polynomial fields can have different dimensions quantum-mechanically
than they do classically. This is essential, however, mostly in the non-perturbative setting. In the per-
turbative setting we can count dimensions as in the classical theory, since dimensional anomalies are
infinitesimally small.
3.5. Normal ordering and renormalization.

Now we will reformulate the definition of normal ordering in the free theory in terms of renor-
malization theory. This reformulation will be crucial in understanding what is the analogue of normal
ordering in interacting theories.

At the beginning of this lecture, we defined normal ordering of a local functional by formally
throwing away graphs with self-loops, which produced divergence. Another way of dealing with self-
loops is renormalizing them, as we did in two previous lectures. Suppose we want to renormalize
all local functionals of dimension≤ d. For this purpose we replace the standard propagator1

k2+m2

with a cutoff propagator 1
k2+m2

(
Λ2

k2+Λ2

)l
, wherel is sufficiently big. Now all the loop integrals con-

verge, and for any local functionalO of degree≤ d we can consider the cutoff correlation function
〈φ(y1)...φ(yr )O(x)〉Λ. If we takeΛ→ ∞, we will of course find that the limit does not exist. However,
it is not diffucult to prove the following.

Let Ad be the space of local functionals of dimension≤ d.
Proposition 3.1.There exists aΛ-dependent linear mapRΛ : Ad → Ad, strictly triangular with respect
to the filtration ofAd by dimension, such that for any local functionalO ∈ Ad there exists a limit

(3.10) lim
Λ→∞
〈φ(y1)...φ(yr )RΛO(x)〉Λ,

Thus, Proposition 3.1 allows us to assign to every local functionalO an operatorÕ, which is, by
definition, the operator whose matrix elements are the limits of the corresponding matrix elements
of RΛO. However, givenO, the operatorÕ is defined apriori noncanonically, as the mapRΛ is not
unique: it is defined up to left multiplication with aΛ-independent strictly triangular map.

That is,Õ is defined uniquely up to adding composite operators of lower dimension. This shows
that the space of composite operators is naturally a filtered object (by dimension), and not a graded
object.
Remark. Of course, if the theory is not classically scale invariant, we saw that there is no grad-
ing on functionals already at the classical level. The statement here is that even for a classically
scale-invariant theory, where the space of classical functionals automatically has a grading by scal-
ing dimension, the grading is usually lost in the process of quantization. An exception is a free
scale-invariant theory, where there is a canonical quantization by normal ordering, and therefore the
grading survives quantization.

25



Thus, in general we may be able to quantize naturally the space of local functionals of dimension
≤ d, but not every functional separately.
3.6. Composite operators in an interacting critical theory.

Now consider an interacting renormalizable field theory. As a model example we consider the
Lagrangian (3.2) and takeQ(φ) =

g
4!φ

4. Let O be any local functional represented by a monomial.
To quantizeO, we proceed as in the free case, but we will formulate everything in a slightly different
language.

We want to consider correlation functions〈φ(y1)...φ(yr )O(z)〉. These correlation functions can be
viewed as theε-coefficient in the usual Schwinger functions for a perturbed Lagrangian, of the form

(3.11) Lε(φ) = L(φ) + εO(φ, z),

whereε is a formal variable such thatε2 = 0. In the language of Feynman diagrams, this means that
we are introducing an additional vertexv corresponding toO, and summing over all graphs which
contain exactly one such vertex (with no self-loops at this vertex) and are otherwise as usual.
Remark. One should remember that there is no momentum conservation at the vertexv.

In general, such an alteration will worsen the divergence properties of the Feynman graphs. More
precisely, now the superficial divergence of a graph withE external edges is given bydiv(Γ) = [O] −
E. However, we can renormalize these divergences, using the cutoff propagator considered in the
previous section. Then, analogously to Proposition 3.1, one can prove the following.
Proposition 3.2. There exists aΛ-dependent linear mapRΛ : Ad → Ad, triangular (in general, not
strictly) with respect to the filtration ofAd by dimension, such that for any local functionalO ∈ Ad

there exists a limit

(3.12) lim
Λ→∞
〈φ(y1)...φ(yr )RΛO(x)〉Λ,

As in the free theory, this Proposition allows to quantize the space of local functionals of dimen-
sion≤ d, but in general there is no canonical quantum analogue for each classical local functional.
This non-uniqueness is not only due to the non-uniqueness of renormalization, but also due to the
non-uniqueness of representation of a given functional by a differential polynomial.
Example. Let O = φ2/2. Let us compute the renormalization ofO of orderg. The only divergent
graphs we have in this order are

Let us call the first graph byΓ0 and the second byΓ2. The graphΓ0 is quadratically divergent. If
we replace the usual propagator with the cutoff propagator, the integral will converge to aΛ-dependent
constant of the formgCΛ, whereCΛ, which grows quadratically inΛ.

Now consider the graphΓ2. As usual, it is more convenient to work in the momentum space, i.e.
consider the Fourier transform of the term corresponding to this graph. Letk1, k2, k be the correspond-
ing momentum variables. Then the Fourier transform of the term corresponding toΓ2 is of the form
F2δ(k1 + k2 + k), whereF2 is a function on the planek1 + k2 + k = 0. Setk1 = r, thenk2 = −r − k (on
this plane). Thus,F2 = F2(r, k), and its orderg correction is the amplitude of the Feynman diagram
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q+kq

-r-kr

This amplitude is given by the integral

(3.13) I (k) = −g
2

∫
d4q

(2π)4

1

(q2 + m2)((q + k)2 + m2)
.

This integral is logarithmically divergent. If we replace the usual propagator with the cutoff propaga-
tor, the integral will converge to a functionIΛ(k), which has the asymptotic behavior

IΛ(k) = −gA
2

ln(Λ/µ) + O(1),Λ→ ∞

whereA is a constant.
This shows that if instead ofφ2/2 we use the renormalized functional

(3.14)

(
φ2

2

)

Λ

:=
φ2

2
(1 +

gA
2

ln(Λ/µ)) − gCΛ,

the matrix elements will have a finite limit modulog2. Observe that the constantµ can be chosen
arbitrarily, so the renormalization is not canonical already in this case.
3.7. Stability of the classical field equations under quantization

In a free theory, we know that the classical field equations are also satisfied quantum-mechanically.
This means, if the classical equations arePφ = 0, whereP is a linear differential operator, then the
correlation functions in the quantum theory satisfy the equationPx〈φ(y1)...φ(yr )φ(x)〉 = 0 outside of
the diagonalsx = yi . For example, the Green’s functionD(x − y) = 〈φ(x)φ(y)〉 is the fundamental
solution of the equationPf = 0.

In an interacting theory, there are some problems. Namely, since the classical field equations for
an interacting theory are nonlinear (e.g. (3.1)), they do not make sense quantum-mechanically in the
setting of Wightman axioms. However, in the OPE setting they make sense in a suitable interpretation,
and one can show that they are satisfied.
Remark. We will say that the equationF(φ) = 0 is satisfied in quantum theory (whereF is a renor-
malized local functional) if the function〈φ(y1)...φ(yr )F(φ(x))〉 vanishes outside of the diagonalsx = yi .

We will show that the classical field equations are satisfied inφ4 theory. Consider the space of
classical local functionals of dimension≤ 3, which are Poincare-invariant and odd under the symmetry
φ → −φ. This space is 2-dimensional: it has 3 generatorsφ3, ∆φ, andφ, but they are linearly
dependent, since they satisfy relation (3.1).

Now consider the quantum theory. Consider composite operators of dimension≤ 3, with the same
invariance properties as above. In this space we have renormalized operators∆φ, φ, φ3. Our goal is to
show that, like in the classical theory, they are linearly dependent. This is equivalent to the statement
thatφ satisfies the field equationCφ3 = A∆φ + Bφ.
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We will first prove the validity of the field equation for the theory with the cutoff propagator, since
in this theory we do not have divergence problems. In the cutoff theory, the classical field equation is

(3.15) PΛφ =
g
3!
φ3,PΛ = (∆ −m2)(1− ∆

Λ2
)l .

Proposition 3.3Equation (3.15) holds in the quantum theory with the cutoff propagator, whereφ and
φ3 are regarded as composite operators.
Proof. Consider the correlation function〈φ(y1)...φ(yr )PΛφ(x)〉. Consider the graph decomposition of
this function. We should consider all possible graphs withr external edges, any number of 4-valent
internal vertices, and a special vertexv with 1 outgoing edge. These graphs can be of two kinds: 1)
graphs in whichv connects to an external vertex; 2) graphs in whichv connects to an internal vertex.
The sum over graphs of the first type is the corresponding correlation function for the free theory,
so it is supported on the union of diagonalsx = yi . Thus, outside of the diagonals we have to sum
only over graphs of the second kind. But graphs of the second kind withN external edges are in 1-1
correspondence with usual Feynman graphs (withoutv) with N+3 external edges (this correspondence
is obtained by biting off the vertexv and the vertex it connects to). This shows that the sum over graphs
of the second kind is justg3! 〈φ(y1)...φ(yr )φ3(x)〉. Thus, the field equation is satisfied, Q.E.D.

Proposition 3.3 shows that for anyΛ, the composite operatorg3!φ
3 is linearly dependent of com-

posite operators which are linear inφ. This property has to be preserved in the limitΛ → ∞. This
shows that in the renormalizedφ4 theory we have an equationCφ3 = Pφ, whereP is a linear differen-
tial operator with constant coefficients, andC is a constant. Since the r.h.s. of this equation can only
have terms of dimension≤ 3, the operatorP has to be of the formA∆+B. Thus in the quantum theory
we have the equation

(3.16) Cφ3 = A∆φ + Bφ

Remark. Of course, the constantsA,B,C are not uniquely defined, as they depend on the choice of
the renormalization. The statement is only that for any choice of renormalization, some nontrivial
equation of the form (3.16) holds. In other words, the statement is that the space of Poincare invariant,
odd composite operators of dimension≤ 3 is 2-dimensional, i.e. has the same dimension as the
corresponding space of classical local functionals.

In general, one can consider the space of local functionals of dimension≤ N. Denote its dimension
by d(N). One can prove the following proposition.
Proposition 3.4The space of composite operators of dimension≤ N is also equal tod(N).

Thus, all differential equations which are satisfied classically, have quantum analogues.
3.8. Operator product expansion in an interacting theory.

In a free theory, once we defined composite operators, it was no problem to define the product of
several of them supported at different points. The same is true in the interacting theory. Namely, if
O1, ...,ON are renormalized composite operators, andx1, ..., xN ∈ V distinct points, then the correlation
function 〈φ(y1)...φ(yr )Θ(x1)...Θ(xN)〉 is just the coefficient ofε1...εN in the usual Schwinger function
〈φ(y1)...φ(yr )〉 for the Lagrangian

(3.17) Lε1,...,εN(φ) = L(φ) +

N∑

i=1

εiOi(φ, xi),

whereε2
i = 0. This Schwinger function is, by definition, the limit of the corresponding function

computed with the cutoff propagator. It is easy to see, by looking at Feynman diagrams, that this limit
is always finite.
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Remark. Roughly speaking, this means that once we renormalized each of the operatorsOi , we
automatically renormalized the product

O1(x1)...ON(xN), xi , xj .

Thus, now we are in as good shape as we were in the free theory before we defined OPE. It turns
out, we can define OPE in the interacting theory as well. Namely, for any two composite operators
O,O′ and for anyr ∈ R there exists a finite collection of composite operatorsO1, ...,Ol such that

O(x)O(x′) =

l∑

s=1

Os(x
′)Ds(x− x′) + O(|x− x′|r ).

We will show how to partially compute the OPE on examples.
First we consider the productφ(x)φ(x′), and compute its asymptotics asx → x′. In this case the

expansion is of the form:

(3.18) φ(x)φ(x′) = φ2
R(x′)f (x− x′) + h(x− x′) + regular part,

whereφ2
R is the renormalized operatorφ2 defined by (3.17). (recall thatφ2

R is defined non-uniquely).
Let us find functionsf , h.

The functionh(z) can be found by looking at the 0-point function for the operatorφ(x)φ(x′).
Indeed, since〈φ2

R(x)〉 = 0 by the definition, we geth(x− x′) = 〈φ(x)φ(x′)〉. If we compute the answer
modulog2, we get no corrections to the free theory answer, soh(z) = D(z) (see lecture 2).

Now let us findf (z) (we remember that it is defined up to scalingf → a(g)f , wherea = 1 modg).
This function is found from the 2-point function ofφ(x)φ(x′). We havef (z) = 1 + gf1(z) + O(g2). The
only graph that contributes tof1(z) is

The amplitude of this graph (in the position space) is

(3.19)

g
∫

D(x− z)D(x′ − z)D(y1 − z)D(y2 − z)dz

= − gA
2

ln |x− x′

µ
|D(y1 − x′)D(y2 − x′)

+ regular part

(A is the same constant as in (3.17)). This shows thatf1(z) = −gA
2 ln | x−x′

µ |, and thus

(3.20)
φ(x)φ(x′) = φ2

R(x′)(1− gA
2

ln |x− x′

µ
|) + D(x− x′)

+ regular part+ O(g2).
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Now consider a more complicated operator product, for example

φ2
R(x)φ2

R(x′).

In this case the expansion is of the form

(3.21)

φ2
R(x)φ2

R(x′) = φ4
R(x′)f1(x− x′) + (∇φ2

R)(x′)f2(x− x′)

+ φ2
R(x′)f3(x− x′) + f4(x− x′)

+ regular part,

where the subscriptRmeans “renormalized composite operator”. Of course the functionsf1, ..., f4 will
depend on the choice of the renormalization, but they are well defined up to an upper triangular linear
transformation.

For the sake of brevity we will only compute the expansion moduloO(|x − x′|−1). Thus, the
functionsf1, f2 can be ignored, and we only have to computef3, f4 moduloO(|x− x′|−1).

The functionf4 is defined canonically up to multiplication by a scalar. As before, this function is
computed using the 0-point function:f4(x − x′) = 〈φ2

R(x)φ2
R(x′)〉. The only graph that contributes to

the 1-st order ing of f4 is

k k

This shows that
f4(z) = 2D(z)2 + gŜ(k) + regular part+ O(g2),

whereS(k) is the amplitude (in the momentum space) of the above graph, and hat denotes the Fourier
transform. The functionS(k) equalsT(k)2, whereT(k) is the renormalized integral

T(k) = C
∫

R

dq

(q2 + m2)((k− q)2 + m2)
,

Remark. SinceT(k) is defined up to adding a constant,f4(z) is defined up to adding a multiple
of gT̂(k). SinceT̂(k) is proportional toD2(z) when z , 0, adding such multiple is equivalent to
multiplying f4 by 1+ cg. This freedom is natural, asf4 is defined up to multiplying by 1+ cg.

Now let us try to computef3(z), which is also defined canonically up to a scalar. For this purpose
we should consider the 2-point function of

φ2
R(x)φ2

R(x′),

i.e.
〈φ(y1)φ(y2)φ2

R(x)φ2
R(x′)〉.

We will work with the Fourier transform of this function, which we denote byF2(p1,p2,q,q′) (here
p1, p2, q,q′ are the dual variables toy1, y2, x, x′).

We will try to compute the functionf3(z) by looking at the asymptotic expansion ofF2(p1,p2,q, r−
q) as|q| → ∞, and using the following fact from calculus:

Claim Let f be anL1-function on an n-dimensional Euclidean spaceV whose Fourier transform̂f
satisfies the inequality|f̂ (q)| ≤ C|q|−n−N−ε, ε > 0. Thenf ∈ Cn(V).

By doing so we will be able to findf3(z) moduloC∞-functions, which is all we want at this point.
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We havef3(z) = 4D(z)+gf1
3 (z). Looking at the Feynman diagram expansion of the 2-point function

in the first order ofg, we see terms of two kinds: 1) terms where the special verticesv, v′ are directly
connected with an edge; 2) terms wherev, v′ are not connected.

The only graph of the first kind that contributes tof 1
3 is

and the only graph of the second kind contributing tof 1
3 is

(this graph occurs 4 times, with 4 different labelings of vertices). It is easy to check directly that
both graphs contribute tôf3(q) a term of the formCq−2 ln |q/µ|+O(q−4+ε), whereC is a constant. Thus,
f 1
3 (z) is the Fourier transform of the functionC ln |q/µ|/q2 moduloO(|x− x′|)−1 andO(g2). As before,
the constantµ depends on the choice of renormalization; changing of this constant is equivalent to
adding a multilple ofD(z) to f 1

3 (z), which is the same as multiplyingf3(z) by a scalar of the form
1 + cg.
Remark: Operator product expansion in conformal field theory.

In a 2-dimensional conformal field theory, the OPE of composite operators has especially simple
form. In this case,V = C, and the space of functions onV \ 0 has a “bigrading”: the functionzaz̄b has
bidegree (a, b) (a − b ∈ Z). The space of composite operators also has a bigrading: to any homoge-
neous operatorO one assigns two numbers – the holomorphic dimensiond(O) and antiholomorphic
dimensiond̄(O′) (d− d̄ ∈ Z). Therefore, ifO(z)O′(z′) =

∑
k Dk(z−z′)Ok(z′), thenDk(z−z′) has degree

(dk, d̄k), wheredk = d(O)+d(O′)−d(Ok), d̄k = d̄(O)+d̄(O′)−d̄(Ok). This implies thatDk(z) = Ckzdkz̄d̄k.
Also, the action of the Virasoro algebra allows to reduce the problem of computing OPE of arbitrary
operators to the problem of computing OPE for primary fields only, i.e. for fields which are highest
weight vectors for the Virasoro algebra. In a rational conformal field theory, one has a chiral algebra
of symmetries (for example, an affine Lie algebra) which is so big that there are only finitely many
fields which are primary with respect to this algebra. This fact allows to treat a rational 2-dimensional
conformal field theory in a purely algebraic setting, and reduce many of its problems to problems in
algebraic geometry.
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Appendix to Lecture 4: Remarks on renormalization and asymptotic freedom

Edward Witten4

December 1996

1. Ambiguity in operator products. In the last lecture we considered Lagrangians of the form

L =

∫
d4x(

1
2

(∇φ)2 +
m2

2
φ2 +

g
4!
φ4 +

∑

i

εi(x)Oi(x)),

whereOi are local functionals. We saw that defining correlation functions of such Lagrangians to the
first order inεi(x) (i.e. εiεj = 0) is equivalent to defining composite operators corresponding toOi .
Now let us work to the second order inεi (εiεjεk = 0). This corresponds to considering products
of composite operators. Before we considered products of composite operators at non-coinciding
pointsx, y, and saw that such a productOi(x)Oj(y) is defined automatically once we have definedOi

andOj . Now we will allow the pointsx andy to coincide. Then, as we know, the product is not
automatically defined, and its definition requires additional renormalization. This means, we have to
introduce counterterms in the Lagrangian, i.e. consider a new Lagrangian of the form

L′ = L +
∑

i,j,k

Lkεi(x)Rkεj(x)Wk(Λ,g)Ok(x),

whereLk,Rk are differential operators (inx) with constant coefficients, andWk are some functions
which diverge asΛ → ∞. The functionsWk are usually not uniquely determined and cannot be
chosen canonically.

Let us consider an example. In one of the homework problems we computed the 1-loop correction
to the 1-particle irreducible bosonic 2-point functionΣ in QED. We discussed that this correction can
be computed (in momentum space) as

∫
eikx〈Jµ(x)Jν(0)〉dx,

whereJµ(x) = ψ̄γµψ is the operator of current, and the correlator in (1) is in the theory of a free
fermion. Now, as follows from the above discussion, the productJµ(x)Jν(x) is defined up to operators
of lower order, and the expectation value〈Jµ(x)Jν(0)〉 is non-uniquely defined, which causes an ambi-
guity in the computation of (1). However, this non-uniqueness occurs only atx = 0. In fact, its is easy
to show that the function〈Jµ(x)Jν(0)〉 is well defined up to adding a multiple ofδ(x). Therefore, the
ambiguity in (1) is a constant (i.e. is independent ofk).

In QED, to preserve gauge invariance, it is necessary to choose this constant in such a way that
the conditionkµΣµν(k) = 0 is satisfied. This gives a unique way to fix the constant.
2. Symmetry breaking. A symmetry that exists in a classical field theory may be lost in a particular
renormalization scheme for the corresponding quantum theory. Of course it is possible that there
exists a better scheme which preserves this symmetry, but it is also possible that there exists no such
scheme, i.e. the symmetry is broken at the quantum level. For example, considerN free massless
fermionsψ1, ...ψN, with Lagrangian

∑
(ψ̄i ,Dψi), ψi ∈ S+, Ψ− ∈ S−. In this theory we have aU(N)

symmetry. Let us add interactions in such a way that part of this symmetry is preserved. For example,

4Notes by Pavel Etingof and David Kazhdan
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add a gauge fieldA (i.e. regard the fermions together to make a sectionψ of the vector bundleS+ ⊗E,
whereE is anN-dimensional Hermitian vector bundle over the spacetime), which takes values in the
Lie algebra of a subgroupH ⊂ U(N), and consider the Lagrangian (ψ̄,DAψ), whereDA is the Dirac
operator along the connectionA. The classical symmetry of this theory is the centralizerZ(H) of
H. In quantum theory, however, this symmetry may fail for topological reasons. In other words, a
topological anomaly may appear.
3. An oversimplified version of experimental confirmation of asymptotic freedom.

Consider a field theory with electromagnetic and strong interactions, which contains electrons
(which interact only electromagnetically), and quarks (which interact both electromagnetically and
strongly). The Lagrangian of such a theory can be written as follows. The fields are:

(i) An SU(3)-connectionAg (the field of strong interactions),
(ii) A U(1)-connectionAe (the electromagnetic field),
(iii) Quarksqi and an electronε (which are fermions with values inC3 andC respectively).
The Lagrangian is

∫
d4x(

∑

j

q̄j(iD + Ag + Ae−mi)qj + ε̄(iD + Ae−m)ε +
1

e2
F2

Ae
+

1

g2
F2

Ag
).

Heree is the charge of the electron andg is the coupling of the strong interaction.
Now suppose that we scatter two electrons against each other with momentap1, p2, and measure

the amplitude of the event that after scattering they will have momentaq1,q2. As we know, this
amplitude is defined by the 4-point functionΓ4(p1,p2,q1,q2). Let us try to compute this function and
thus predict the result of measurement.

First of all, we can use the fact thate2 is small. This means, we can trust the perturbative expansion
in powers ofe.

To ordere2, we can assume that the electrons, during scattering, exchange only one photon, which
does not interact while it moves from one electron to the other. This corresponds to the following
Feynman diagram:

Thus we have
Γ4(p1, p2, q1, q2) = e2(G2((p1 − q1)2) + G2((p1 − q2)2)),

whereG2(p2) is the free photon propagator. HereG2 is regarded as an operator fromS⊗ S to S⊗ S,
whereS is the space of spinors.
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Remark. In principle, we should include the diagrams where one of the electrons exchanges a photon
with itself, but we will not consider them, regarding them as absorbed in the electron propagator.

To ordere4, we have two possiblities.
1) The electrons could exchange two non-interacting photons. The amplitude of the corresponding

1-loop diagram

can be computed within the framework of QED.
2) The electrons could exchange only one photon, but on its way it could split in an electron and

positron, or in a quark and an antiquark. The first splitting scenario

is harmless, since it gives only one 1-loop diagram with no strong interactions, and we can com-
pute the amplitude of this diagram as in QED. However, the second scenario (with quarks) really gives
us trouble. Indeed, the coupling constantg of the strong interaction is not small, so we cannot trust
the perturbation expansion ing and thus have to take into account infinitely many Feynman diagrams
with any number of loops:
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(here dotted lines denote the field of strong interaction).
However, we know that the theory of strongly interacting quarks is asymptotically free (when the

number of quarks is not too large). Thus, we should expect that the perturbative expansion in the
effective couplinggef f ∼ g(ln p2)−1/2 should be valid at high momenta. This would mean that at high
momenta we can restrict to the 1-loop diagrams, which involve no strong interactions. Since we have
one such diagram for each type of quark,

the total amplitude of these diagrams is
∑

e2
i Σi(p), whereei are charges of quarks, andΣi are

amplitudes of the corresponding diagrams for a particle with charge 1. Of course, the functionsΣi(p)
depend on the (unmeasurable!) massesmi of quarks, but at high momenta masses are irrelevant, and
all functionsΣi are approximately equal to each other. Thus, the amplitude isΣ(p)(

∑
e2

i ), whereΣ(p)
is a universal function computed from QED (as in one of the homework exercises).

It follows from asymptotic freedom that the (relative) error of this computation is of order 1/ ln p2.
If we compute the two-loop correction (still working to ordere4), we will get an additional term of the
order 1/ ln p2, and the error will be of order 1/ ln2 p2. More generally, if we take into accountN-loop
diagrams, the error will be of order 1/ lnN p2. Thus, we get an asymptotic series, with very slowly
decaying terms, but at very highp one can hope that it gives a reasonably good approximation to the
4-point scattering amplitude. This approximation (to the 0-th order) could in principle be checked
experimentally, and can be regarded as a confirmation of asymptotic freedom.
Remark. In practice, asymptotic freedom was checked experimentally in a different way, but the
ideology is similar to the one described above.
Correction to the text of lecture 3 (by Pavel Etingof)

Unfortunately, in Section 3.3 of Lecture 3 there is a wrong statement (noticed by D.Freed).
Namely, the statement “〈...O(x)O(x′)〉 ∼ |x − x′|−[O]−[O′]” is incorrect. For example, it fails ifO′ = 1
andO is a nontrivial operator. This statement is true, however, ifO′ = O, which is enough to make
the point which was being made in the text.
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Lecture 4: Scattering Theory

Edward Witten5

December 1996

Abstract

This lecture is an introduction to Scattering Theory in Quantum Mechanics. After introducing
the asymptotic conditions and explaining their interpretation in terms of observable quantities,
we introduce the Lippmann-Schwinger equation and the Born approximation. We then discuss
Feynman diagrams and some differences between the non-relativistic and relativistic propagation
of signals and particles.

1 Non-relativistic scattering theory

1.1 The asymptotic conditions.

We start by considering a particle of massm moving inR3 in the time-dependent potentialV(~x, t)
(whose support is not a priori assumed to be localized in the spatial directions). The evolution of the
wave functionψ(~x, t) is determined by the time-dependent Schrödinger equation

i
∂

∂t
ψ(~x, t) = Hψ(~x, t), (1)

where the Hamiltonian is defined byH = − 1
2m∆x + V. We will assume for a while thatm = 1.

We want to analyse the solutions of (1) with a certain behaviour in the far past and the far future. In
the far past, we require that the solutions approach, ast → −∞, a solution of the Schrödinger equation
corresponding to thefree HamiltonianH0 = −1

2∆. Solutions of the free Schrödinger equation have
the general form

ψ(~x, t) =

∫
d3~k

(2π)3
f (~k)ei(~k·~x− k2

2 t), (2)

where f (~k) represents the distribution of momenta at timet = 0. More specifically, we want to
consider those solutions of (2) corresponding approximately to an incoming particle with velocity~v,
which means thatf (~k) is localized near~k0 = ~v (since m=1); a possible choice forf is

f (~k) = exp(−1
α

(k− k0)2) (3)

with smallα. For larget, the integral in (2) is highly oscillatory so the main contribution comes from
stationary phase; varying the exponent with respect tok gives~k = ~x/t; if α is small then~k has to be
close tok0, and the condition~x = ~k0t does indeed describe a free moving particle with velocity~k0.

In the far future, we can no longer expect the wave functionψ to be localised near a definite
momentum because of the scattering effect of the potential, so we will instead look for solutions of
(1) which behave asymptotically like a sum of a localised solution of (2) and an outgoing spherical
wave.

In order to find solutions of (1) we will first solve an eigenvalue problem for the Hamiltonian. We
assume that there are no bound states, i.e. thatH has no discrete spectrum. For each~k we will search

5Notes by Radu Constantinescu

36



for a solutionψ~k(~x) of the equationHψ~k(~x) = k2

2 ψ~k(~x) with the following asymptotic behaviour at large
distances:

ψ~k(~x)
x→∞−→ ei~k·~x +

1
|x|e

i|k| |x|F~k(Ω) + O

(
1

|x|2
)
. (4)

The plus sign in the exponent of the second term is important, it will be needed in the construction of
anoutgoingwave solution of (1). The complex-valued functionF~k is defined on the sphere of radius
1 and the notationΩ is a shorthand for a vector ˆx on the sphere. Alternatively we can regardF~k as a

functionF(~k′,~k) defined for|~k′| = |~k|.
The functionsψ~k can be used to construct exact solutions of the time-dependent Schrödinger

equation, namely

ψ(~x, t) =

∫
d3~k

(2π)3
f (~k)ψ~ke

−i k2
2 t. (5)

Let us use (4) and (5) to see how doesψ look at infinity if f is assumed to be of the form (3). For
|t| → ∞ and|x| → ∞ two terms contribute to the stationary phase; one of them is expi(~k · ~x− k2t/2)
and has already been analysed– the stationary phase condition is~x = ~k0t. The other one has, for large
|~x|, the phase|~k| · |~x| − k2t/2+ argF; varying with respect to|k| we find that the stationarity condition is

x = kt +
∂

∂k
argF~k (6)

Notice that if we ignored the term involvingF we would getx = kt, which cannot be satified for
negativet– in agreement with the fact that we only want to have anoutgoingspherical wave.

The extra term in the right-hand side is a finite time advance or delay describing the fact that the
moment when the scattered particles arrive at a detector is affected by the interaction with the target.
The stationarity condition shows that the advance/delay is the radial derivative of the phase ofF,
called thephase shift.

1.2 Relation with experiments.

It is now time to relate the above constructions to quantities which are actually measurable in scattering
experiments. The functionF(Ω) is called thescattering amplitude. The reason for this is that the
measure|F(Ω)|2d2Ω on the sphereS1 = {|x| = 1} can be interpreted as the number of scattered particles
per unit solid angle if there is one incident particle per unit area (d2Ω denotes the usual measure on
the 2-sphere). Notice that only the absolute value ofF is relevant here. The integral

σ =

∫

S1

|F(Ω)|2d2Ω (7)

is called thetotal cross-sectionand represents the total number of scattered particles (per unit incom-
ing particle in unit area). As such,σ can also be viewed as theeffective cross-sectional areaof the
target: if the target is thought to remove a fraction of the incoming particles of momentum~k0, thenσ
is the total number of removed particles if there is one particle per unit area. The relationship between
σ andF is usually written as

dσ
dΩ

= |F(Ω)|2. (8)
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1.3 The Lippmann-Schwinger equation.

We have so far used the eigenfunctions of the Hamiltonian to solve the time-dependent Schrödinger
equation. The question now is how to solve the eigenvalue problem forH. One possibility is to
start from the free HamiltonianH0 = −1

2∆ whose eigenfunctions are exp(i~k · ~x) (corresponding to the

eigenvaluesk2/2). We will search for eigenfunctionsψ~k of H of the formψ~k = exp(i~k · ~x) + α~k. Since
H = H0 + V we have

0 =

(
H − k2

2

)
ψ~k = Vψ~k +

(
H0 − k2

2

)
α~k (9)

which implies

α~k = − 1

H0 − k2

2

Vψ~k, (10)

where the operator 1/(H0 − k2/2) is supposed to be a right-inverse toH0 − k2/2.
Although the operatorH0 − k2/2 is not invertible, we still can construct a right-inverse of it In

momentum space, for instance, the operatorH0 − k2/2 is roughly speaking a multiplication operator

(
H0 − k2

2

)
ei~q·~x =

1
2

(q2 − k2)ei~q·~x (11)

so we should have
1

H0 − k2

2

=
1

1
2(q2 − k2)

. (12)

Because of the pole, there are several ways of making sense of the above; one possibility, in the usual
notation, is:

1

H0 − k2

2

=
1

1
2(q2 − k2) − iε

. (13)

The conversion to position space is realised through the following
Exercise.Show that the integral kernel (in position space) of the operator defined by (13) is

G(~x, ~y) =
1
2π

ei|k|·|x−y|

|x− y| . (14)

By using the exercise, (10) leads to theLippmann-Schwinger equation

ψ~k(~x) = ei~k·~x − 1
2π

∫
d3~y

ei|k|·|x−y|

|x− y| V(~y)ψ~k(~y). (15)

If the potentialV has compact support then any solution of (15) has the boundary conditions required
by the asymptotic condition built in. This can be seen by using the fact that for large|x| and~y in a
compact set we have|x−y| = |x|− x̂·~y+O(1/|x|), wherex̂ = ~x/|x|. Indeed, if we use this approximation
then (15) becomes

ψ~k(~x) = ei~k·~x − 1
2π

ei|k|·|x|

|x|
∫

d3~ye−i|k| x̂·~yV(~y)ψ~k(~y) + O

(
1

x2

)
, (16)

which shows the existence of a scattered wave of the promised type.
Remark. The procedure used in (13) for going around the pole is chosen precisely in order to guar-
antee the existence of the outgoing spherical wave.
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Notice that (16) gives an expression for the scattering amplitude: for any pointΩ = x̂ on the
sphere of radius 1 we have

F(Ω) = − 1
2π

∫
d3~ye−i|k| x̂·~yV(~y)ψ~k(~y). (17)

Remark. We can reinterpret the functionF as a function ofk′ andk such that|k′| = |k|, in agreement
with the idea that after scattering the particle moves in the ˆx direction with the same speed as before.

Although the Lippmann-Schwinger equation cannot be solved exactly, it can be used to compute
ψ~k in perturbation theory as an expansion in the powers of the potential (assumed to be sufficiently
weak). This can be done by an iterative procedure: we first calculateψ~k to orderV by using the free

eigenfunction exp(i~k · ~y) in the right-hand side of (15) instead ofψ~k(~y); once we knowψ~k to orderV
we plug it back into (15) to get the answer to orderV2 and so on.

1.4 The Born approximation.

We have seen above an expression of the scattering amplitude in terms of the eigenfunctionsψ~k. The
first Born approximationis the computation of the scattering amplitude withψ~k replaced in (17) by

the free plane wave exp(i~k · ~y). We have seen that the scattered wave travels with the same speed as
the incoming one so we can write, for|~k′| = |~k|,

F(~k′,~k) = − 1
2π

∫
d3~ye−i~k′·~yV(~y)ψ~k(~y). (18)

In the first Born approximation this becomes

F(~k′,~k)Born = − 1
2π

∫
d3~ye−i(~k−~k′)·~yV(~y). (19)

If we introduce themomentum transfer~q = ~k′ − ~k we see thatF(~k′,~k)Born is the Fourier transform of
the potential in the~q variable.
Remark. This fact is important since it shows that the less smoothV is, the less rapidly doesF(~k′,~k)
decay as a function of~k′ −~k (for fixed~k). This led Rutherford to postulate the existence of the atomic
nucleus (based on his scattering experiments). Later on, when similar experiments were performed
with protons instead of atoms, the same reasoning suggested the composite structure of the proton
(existence of quarks).

There are also higher Born approximations for the transition amplitudes: it is enough to use the
successive approximations toψ~k in the expression (17) ofF(~k′,~k). It turns out that in general the Born
approximations lead to very precise computations.
Remark. Instead of considering a particle incident on a target we can regard our previous discussion
as a description of the interaction of two particles. The center of mass decouples and the same results
go through for the relative motion of the particles.
Remark. We can also generalize the preceding arguments for the case ofn interacting particles. Let
us note that this time we won’t be able to simultaneously normalize the masses to 1 and that we need
one spherical wave centered at each interaction point. The exact solutions of the Schrödinger equation
ψ~k1,...,~kn

will be sums of free and spherical waves away from the diagonals (i.e. whenever~ki , ~kj for
i , j).
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1.5 Feynman diagrams.

Starting from (17) and the Lippmann-Schwinger equation we can compute the transition amplitude as
an infinite sum

F(~k′,~k) = − 1
2π

∫
d3~xe−i(~k′−~k)·~xV(~x)

+
1

4π2

∫
d3~xd3~ye−i~k′·~xV(~x)G(~x,~y)V(~y)ei~k·~y

− 1

8π3

∫
d3~xd3~yd3~ze−i~k′·~xV(~x)G(~x, ~y)V(~y)G(~y,~z)V(~z)ei~k·~z

+ · · ·

Given our experience with Feynman diagrams, it is easy to see that the terms of the sum can be
represented graphically (for instance, the graphs corresponding to the first three terms in the sum are
shown below).

k

k’

k

k’

k

k’

V(x)
V(y)

V(x)
G(x,y)

G(y,z)
V(z)

V(y)

V(x)
G(x,y)

Each curly line represents an interaction due to the potentialV. In-between interactions, the
particles move freely (hence the free propagatorG(x, y)). The incoming and outgoing particles have
definite momentum (~k,~k′, respectively). The diagrams can be thought to encode either the relative
motion of two particles or the evolution of one particle scattered by a fixed target. Notice that only
very simple (ladder) diagrams appear, corresponding to that fact that there are no creation/annihilation
phenomena in this non-relativistic description.

2 Relativistic versus non-relativistic scattering theory

We will now analyse some differences between the non-relativistic picture we have been considering
so far and the relativistic treatment of scattering theory.

2.1 Propagation of particles

Going back to the time-dependent Schrödinger equation (1), we can try to solve it directly by imitating
the method used in 1.3 to derive the Lippmann-Schwinger equation. We can use the plane wave
solutions expi(~k · ~x− k2

2 t) of the freeSchr̈odinger equation to transform the Schrödinger equation for
H into an integral equation: any solution of the perturbed Schrödinger equation satisfies the following
analogue of Lippmann-Schwinger:

ψ = ei(~k·~x− k2
2 t) − 1

i ∂∂t − 1
2∆

Vψ. (20)
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As in Subsection 1.3., the easiest way of making sense of the inverse ofi ∂∂t − 1
2∆ is in momentum

space. Since (
i
∂

∂t
− 1

2
∆

)
ei(~q·~x−Et) =

(
E− q2

2

)
ei(~q·~x−Et), (21)

an inverse (in momentum space) can be found by prescribing the way to go around the poleE = q2/2.
For instance, we could use

1

i ∂∂t − 1
2∆

ei(~q·~x−Et) =
1

E− q2

2 + iε
ei(~q·~x−Et). (22)

The integral kernel of the chosen inverse, in position space, is given by the inverse Fourier transform

G(~x, t;~x′, t′) =

∫
d3~q

(2π)4
ei~q·~x

∫ ∞

−∞
dE

e−iE(t−t′)

E− q2

2 + iε
. (23)

The only pole of theE integral is atE =
q2

2 − iε and so,if t − t′ < 0 we getG = 0(because we
can then avoid the pole by closing the integration contour in the upper half-plane). This result has an
important implication:particles can only travel forward in time.

This is no longer true in a relativistic context: we have seen that the typical propagator of a particle
of a massm is

1

q2
0 − ~q2 + m2 + iε

in momentum space; in position space, the inverse Fourier transform gives (forx = (~x, t))

G(x, x′) =

∫
d3~q

(2π)4
ei~q·~x

∫ ∞

−∞
dE

e−iE(t−t′)

q2
0 − ~q2 + m2 + iε

. (24)

No matter whether we close the integration contour in the upper or lower half-plane, we cannot avoid
both poles, therefore it is no longer true thatG vanishes if the time coordinates of the pointsx and
x′ satisfy t < t′. As a consequence, particles can make zig-zags in time, a phenomenon which is
interpreted as the creation or annihilation of particle/antiparticle pairs (the particles traveling forward
in time and the antiparticles backwards).

2.2 Propagation of signals

Non-relativistically, interactions are instantaneous. However, this is no longer true in the relativistic
case.

Let us consider the example of the electromagnetic field; the interaction is transmitted by photons
traveling at the speed of light (since the interaction is not instantaneous, we model it by some particles
moving at finite speed).

The photon propagator in momentum space equals 1/(q2
0 − ~q2 + iε), an expression whose non-

relativistic limit (given byq0 → 0) is formally −1/~q2. This has to be reinterpreted since non-
relativistically there is no creation and annihilation of particles (so the only way we can think about the
photon non-relativistically is to consider that it only exists at the timet0 when the interaction occurs).

Notice that the (four-dimensional) inverse Fourier transform of−1/~q2 equals

−
∫

d4q

(2π)4

eiq·y

~q2
= −δ(t) 1

|~y| , (25)
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which is precisely a delta-function in time multiplied by the Coulomb potential. Therefore the non-
relativistic limit corresponds to aninstantaneousinteraction (i.e. scattering in the Coulomb potential).
Relativistically,

−
∫

d4q

(2π)4

eiq·y

q2
0 − ~q2 + iε

(26)

is no longer supported at a fixed point in time, so the interaction is not instantaneous.
We can also illustrate the results on the propagation of particles and interactions in perturbation

theory. It was shown that non-relativistically only ladder diagrams are encountered; intuitively, if time
flows in the vertical direction, these diagrams represent particles moving forward with the horizontal
curly lines being instantaneous interactions.

TIME

By contrast, in the relativistic case interactions travel at the speed of light and particle/antiparticle
pairs can appear, so more complicated Feynman diagrams such as the ones below have to be consid-
ered.

This diagram illustrates the fact that photons traveling at the speed of light replace the non-
relativistic instantaneous interaction. The curly line which represents the interaction in the non-
relativistic case is relativistically a photon. In the second diagram we show the creation and anni-
hilation of particle pairs. (Of course there are also diagrams in which both effects are present.) The
diagram also illustrates another important fact: in a local theory, the presence of electron/positron
pairs makes it impossible to count ‘the total number of particles in the universe’. The totality of
electrons can be accounted for by a single electron zig-zagging in time or even a sigle closed loop.
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The diagram also illustrates another important fact: in a local theory, the presence of electron/positron
pairs makes it impossible to count ‘the total number of particles in the universe’. The totality of elec-
trons can be accounted for by a single electron zig-zagging in time or even a single closed loop.

t

t’
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