
Lecture II-1: Symmetry breaking

Edward Witten
Notes by Pavel Etingof and David Kazhdan

In this semester we will continue the discussion of quantum field theory, but now mostly dynamics
rather than perturbation theory and purely formal things. The topics we will discuss are much more
difficult to deal with rigorously than the formal theory we studied in the fall semester. We will try to
do it when possible, but it will not always be possible. In general, we will try to form an intuitive
picture of what is going on, and illustrate it by considering concrete examples.
1.0. Theories and realizations.[This section is explanatory and was written by the preparers of these
notes in order to create a false sense of security i.e. an unsubstantiated feeling that we understand
what we are talking about in the rest of the lecture. Unfortunately, this is not the case, at least if
“understand” means what it usually means among mathematicians.]

For the purposes of the present and forthcoming lectures, it will be important for us to distinguish
theories and their realizations. So let us explain what we mean by a theory and what we mean by its
realization. This explaination is not a mathematical definition (in fact, it is hard to give a definition
which is both rigorous and useful), but we hope that it will make clear what we are talking about.

Recall that a classical physical systemΣ is usually described by defining the space of statesX of Σ

(a symplectic manifold, maybe infinite-dimensional) and a 1-parameter groupgt of time translations
which preserves symplectic structure. Thengt produces a Hamiltonian flow, which is defined (ignor-
ing topological problems) by a Hamiltonian functionH. This function is called the Hamiltonian, or
energy function of the system. One should remember thatH is defined only up to adding a (locally)
constant function.

In most examples,H is bounded from below. In such a case,H is always normalized in such a
way that the infinum ofH on (each connected component of)X is zero.

In this situation, bya theory we mean a pair (X,H), whereX is a symplectic manifold, and
H : X → R the energy function, defined up to a (locally) constant function. Bya vacuum state of
this theory we mean a lowest energy equilibrium statex ∈ X of the systemΣ, i.e. a state where the
energy functionalH attains a global minimum.

The same theory can have different vacuum states. For example, if we have a particle on the line
with potential energyU(x) =

g
4! (x

2 − a2)2, then the spaceX is the phase planeR2 with coordinates

(x, p), the Hamiltonian isp2

2 + U(x), and there are two vacuum states (a, 0) and (−a, 0).
Often a classical systemΣ can be described by a LagrangianL, defined on some space of fieldsS

on the spacetimeV. In this case its space of states is the spaceX ⊂ Sof extremals ofL. As we have
seen before, the spaceX carries a natural closed 2-formω, which is nondegenerate, and thus defines a
symplectic structure onX. Also, the group of time translations acts onX and preservesω. Therefore,
the flow onX generated by this 1-parameter group is Hamiltonian, and is defined by a Hamiltonian
functionH.

However, one should remember that the description of a theory by a Lagrangian is not intrinsic,
since different Lagrangians defined on different spaces of fieldsSmay define the same theory. Indeed,
consider, for example, the LagrangianL1 =

∫
x′(t)2dt/2 defined onS1 = C∞(R,M), whereM is a

Riemannian manifold. This Lagrangian defines the geodesic flow. The space of states in this case
is T∗M, and the Hamiltonian function isp2/2. On the other hand, we can write the Lagrangian
L2 =

∫
(−x′(t)p(t) + p2(t)/2)dt defined on the spaceS2 = C∞(R,T∗M). It is easy to see that these two

Lagrangians define the same theory.
We will consider relativistically invariant theories (X,H), i.e. theories with an action of the
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Poincare groupP on X, which preserves the symplectic structure (in the case when the system is
defined by a Lagrangian, the groupP acts onS and preserves the Lagrangian, and therefore, it acts
on X preserving the Poisson structure). The group of time translations is a subgroup ofP, soP also
preserves the energy functionH. In this case, when we talk about vacuum states of the theory (X,H),
we mean a vacuum state invariant underP.

Recall that to define a symplectic manifoldX is the same thing as to define the Poisson algebra
A = C∞(X) (X can be reconstructed as the spectrum ofA). Therefore, we may say that a theory is a
pair (A,H), whereA is a Poisson algebra andH ∈ A. The Poisson algebraA is called the algebra of
observables of the system.

Now let us consider quantum systems. The definition of a theory in this case is similar to the
classical case. Namely, we will definea quantum theory to be a pair (A,H), whereA is a *-algebra
(not necessarily commutative), andH is a selfadjoint element ofA, defined up to adding a real number.
The algebraA is called the algebra of quantum observables (operators). The elementH, as before,
is called the Hamiltonian. Everything here is dependent on a real positive parameter~ (the Planck
constant).

By a realization (or solution)of a quantum theory (A,H) we will mean an irreducible *-representation
of the algebraA in some Hilbert spaceH , such that the spectrum of the operatorH is bounded from
below (representations are considered up to an isomorphism which preservesH). We will always
normalizeH so that the lowest point of its spectrum is zero. The spaceH is called the quantum space
of states of the system (in this realization). Of course, as in the classical case, the same theory can
have different realizations, as the same algebra can have different representations.

As we have mentioned, we will be interested in relativiatically invariant theories, i.e. theories
with an action of the Poincare group onA, so that the subgroup of time translations acts bya →
eitH/~ae−itH/~. When we talk about realizations of such a theory, we will assume thatP acts inH by
unitary operators, with the group of time translations acting byeitH/~.

By a vacuum state we mean a vectorΩ ∈ H such thatHv = 0. In a relativistically invariant
situation, a vacuum state is the same thing as aP-invariant vector.
Remark. In general, as we will see, an irreducible realization of a theory can have many vacuum
states. Therefore, the notions of a realization and of a vacuum state are not equivalent. However, if
the algebra of observables is commutative ( i.e. in the classical theory), each irreducible representation
of this algebra is 1-dimensional, and there is no real difference between the notions of a realization and
a vacuum state. Therefore, the word “realization” is not usually used when one refers to the classical
theory.

Suppose that we have a classical theory (A0,H0) which has been quantized, and the corresponding
~-dependent family of quantum theories is (A,H) (here by an~-dependent family we mean a family
depending on the dimensionless parameter~/S0, whereS0 is a characteristic scale of action). This
means that we have a quantization map – some linear mapA0 → A, given bya → â, such that
Ĥ0 = H, and [â, b̂] = i~{̂a,b} + o(~), ~ → 0. In this case, we will say that a statev ∈ H of norm 1 is
localized near a classical solutionx ∈ X = SpecA0 if for any a ∈ A0 〈v, âv〉 → a(x), ~→ 0.

Let us now explain the connection between the classical and the quantum notions of a vacuum
state. Suppose we have a quantum vacuum stateΩ of norm 1 which is localized near a classical state
x. In this casex is a classical vacuum state. Indeed,H0(x) = lim~→0〈Ω,HΩ〉 = 0, and for anyF ∈ A0

{F,H0}(x) = lim~→0
1
i~ 〈Ω, [F̂,H]Ω〉 = 0, sox is a stationary point ofH0.

Remark. Note any quantum vacuum state is localized near a classical vacuum state. Sometimes a
quantum vacuum state is “spread” with some density over the set of classical vacuum states. We will
see examples of this in today’s lecture.

Given a quantum theory (A,H), it is convenient to represent its realizations by correlation func-
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tions. Namely, given a realizationH of this system, and a vacuum stateΩ ∈ H , we can define
correlation functions〈Ω,L1...LnΩ〉, whereLi ∈ A. Since the action ofA in H is irreducible, the
realizationH can be completely reconstructed from these correlation functions.
Remark. The irreducibility condition is not always satisfied in physically interesting examples. But
here for simplicity we will assume that it is satisfied.

Sometimes a quantum system can be defined by a Lagrangian. Of course, as in the classical case,
this is not always possible, and if possible, not in a unique way. However, such a presentation is very
convenient for understanding the behaviour of the system. So let us explain (on examples) how to
pass from a Lagrangian to the Hamiltonian and the operator algebra.

We will start with the case of quantum mechanics, when the spacetime is just the time line. Con-
sider a Lagrangian for one boson:

L =

∫
[
(φ′)2

2
− U(φ)]dt.

Then, by definition, the operator algebra is generated by operatorsφ0, φ
′
0,H, with the canonical com-

mutation relations
[φ0, φ

′
0] = i~, [H, φ0] = −i~φ′0, [H, φ′0] = i~U′(φ0).

Define the local operatorsφ(t) = eiHt/~φ0e−iHt/~, φ′(t) = eiHt/~φ′0e−iHt/~. It follows from the above
definition thatdφ/dt = φ′, andφ satisfies the Newton’s differential equation

φ′′(t) = −U′(φ(t)).

The operators of the formF(φ(t), φ′(t)), whereF is a polynomial, are called local operators att (we
order products in such a way thatφ′ stands on the right fromφ).

The operator algebra is spanned (topologically) by operatorsφ(t1)...φ(tn). Thus, a realization of
the theory is defined by prescribing expectation values of these operators – the correlation functions.

In any realization of the theory, the Hamiltonian is given by the following explicit formula:

H =
1
2

(φ′)2 + U(φ) + C.

Indeed, the difference of the left and the right hand sides of this equation commutes withφ andφ′, so
by irreducibility it acts by a scalar.

Now consider quantum field theory. We first consider the theory in a spacetimeV = L ×R, where
L is a lattice (finite or infinite). Let∇L be the discrete gradient operator on the lattice. Consider a
Lagrangian

L =
∑

x∈L

∫
dt[

1
2

(φ2
t (x, t) − (∇Lφ(x, t))2) − U(φ(x, t))]

In this case the operator algebra is generated by operatorsφ(x, 0), φt(x,0), x ∈ L, andH, satisfying the
commutation relations

[φ(x, 0), φt(x,0)] = i~, [H, φ(x, 0)] = −i~φt(x, 0), (1)

[H, φt(x, 0)] = i~[−∆Lφ(x,0) + U′(φ(x, 0))], (2)

(where∆L is the lattice Laplacian) and such thatφ(x, 0), φ′(x, 0) commute withφ(y, 0), φ′(y, 0) if x , y
(causality). The local operatorsφ(x, t), φ′(x, t) are defined as above. (Observe that sinceH does not
commute withφ, for t1 , t2 the operatorsφ(x1, t1), φ(x2, t2), in general, do not commute).
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As before, the operator algebra is spanned by the operatorsφ(x1, t1)...φ(xn, tn). Thus, a realization
of the theory is determined by expectation values of these operators – the correlation functions.

As in the case of quantum mechanics, in any realization we can compute the Hamiltonian explic-
itly. Namely, the Hamiltonian is of the formH =

∑
x∈L Hx, whereHx = 1

2(φ2
t (x, 0) + (∇Lφ(x,0))2) +

U(φ(x,0)) + Cx.
Remark. Of course, if the latticeL is infinite, the definition ofH can be problematic, since the sum
overL may be divergent. However, since commutators ofH with other operators are well defined, one
may hope that the constantsCx can in fact be adjusted in such a way that the sum converges. This is
indeed true in many situations.

Now let us consider field theory in continuous spacetime. In this case the operator algebra and the
Hamiltonian are defined similarly to the case of discrete space, which was considered above. Namely,
the operator algebra will be generated by the operatorsφ(x,0), φt(x,0), and alsoHb, b ∈ p, wherep is
the Lie algebra of the Poincare groupP, with the commutation relations betweenφ, φt andHb similar
to the above.

However, we will face an additional problem – now expressions likeφ2(x, t) may not be well de-
fined, because of ultraviolet divergences. This problem can be cured by the ultraviolet renormalization
theory, which we discussed last semester, if the Lagrangian we started with was renormalizable. In
this case, the algebra of local operators is not quite an algebra, but an OPE algebra (an algebra with
operator product expansion). It is almost never possible to compute the structure constants of this al-
gebra exactly (rational conformal field theory in 2 dimensions is the main exception), but it is possible
to compute them in perturbation expansion to any finite order. In general, for continuous space we
have additional analytic difficulties (compared to the case of discrete space), but they will not be very
important in the present lecture, so we will not discuss them here. We will just need the rough general
picture, which has been outlined in this introduction.

Finally, let us say what we will mean by avacuum for a quantum theory (A,H). We will mean by
a vacuum for (A,H) one of two, roughly equivalent, things:

1. A linear functional〈, 〉 : A→ C on the operator algebra (the expectation value), which satisfies
some field theory axioms (e.g. axioms for Wightman functions);

2. A realizationH of (A,H) together with a vacuum stateΩ, normalized to unity.
The passage from 2 to 1 is trivial, and the passage from 1 to 2 is a part of the general formalism

of field theory (see Kazhdan’s lecture 1).
In general, a vacuum is not the same thing as a realization, since the same realization can have

different vacua. For example, in the theory of Dirac operator on a manifold the space of vacua is the
space of harmonic spinors. However, in a Wightman field theory in infinite volume, one can show that
any realization has exactly one vacuum state.
1.1. What is symmetry breaking, and why it does not happen in quantum mechanics.

Suppose we have some classical physical theory (A,H), which has a symmetry groupG. Let us
ask the following question: does this theory have aG-invariant vacuum state?

If we have a quantum theory (A,H), which has a symmetry groupG, then the correct analogue of
this equestion is: does this theory have aG-invariant realization?

If the answer is no, one says that the symmetry is broken. If the answer is yes, one says that the
symmetry is preserved.

In classical mechanics and classical field theory symmetry breaking can easily happen. For exam-
ple, consider a classical particle of mass 1 on the line whose potential energy isU(x) = g(x2−a2)2/4!,
wherea > 0,g > 0. The space of states of this particle is the plane with coordinatesx,p, and its

Hamiltonian is p2

2 + U(x). There is an action of the groupG = Z/2Z on the space of states, by
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(x, p) → (−x,−p), which preserves the equations of motion, and there are two lowest energy states:
s+ = (a, 0), s− = (−a, 0), which are permuted byG. But there is no lowest energy state which is
G-invariant.

In quantum mechanics, symmetry breaking does not occur. This is a simple, but nontrivial and
very important result. Let us show why this is true in the case of quantum mechanics of bosons, with a
real Lagrangian. In this case, the operator algebra is generated by operatorsxi ,pi , i = 1, ..., n, satisfying

the Heisenberg algebra relations, and has a HamiltonianH =
p2

2 + U(x). There is a realization of the
theory inH = L2(Rn), with xi acting by multiplication by the coordinate functions, andpi = −i~ ∂

dxi
.

It is well known this representation is irreducible. Any symmetry groupG of the potentialU also acts
inH . Thus, symmetry breaking does not occur.
Remark. In fact, according to the Stone-von-Neumann theorem,H is the unique realization of the
theory.

In the case of bosons with real Lagrangian we can in fact make a stronger statement. Namely,
not only is the realization unique, but the vacuum is also unique (and therefore invariant under any
symmetry group ofU). For simplicity we will show it in the case of only one boson on the line, but
the argument we will give generalizes to any number of bosons in a space of any dimension.

We will consider a single boson on the line, in a field with potentialU(x) as above.

Theorem 1.1 LetH = −1
2

d2

dx2 +U(x) be any Schr̈odinger operator, such that the potentialU(x) tends
to +∞ at infinity (so thatH has discrete spectrum). LetE0 be the smallest eigenvalue ofH. Then there
exists a unique, up to a factor, functionψ ∈ L2(R) (called the vacuum state wave function) such that
Hψ = E0ψ.
Proof For anyf ∈ L2(R) we have

(f ,Hf ) =

∫ ∞

−∞

(1
2
|f ′(x)|2 + U(x)|f (x)|2

)
dx (1.1)

Thus,ψ is defined by the condition that it is a global minimum point for the energy functionalE(f ) :=
(f ,Hf ) on the sphere||f || = 1. The proof of uniqueness ofψ rests on the following Lemma.
Lemma. If ψ is a real global minimum point of (1.1) thanψ has constant sign.

Proof of the Lemma.Let E(ψ) = E0. Suppose thatψ changes sign at the pointx0. Sinceψ satisfies
the Euler-Lagrange (=Schr̈odinger) equationHψ = E0ψ, we haveψ′(x0) , 0. Consider the function
|ψ|. It is clear thatE(|ψ|) = E(ψ) = E0, but |ψ| is not smooth, so it does not satisfy the Euler-Lagrange
equationHf = E0f , and thus cannot be the global minimum ofE. So, the smallest value ofE on the
sphere is less thanE0 – a contadiction.

Now it is easy to prove the theorem. If the space of solutions ofHψ = E0ψ is more than 1-
dimensional, then there exist two linearly independent, orthogonal real solutionsψ1, ψ2. On the other
hand, both of them have to be of constant sign, so (ψ1, ψ2) , 0 – a contradiction.�

It is useful to consider how symmetry breaking, which is absent in the quantum theory, arises in
the quasiclassical limit. For this purpose, we should introduce the Planck’s constant~, and consider
the~-dependent Hamiltonian

H = −~
2

2
d2

dx2
+ U(x), (1.2)

whereU(x) = g(x2 − a2)2/4!. Let E0,E1 be the lowest eigenvalues ofH in the space of even and odd
functions, respectively, andψ0, ψ1 the corresponding eigenvectors. We assume thatψ0, ψ1 have unit
norm, and are normalized in such a way thatψ0(0) > 0, ψ′1(0) > 0. It is easy to show in the same
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way as above thatψ1 does not change sign in the regionsx > 0, x < 0. Defineψ+ = 1√
2
(ψ0 + ψ1),

ψ− = 1√
2
(ψ0 − ψ1).

Then it is possible to prove the following.

Theorem 1.2 (i) As ~ → 0, E0,E1 ∼ a~
√

g/4!, and E1 − E0 ∼ Ce−S0/~, whereS0 is a positive
constant.

(ii) In the sense of distributions,

lim
~→0
|ψ±|2 = δ(x∓ a). (1.3)

This theorem shows that for very small~, although there is only one lowest energy stateψ0 with
energyE0, there is another stationary stateψ1 with energyE1 almost indistinguishable from the low-
est one, and in the 2-dimensional space spanned byψ0, ψ1, there are two orthogonal statesψ+, ψ−
localized near the classical equilibrium statesa,−a. The statesψ+, ψ− are not stationary (i.e. are not
eigenvectors ofH), but their failure to be stationary is indistinguishable to any finite order in~ (in
fact, the angle betweenHψ± andψ± is dominated by conste−S0/~. In particular, symmetry restoration
in quantum theory is not seen at the perturbation theory level.

Thus, we have seen how symmetry is lost in the quasiclassical limit. One can consider this effect
from a slightly different prospective, by looking how symmetry appears in the process of quantization.

Recall that we have two classical lowest-energy statesa,−a, near which the operatorH looks ap-
proximately like a harmonic oscillator. Therefore, we can look for eigenfunctions ofH perturbatively,
in the form

ψ̃±(x) = f±(
x∓ a√
~

), f±(z) = (π~)−1/4g1/8e−
√

gz2/2(1 + u1(z)~1/2 + u2(z)~ + ...) (1.4)

(the 0-th term of this expansion is the lowest eigenfunction of the harmonic oscillator). It is easy to
see that the real “eigenfunction” of the form (1.4), normalized to have unit norm, is unique for each
sign.

Now, one can see the following.
(i) The formal seriesf±(z) do not converge. However, they represent asymptotic expansions of

actual functionsψ±(z
√
~±a) (whereψ± are as above), which are smooth from the right in~ on [0,∞),

but not analytic.
(ii) The formal series̃ψ±(x) are eigenfunctions ofH with the same eigenvalue. On the other hand,

the actual functionsψ±(x) are not eigenvectors ofH, although their failure to be ones is exponentally
small. The actual lowest eigenvector ofH is unique up to a factor, and equalsψ0 = 1√

2
(ψ+ + ψ−). In

particular, it isG-invariant, unlikeψ+, ψ−.
(iii) Let Wn

+(t1, ..., tn), Wn−(t1, ..., tn) be the correlation functions computed perturbatively (by Feyn-
man calculus) using the formal vacuaψ̃+, ψ̃−. ThenWn

+,W
n− do not serve as small~ asymptotic ex-

pansions of the correlation functions of any realization of our quantum theory. However, the averages
1
2(Wn

+ + Wn−) do serve as such asymptotic expansions.
This shows how symmetry appears in quantization, when one goes from the perturbative to the

nonperturbative setting.
1.2. Still no symmetry breaking in quantum field theory in finite volume.

Before going over to quantum field theory, we will give one more argument, at the physical level
of rigor, which shows why there is no symmetry breaking in quantum mechanics (this argument is
more of an explanation than a proof). It is based on the path integral approach. It does not use
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representation theory of the Heisenberg algebra, nor the positivity of the vacuum wave function, and
has the advantage that it also works for quantum field theory on a spacetime with a “space” part of
finite volume.

As before, we will consider theZ/2Z-symmetric quartic potentialU(x). Suppose that symmetry
breaking were the case. Then the two perturbative vacuaψ̃+, ψ̃− do indeed exist nonperturbatively, i..e
serve as asymptotic expansions of actual lowest eigenstatesψ+, ψ− of the Hamiltonian, in two different
realizations of the theory,H+,H−. Consider the spaceH = H+ ⊕ H−. The vectorsψ+, ψ− ∈ H are
“localized” neara,−a, and are orthogonal to each other. Thus, the inner product (ψ+,e−Ht/~ψ−) must
vanish. Let us now compute the same inner product using path integrals.

Recall Feynman-Kac formula:

(δx1,e
−Ht/~δx2) =

∫

φ:[0,t]→R,φ(0)=x1,φ(t)=x2

e−S(φ)/~Dφ, (1.5)

where

S(φ) =

∫ t

0
[
1
2

(φ′)2 + U(φ)]ds. (1.6)

The statesψ+, ψ− are “localized” neara,−a (i.e. are close to delta-functions ata,−a after a suitable
normalization). So, if we believe the Feynman-Kac formula in this situation, we can substituteδ(x−a),
δ(x + a) instead of them, and apply the Feynman-Kac formula. Using the small~ stationary phase
estimate on the right hand side of (1.5), we will get

(ψ+, e
−tH/~ψ−) ∼ Ce−S∗(t)/~, (1.7)

whereS∗(t) is the least possible action of a pathφ : [0, t] → R such thatφ(0) = −a, φ(t) = a.
The least actionS∗(t) is attained at a classical trajectoryφ = φ∗(τ), which is a solution of the

Euler-Lagrange differential equation, i.e. the Newton’s equationφ′′ =
g
6φ(φ2 − a2) with boundary

conditionsφ(0) = −a, φ(t) = a. (Such a solution exists and is unique).
Remark. The functionx = φ∗(τ) describes the motion of a ball in the potential field with potential
−U(x) (a camel’s back), from one hump to the other. The initial velocity of the ball is such that the
time needed to go from the top of one hump to the top of the other ist. The reason that the potential
U(x) is replaced here by−U(x) is that we are doing a Euclidean path integral, which means that we
performed a Wick rotationt → it. This rotation transforms the Newton’s equation for the potentialU
into the Newton’s equation for the potential−U.

Formula (1.7) contradicts the fact that (ψ+,e−Ht/~ψ−) vanishes. So our assumption that there are
two vacua was false.
Remark. Formula (1.7) actually gives the correct estimate of the inner product (ψ+, e−tHψ−). In
particular,S0 = S∗(∞). This estimate can be confirmed by rigorous methods.

In this argument, we have never used the fact thatψ+,ψ− are functions on the real line. All we used
is that they are “localized” near classical equilibrium statesa,−a, i.e. that for any local observableA
the expectation value ofA onψ± is close to the value of the corresponding classical observable at the
point (±a, 0) in the phase space. Thus, our argument is independent of the realization of the space of
states asL2(R). This makes it easy to generalize this argument to the case of field theory.

Consider a spacetimeM × R, whereM is the “space”. We will assume that we have already
performed a Wick rotation, so that the metric on the spacetime is a Riemannian product metric. We
will assume that the volume ofM is finite and equalsV.

Consider the field theory onM × R with one scalar Bose fieldφ, described by the Euclidean
Lagrangian

L =

∫
(
1
2

(∇φ)2 + U(φ))dx, (1.8)
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whereU is the quartic potential as above. As before, we have two equilibrium statesa,−a.
Now consider this theory quantum mechanically. Then we can see that there is still no symmetry

breaking. The simplest way to see it is to consider first a discrete spaceM. In this case, the op-
erator algebra is a finite tensor product of Heisenberg algebras corresponding to points ofM, so it
is a Heisenberg algebra itself, and the representation-theoretic argument the we used in the case of
quantum mechanics shows that symmetry breaking does not occur.

However, it is more instructive to use the path integral argument. As before, assume that symmetry
breaking occurs. Then we have two realizationsH+, H−, and two orthogonal quantum vacuaΩ± ∈
H = H+ ⊕ H− whic are “localized” near the equilibrium pointsa,−a for small~, in the sense that
〈Ω±, φ(x1)...φ(xn)Ω±〉 → (±a)n, ~→ 0.

As in the quantum mechanics case, the inner product (Ω+,e−tH/~Ω−) vanishes. On the other hand,
computing it using the Feynman-Kac formula, we will get

(Ω+,e
−tH/~Ω−) ∼ e−S∗(t)V/~, (1.9)

whereS∗(t) is as above. The reason is that the least action is attained on the space-independent
classical solutionφM∗ (µ, τ) = φ∗(τ), µ ∈ M, τ ∈ R.

Since (1.9) is nonzero (here it is essential that the volumeV is finite), we get a contradiction.
As in quantum mechanics, we can define two sets of correlation functionsWn

+, Wn−, evaluated by
using perturbation theory near the lowest energy pointsa,−a (of course, we can only define them in the
renormalizable case, i.e. in 4 dimensions and below; also, one should remember that renormalization
is not uniquely determined). Our reasonings show thatWn

+, Wn− are not small~ expansions of the
correlation functions of a realization of our quantum theory. On the other hand, the functionsWn

0 =
1
2(Wn

+ + Wn−) have a chance to be asymptotic expansions of the actual (nonperturbative) correlation
functions.

For dim(M) = 1,2 the existence of the quantum theoryH has been established in constructive
field theory. In this case, it is possible to show that there exists aG-invariant vacuumΩ0, such that the
correlation functions of the theory with respect toΩ0 indeed have the asymptotic expansion given by
Wn

0.
1.3. Symmetry breaking in quantum field theory in infinite volume.

When the volumeV of the spaceM becomes infinite, the arguments of the previous section fail.
The representation-theoretic argument fails, because the canonical representation of the operator al-
gebra, whioch we used in the case of finite volume, is now an infinite tensor product of spaces corre-
sponding to points; so we have to make sense of it, and there may be no G-invariant way of doing so.
The path integral argument also fails. Indeed, the right hand side of (1.9) vanishes, so both compu-
tations of (Ω+,e−tH/~Ω−) give the same answer, and we can derive no contradiction. Moreover, if we
assume that we have a representationH of the operator algebra with two vacuaΩ+,Ω−, then using
the formula

〈Ω+, φ(x∗1)....φ(x∗n)Ω−〉 =

∫

φ:X→R,φ→±a,t→±∞
φ(x1)...φ(xn)e−S(φ)/~Dφ, (1.10)

wherex∗ = (µ, it) for x = (µ, t), we infer that the inner product (1.10) vanishes for anyx1, ..., xn. This
shows that the spaceH splits in an orthogonal direct sum:H = H+ ⊕ H−, where the spacesH±
are the Hilbert spaces of separate realizations generated by the vacuaΩ+,Ω−. This means, symmetry
breaking could occur, like in the classical theory: quantum effects are not strong enough to restore
symmetry.

This is what in fact happens in quantum field theory. More precisely, the situation is the following.
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(i) If the symmetry groupG is a finite group, symmetry can be broken in infinite volume starting
with spacetime dimension 2. For example, in the example we considered symmetry breaking does
occur.

(ii) If the symmetry groupG is a connected Lie group, symmetry breaking can occur starting with
spacetime dimension 3. The fact that it does not occur in dimension 2 is a remarkable and a very
important fact, which we will discuss in the next section. This fact was proved by S.Coleman in 1973
(see S.Coleman’s paper, CMP, vol. 31, page 259).

Thus, symmetry breaking is an “infrared” effect, associated with the behavior of the theory at
large distances.
1.4. Infinite volume asymptotics of correlation functions.

Let us see how symmetry is broken in the infinite volume limit of finite volume quantum field
theories. We will assume thatM is a torusTr = (R/rZ)d−1, andr → ∞. In the limit, we hope to
recover a Poincare invariant field theory corresponding to our Lagrangian. However, as we know,
there are two such theories:H+ andH−. So which of them do we recover?

Let us formulate the question more precisely. Consider the correlation functionsWn
r , correspond-

ing to the field theory with space being the torusTr . Let alsoWn
+,W

n− be the correlation functions of
the theoriesH+,H−. The question is, what is the asymptotics ofWn

r asr → ∞, in terms ofWn
+, Wn−?

The answer is: there exists anr-dependent normalization constantC(r) such that

lim
r→∞C(r)Wn

r =
1
2

(Wn
+ + Wn

−). (1.11)

Now consider a field theory defined by a LagrangianL =
∫

(1
2(∇φ)2) + U(φ))dnx, whereU(φ) is

a general potential, with a finite symmetry groupG. Suppose thata1, ..., am are the global minimum
points ofU, transitively acted on byG, andU(ai) = 0. Consider first the quantum field theory with
space being the torus of volumeV = rd−1. We have seen that there is one realizationH of this theory,
and it has certain correlation functionsWn

r . On the other hand, in infinite volume we will havem
different realizationsH1, ...,Hm, with correlation functionsWn

1 , ...,W
n
m.

Let us consider the asymptotics ofWn
r as r → ∞. The answer is the following: for a suitable

V-dependent normalization constantC(r),

lim
r→∞C(r)Wn

r =
1
m

∑
Wn

i , (1.12)

This shows that the limit of normalized finite volume correlation functions may, in general, fail to
satisfy the cluster decomposition axiom, (see Kazhdan’s lectures).

This story can be slightly generalized. Namely, we can makeM a ball of radiusr, and impose
some boundary conditionsB on fields at the boundary of the spacetime. This means, we will define
correlation functions by the formula

Wn
r (B)(x1, ..., xn) =

∫

φsatisfying boundary conditions
φ(x1)...φ(xn)e−S(φ)Dφ.

Then the infinite volume asymptotics ofWn
r (B) looks like

lim
r→∞C(r)Wn

r (B) =
∑

piW
n
i , (1.12)

The collection of numberspi represents the “density” with which the quantum vacuum in finite volume
is spread over the set of classical minima (=quantum vacua in infinite volume). This density depends
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on the boundary conditions. The word “density” should not be taken literally, however, because the
numberspi are in general complex numbers.

If we take the simplest boundary conditionφ = ai , then in the limit we will get the correlation
functionsWn

i (i.e. pi = 1, pj = 0, i , j), so we get purely the i-th vacuum. However, if we impose
some other boundary condition, we will, in general, get a mixture of vacua.

For example, in the case ofZ/2Z-invariant quartic potential, we can impose boundary conditions
φ = a, φ = −a, or φ = 0 (do not worry that the action of all fields in the third case is infinite; since
we are considering a normalized path integral, i.e. divided by the partition function, this infinity will
cancel). LetWn

r (s) are the corresponding correlation functionss = a,−a, 0. Then in the first case
p+ = 1, p− = 0 (as it it hard to get from the boundary anywhere excepta with a small action), in the
second casep+ = 0, p− = 1 (for a similar reason), and in the third casep+ = p− = 1/2.
1.5. Continuous symmetry breaking.

Now we will consider symmetry breaking in quantum field theory, when the symmetry group is a
connected Lie group. The typical example is a complex valued Bose fieldφ, and the Lagrangian

L(φ) =

∫
ddx

(
1
2
|∇φ|2 + (|φ|2 − a2)2

)
. (1.13)

This Lagrangian has aU(1)-symmetry, acting byφ → eiθφ. In the classical theory, we have lowest
energy statesφ = aeiθ, θ ∈ [0, 2π), so we have symmetry breaking. We will try to find out whether
symmetry breaking exists also in the quantum theory.

Above we showed that symmetry breaking does not occur in the 1-dimensional case (quantum
mechanics). We did it for the case of a real bosonφ, but for the complex boson the argument (with
path integral) works even better. For instance, for Lagrangian (1.13) the set of classical minima of
energy is the circle|φ| = a, which is connected. Therefore, to go from one classical minimum,aeiθ1, to
another,aeiθ2, one does not need to go over the “hump” of the potential, and can go along the circle of
minima, so one can do it with even less action than before. Therefore, the path integral computation
described above would show that in the complex case there is even more linking between the states
ψ+, ψ− than in the real case. This effect might make us think that perhaps in field theory, continuous
symmetry breaking does not happen as easily as discrete symmetry breaking. And indeed, it turns
out that continuous symmetry breaking cannot happen in two dimensions, and can happen only in
dimensions≥ 3.

Unfortunately, the path integral method is too crude to show that continuous symmetry breaking
does not occur in 2 dimensions. Indeed, it is easy to see that all paths in the integral which com-
putes (Ω+, e−tHΩ−) have infinite action in infinite volume, so we can derive no contradiction. So
let us demonstrate why symmetry is preserved in 2 dimensions and broken above 2 dimensions by
considering the simplest example.

The simplest example is the theory of a free massless real scalar Bose field ind dimensions,
defined by the Lagrangian

L0(φ) =

∫
ddx(

1
2

(∇φ)2). (1.14)

This theory has a translation symmetryφ→ φ+c. Let us show that this symmetry is broken ford > 2,
and preserved ford = 2.

For d > 2, symmetry breaking is obvious. Indeed, in this case we have a Wightman field theory
generated by an elementary fieldφ, satisfying Wightman axioms (see Kazhdan’s lectures). In this
theory, the 1-point function of the operatorφ is zero, while the 1-point function of the operatorφ + c
is c. Therefore, the transformationφ→ φ+ c does not preserve the 1-point function. This shows, that
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in the cased > 2 we in fact have not a single realization, but a family of realizationsHc parametrized
by pointsc of the line. The theoryHc is defined by the condition that〈Ωc, φΩc〉 = c, whereΩc is
the vacuum ofHc. The vacuumΩc is “localized” near the classical equilibrium statec. The map
φ→ φ + c transformsHb toHb+c.

For d = 2, the situation is not the same. The problem is that the operatorφ is not defined in 2
dimensions, although its derivatives are. Indeed, in 2 dimensions, we have

〈∂φ(x)∂φ(y)〉 = −∂x∂y ln |x− y|, (1.15)

so if the operatorφ was defined in some way, we would have

〈φ(x)φ(y)〉 = − ln |x− y| + C, (1.16)

which contradicts positivity (the function on the RHS of (1.16) is not positive).
Let us say this more precisely. What we have in 2 dimensions is a quantum field theory generated

by a Wightman mapφ from Schwarz functions to operators, which is defined not on the whole space
of Schwarz functionsS(V) but only on the spaceS0(V) of Schwarz functions onV with integral zero.
Then derivatives ofφ can then be defined on all Schwarz functions by

∂iφ(f ) = −φ(∂i f )

(the right hand side makes sense since
∫
∂i f = 0).

However, in the theory defined by suchφ the question of symmetry breaking does not arise, since
there is no symmetry to begin with: on the spaceS0(V), the mapsφ andφ + c are the same. So, in
order to raise the question about symmetry breaking, we should consider an extension of our operator
algebra, which will have a nontrivial action of symmetry. The most reasonable way of doing so is the
following.

Instead of considering the theory of anR-valued massless scalarφ, we will consider the theory
of a circle-valued fieldφ with the same Lagrangian. We take the circle to beSλ = R/2πλZ. The
Lagrangian is the same as before. In this case, the local functionalφ is not defined, but instead we
have local functionalseikφ/λ, k ∈ Z. The local functionals in this theory are Laurent polynomials in
eiφ/λ whose coefficients are differential polynomials in the derivatives of the fieldφ, but not inφ itself.
The translational symmetry in this theory is theU(1)-symmetry: for a complex numberzwith |z| = 1,
z◦ eikφ/λ = zkeikφ/λ, andz acts trivially on the derivatives ofφ. Classically, this theory has a family of
vacua (equilibrium states), given byφ = c, c ∈ Sλ.

Let us show that in this system symmetry is not broken quantum-mechanically. It is enough to
show that the 1-point function〈Ω,O(0)Ω〉 vanishes for any local operatorO of the formO = P(φ)eikφ/λ

for k , 0. Let us show this in the caseP = 1 (in general, the proof is analogous). Proof: From the
OPE in the free theory (cf. Witten’s lecture 3 from the fall term) we get

〈Ω,O(x)O∗(0)Ω〉 = |x|−k2/λ2
,

so this 2-point function vanishes at infinity. But by clustering, the limit of this function at infinity is
|〈Ω,O(0)Ω〉|2. So,〈Ω,O(0)Ω〉 = 0.

Another way to see that there is no symmetry breaking is as follows. The Hilbert space of the
quantized theory is of the formH = F ⊗F∗ ⊗ l2(λZ) = ⊕k∈Z(F ⊗F∗)k, whereF is the Fock space. The
operators corresponding to derivatives ofφ respect this decomposition, while the operatoreikφ/λ maps
the space (F ⊗ F∗)k′ to (F ⊗ F∗)k+k′ . The vacuum vectorΩ belongs to the zero component (F ⊗ F∗)0.
This implies that all correlation functions of operators in this theory are invariant under the action of
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U(1). In particular,〈eikφ/λ〉 = δ0k, which shows that the vacuumΩ is not “localized” near any classical
vacuum but is “spread” uniformly over the spaceSλ of classical vacua. Thus, symmetry underU(1) is
not broken.
Remark 1. It is instructive to see why our argument that there is symmetry breaking ford > 2 fails
in finite volume, where, as we know, there should be no symmetry breaking. The problem is that in
finite volume the fieldφ is not defined, although its derivatives are. Indeed, since the spacetime is the
product of a time line with a compact space, at large distances in looks simply like a line, the 2-point
function ofφ (which is the Green’s function of the spacetime) at large|t| looks like the 1-dimensional
Green’s function, i.e.−|t|+C+o(1). This function is not bounded from below, so it violates positivity.
Moreover, as follows from considering the cased = 2, the situation is the same if all spatial directions
but one are compactified.
Remark 2. Above we have considered the theory of a free massless scalarφ in dimensiond >

2 and found that its space of quantum vacua is the space of values ofφ (i.e. the target spaceR).
More generally, if one considers the sigma-model with spacetimeRd, d ≥ 2, and target spaceM (a
Riemannian manifold), the space of quantum vacua, as well as the space of classical vacua, will beM.
(Here you should forget for a moment that this sigma-model for nonlinearM is not renormalizable,
and so it is not clear what this statement means. We will clarify this point later.) In particular,M as a
Riemannian manifold can be recovered from the quantum theory as moduli space of quantum vacua
(see Remark 3 below).

On the other hand, we saw that ford = 2 the theory of a circle-valued fieldφ (which is the same
as the 2-dimensional sigma-model with target spaceSλ) has only one vacuumΩ. This is the case for
2-dimensional sigma-model in general: its moduli space of quantum vacua is generally very small,
and does not coincide with the space of classical vacua (=the target space). In particular, the target
space cannot be recovered intrinsically from the quantum theory. For example, the circleSλ cannot
be recovered intrinsically from the theory of maps intoSλ considered above. This, in fact, happens
for a good reason – one can show that the theories attached to the circlesSλ andS1/λ are equivalent
(for example, their partition functions coincide – see Gawedzki’s lecture 1, formula (9)). This is the
starting point for the theory of mirror symmetry.
Remark 3. Consider a field theory with the LagrangianL =

∫
ddx(1

2(∇φ)2 + U(φ)), whereφ takes
values in some Riemannian manifoldM, andU is a potential function onM (U ≥ 0). Let M(0) is
the set of zeros ofU. Assume thatM(0) is nonempty and smooth, and thatd2U is nondegenerate
on TxM/TxM(0) for x ∈ M(0). Suppose that there is a Lie groupG which acts by isometries onM,
fixes U, and acts transitively onM0. In this case, one can show (at the physical level of rigor) that
the “infrared behavior” of the theory described byL is the same as the “infrared behavior” of the
sigma-model with target space being the spaceM(0) of classical vacua. The precise meaning of this
statement is explained in Section 1.7. (We can ignore nonrenormalizability problems by defining the
theories by a cutoff path integral, where integration is taken over fields defined on a lattice with step
Λ−1, or over fields having only Fourier modes with|k| < Λ, with respect to some coordinate system; in
this setting, the cutoff Λ is not sent to infinity). This fact can be explained heuristically: if a function
φ has only low Fourier modes, it cannot oscillate rapidly, so in order to have a small action and thus
give a noticeable contribution to the path integral, it has to stay closely to the minimum locusM(0),
i.e. has to be close to a map intoM(0).

Thus, continuous symmetry breaking, being an infrared effect, will occur in the theory described
byL iff it occurs in the corresponding sigma-model. So, as follows from remark 2, symmetry breaking
tends not to occur in dimension 2, but tends to occur in dimension> 2.

These are, however, mostly heuristic arguments. In the next section we will treat the issue of
continuous symmetry breaking in a more systematic way, using Goldstone’s theorem.
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1.6. Goldstone’s theorem.
Recall the standard formalism of Noether’s theorem and currents in classical field theory. Suppose

we have a LagrangianL = L(φ) in ad-dimensional spacetimeV. Denote the space of solutions of the
corresponding Euler-Lagrange equations byX.

Let Gs be a 1-parameter symmetry group of this Lagrangian. LetDφ := d
ds|s=0Gsφ. We assume

thatDφ is a local functional ofφ.
Let η ∈ Ω1(X,Ωn−1(V)) be the canonical 1-form on the space of solutions that was discussed in

Bernstein’s lectures and in Witten’s problem sets (the canonical 2-form onX was defined as
∫
C

dXη,
whereC is ann−1-dimensional cycle). For instance, the formula forη for the free theory of a massless
scalar is

η(δφ)(x) = δφ(x) ∗ dφ(x). (1.17)

Let J ∈ Ω0(X,Ωd−1(V)) be defined by the formulaJ = η(Dφ). SinceDφ is local, so isJ. Thus,J is a
local functional onX with values inΩd−1(V). For instance, ifL is the Lagrangian of the theory of a
free massless scalar, andGsφ = φ + s, thenDφ = 1, soJ(x) = ∗dφ(x). The local functionalJ is called
thecurrentcorresponding to the symmetryGs. The main property of the current is that it isconserved,
i.e. dVJ = 0. This follows form the fact thatdVη = 0.

In finite volume it is useful to define the charge functionalQ =
∫
C

J(x), whereC is some spacelike
cycle (e.g. t = const). Since the current is conserved, this quantity is independent of the choice of
the cycle, as long as it represents the fundamental homology class of “space”. IfΩ =

∫
C

dXη is a
nondegenerate 2-form onX, thenQ is a Hamiltonian which defines the symmetry groupGs, in the
sense thatdds|s=0(Gs)∗F = {F,Q}, where{, } is the Poisson bracket onS, andF any local functional on
X.

In infinite volume, the functionalQ is not necessarily defined, since the integral does not converge.
In this case, it is convenient to setC = C0 = {t = 0} (here we have chosen a time coordinate on the
spacetime), and define the “cutoff charge functional”

Qf =

∫

C0

f (x)J(x), (1.18)

wheref : C0 → R is a Schwarz function. The limit limf→1 Qf in this case does not exist, but for any
local functionalF

lim
f→1
{F,Qf } =

d
ds
|s=0(Gs)∗F. (1.19)

Remark. By f → 1 we mean thatf converges to 1 uniformly on any compact set, and all derivatives
of f go to zero uniformly on the whole space.

In quantum theory, the story is the same, except that (local) functionals are replaced with local
operators, and Poisson bracket with commutator timesi. That is, to any one-parameter symmetryGs

there corresponds ad−1-form-valued local operatorJ(x), which is conserved, and the charge operator
Q =

∫
C

J(x) (in finite volume) has the property

[F,Q] = −i
d
ds
|s=0(Gs)∗F. (1.20)

The case of infinite volume is dealt with in the same way as in the classical theory, by considering
cutoff operatorsQf .

Now we will discuss Goldstone’s theorem. Suppose that the symmetryGs in the theory defined
byL is broken not only classically but also quantum mechanically. In this case, if we have a solution
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of the theoryH (a Hilbert space with an action of the operator algebra), then there exists a scalar local
operatorφ whose 1-point function is not invariant under symmetry.
Remark. Strictly speaking, we only know that some n-point function is not invariant; but in all known
situations with symmetry breaking there is also a non-invariant 1-point function.

Let Qf be the cutoff charge operator for the symmetryGs. We have

〈Ω|[Qf , φ(0)]|Ω〉 , 0, (1.21)

for f sufficiently close to 1. Thus,〈Ω|[J(x)φ(0)]|Ω〉 , 0 for somex.
Consider the 2-point functions

M+(x) := 〈Ω|J(x)φ(0)|Ω〉,M−(x) := 〈Ω|φ(0)J(x)|Ω〉 (1.22)

(these ared − 1-forms onV). Since the symmetry is broken,M+ , M−, although by space-like
separation, they coincide ifx is spacelike.

LetH =
∫
p∈V+
Hp be the spectral decomposition ofH with respect to the action of the translation

group (hereV+ is the positive part of the full light cone). Using the decomposition of the inner product
in a sum over intermediate states, (〈J(x)Ω, φ(0)Ω〉 =

∑
n〈J(x)Ω,n〉〈n, φ(0)Ω〉), we get

M±(x) =

∫

V+

K±(x, p)dp, (1.23)

whereK+(x, p),K−(x, p) are the contributions toM+,M− from intermediate states of 4-momentump
(K± are vector-valued distributions inp).

Because of Lorentz invariance, the distributionsK+,K− look like

K± = pe±ipxρ±(−p2), (1.24)

whereρ±(s) are distributions on the half-lines≥ 0.
This yields

M±(x) = i ∗ dV

∫ ∞

0
ρ±(m2)Wm(±x)dm2, (1.25)

whereWm(x) =
∫
O+

m
eipxdp is the Klein-Gordon propagator with massmdefined in Lecture 1 last term

(O+
m is the upper sheet of the hyperboloidp2 = −m2).
Let M(x) = M+(x) − M−(x). SinceWm(x) = Wm(−x) whenx is spacelike, for spacelikex (1.25)

yields

M(x) = i ∗ dV

∫ ∞

0
(ρ+(m2) − ρ−(m2))Wm(x)dm2. (1.26)

However, as we have mentioned, by spacelike separationM(x) vanishes for spacelikex. This implies
thatρ+ = ρ− = ρ, and so (1.25) yields

M(x) = i ∗ dV

∫ ∞

0
ρ(m2)(Wm(x) −Wm(−x))dm2. (1.27)

Differentiating both sides of (1.27), at a pointx such thatx2 > 0, and using the conservation of the
current and the Klein-Gordon equation∇2Wm = −m2Wm, we get

∫ ∞

0
m2ρ(m2)(Wm(x) −Wm(−x))dm2 = 0. (1.28)
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Taking the Fourier transform, we get
p2ρ(−p2) = 0. (1.29)

Thus,ρ(m2) = cδ(m2), wherec is a constant. The constantc cannot vanish, otherwise we will prove
that [J(x), φ(0)] has a zero expectation value at the vacuum, which contradicts the assumption of
symmetry breaking.

This argument shows that all contributions to the 2-point function〈Ω, J(x)φ(0)Ω〉 comes from
intermediate states of zero mass. This implies thatL2(O+

0 ) is contained in the discrete spectrum ofH
(i.e. as an honest subrepresentation of the Poincare group). Such a subrepresentation is interpreted
in quantum field theory as a massless particle of zero spin. Thus, we have proved the following
statement, which goes under the name of Goldstone’s theorem:

Theorem In the Hilbert space of a realization of a field theory with continuous symmetry breaking,
there is a massless scalar (i.e. a subrepresentation of the Poincare group isomorphic toL2(O+

0 )) which
is created by the current of the broken symmetry.
Remark. “Created” means thatJ(x)Ω is not orthogonal to the subrepresentation.
Definition. The massless scalar which we found is called the Goldstone boson corresponding to the
broken symmetryGs.
Remark 1. If the symmetry with respect toGs was not broken, then limf→1 Qf Ω would be zero.
On the other hand, when symmetry breaking occurs,Qf creates Goldstone bosons from the vacuum.
Thus, Goldstone bosons “measure” the failure of symmetry.
Remark 2. The Goldstone boson can be created not only by the current operator of the symmetry, but
also by other local operators. In fact, as we saw in the proof of Goldstone’s theorem, it will be created
by any scalar local operator whose 1-point function is not invariant under the symmetry.
Remark 3. There is no claim in Goldstone’s theorem that the Goldstone boson is free, i.e. that it can
be created by a free fieldφ(x). In fact, as we will see, this is often not the case.
Remark 4. If continuous symmetry breaking occurs classically, the Goldstone boson can already be
seen in perturbation theory. As an example consider Lagrangian (1.13). Consider the classical vacuum
stateφ = a. This vacuum state is degenerate. Therefore, if we introduce real variablesφ1 = Reφ − a,
φ2 = Imφ, and rewrite the Lagrangian in terms of these variable, then because of the degeneracy of
the minimum the fieldφ2 will be classically massless. Therefore, if we compute the 2-point function
of φ2 it will have a pole atk2 = 0 (modulo the perturbation parameters). Of course, in principle
loop terms might shift this pole. In other words, the classically masslessφ2 may get nonzero mass
quantum-mechanically. What Goldstone theorem tells us is that this will not happen if symmetry is
broken.

Corollary from Goldstone theorem Symmetry breaking does not happen in 2 dimensions.
Proof. Otherwise, by Goldstone’s theorem Goldstone bosons would have to exist. But in a 2-

dimensional quantum field theory, there can be no massless particles created by a local operator.

Indeed, the 2-point function of this operator in momentum space equalsw(k2) =
∫ ∞
0

dµ(m2)
k2+m2 , whereµ

is the spectral measure. If there is a massless particle, this measure will have an atom atm = 0. But
in this case the 2-point functionW(x) in position space will behave like−C ln x2 at infinity, i.e. would
violate the positivity axiom.�

Now assume that we have a Lagrangian which has a Lie groupG of symmetries. Assume thatH
is a realization of the quantum field theory defined by this Lagrangian, whose stabilizer isH ⊂ G. In
this case one says that in the realizationH , theG-symmetry is spontaneously broken toH.

Let g, h be the Lie algebras ofG,H. Goldstone’s theorem implies
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Corollary H contains in its discrete spectrum a subrepresentation isomorphic toL2(O+
0 ) ⊗ (g/h).

Proof The proof is clear: if this is not so than there exists an elementY ∈ g, Y < h, such thatQY
f Ω→ 0

(weakly) whenf → 1. This means that the symmetry with respect toY is not broken – a contradiction.
The corollary means that Goldstone bosons corresponding to linearly independent broken in-

finitesimal symmetries are also linearly independent.
Example. Let φ : Rd → RN be a scalar field, and consider the Lagrangian

L(φ) =

∫
ddx(

1
2

(∇φ)2 +
g
4!

(φ2 − a2)2). (1.30)

This Lagrangian has anSO(N)-symmetry, and the space of its classical vacua isSN−1. Therefore,
classically theSO(N)-symmetry is broken toSO(N − 1). As we know, ifd > 2, the same will happen
quantum mechanically (for a weakly coupled theory), and so any realization (solution) of the theory
hasN − 1 independent Goldstone bosons.

Let P be the classical minimum with coordinates (0, 0, ..., 0, a). Consider the realizationHP of the
theory, where the vacuumΩ is localized nearP. Let Yi ∈ soN, i = 1, ...,N − 1, be the infinitesimal
rotations in the planes generated by basis vectorsei ,eN of RN. The 1-point function of the operatorφi

is not invariant underYi , soφi creates the Goldstone boson corresponding toYi .
We can construct low energy (non-vacuum) states localized near other classical vacua thanP.

Indeed, letP′ be another classical vacuum, andY ∈ so(N) is an element such thateYP = P′. Let JY be
the current corresponding toY, andQY

f the corresponding cutoff charge. Then the stateeiQY
f Ω is a low

energy state localized nearP′.
At long distances the theory will behave as a sigma-model into the space of classical vacua. This is

an interesting statement forN ≥ 3, because in this case the target (SN−1) is not flat, so the sigma-model
is not free. More precisely, at low energies (or long distances), the theory of bosonsφi , i = 1, ...,N−1,
will be free in the zero approximation, but in the first approximation it will not be free but will be
described by the Lagrangian of the sigma-model into the sphere.
1.7. Infrared behavior of purely non-renormalizable field theories.

In this section we will clarify the meaning of the statement that ford > 2 a quantum field theory
behaves in the infrared limit as a sigma-model into the space of classical vacua.

Suppose we have a purely nonrenormalizable field theory described by a LagrangianL. We will
call a Lagrangian purely nonrenormalizable if all its couplings have negative dimension. An example
of such a Lagrangian is the Lagrangian of a sigma-model ford > 2. Such Lagrangians are not good
for perturbative renormalization in the UV limit, but create no problem in the IR limit, since all their
interactions are IR irrelevant from the point of view of the Wilsonian renormalization group flow.
Namely, if we introduce an UV momentum cutoff Λ (which is now not being sent to infinity), we can
define correlation functions ofL perturbatively: the correlation function is the sum of amplitudes of
all Feynman diagrams, which are evaluated as usual, with integration carried out with cutoff |q| < Λ.
BecauseL has no mass terms, there will be some IR divergences, but they can be dealt with in the
same way as we dealt with UV divergences in Lectures 1-3 last semester. Moreover, since the theory
is purely non-renormalizable, only finitely many graphs will be divergent for each number of external
legs (like in a superrenormalizable theory in UV renormalization).

Now suppose that we want to compute the asymptotic expansion of the n-point function in mo-
mentum representation, around the pointki = 0. We will have (for

∑
ki = 0):

Gn(k1, ..., kn) = k−2
1 ...k−2

n G0
n(k1, ..., kn), (1.31)

whereG0
n is a certain series, having a limit atki = 0 (In general, this will not be a power series; it may

contain terms of the formk4 ln k2).
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The key property of this series, which follows from pure nonrenormalziability, is that modulo
terms of any finite power, it is determined by finitely many Feynman graphs. Thus, we can obtain the
IR asymptotics of the correlation functions to any order inki without having to sum the perturbation
series.

Now suppose we have an actual quantum field theory, given by some renormalizable Lagrangian
L′. When we say that the theory defined byL′ is described in the IR limit by a purely nonrenor-
malizable LagrangianL (on the same fields), we mean that to a certain order inki (nearki = 0), the
functionsG0

n given by (1.31) are the same forL as forL′.
For instance, when at the end of the previous section we said that at low energies (or long dis-

tances), the theory of bosonsφi , i = 1, ...,N − 1, is free in the zero approximation, and described by
the Lagrangian of the sigma-model into the sphere,

Lσ =

∫
ddx(

1
2

∑
(∇φi)

2 + R(
∑

φ2
i )(

∑
(∇φi)

2))

in the first approximation (whereR is proportional to the curvature), we meant that the functions
G0

n(k1, ..., kn) for φi are the same as in the free theory moduloo(1), and the same as in the sigma-
model moduloo(k2).

Computing higher terms of thek-expansion, one can construct a purely nonrenormalizable low
energy effective theory, which will describe our theory in the infrared to any required accuracy.
Remark. The restriction of the functionGn

0(k1, ..., kn) to the locusk2
i = 0 (but ki is not necessarily

zero) has a physical meaning: it is the scattering amplitude (S-matrix) ofn Goldstone bosons. Thus,
the statement is that scattering matrix ofn Goldstone bosons in model (1.30) is like in the free theory
for N = 2 (as the circle is flat), but has a quadratic correction due to curvature forN > 2.

Therefore, asymptotic expansion (1.31) can be computed to any order inki by computing ampli-
tudes of finitely many diagrams.
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Lecture II-2, part I: Infrared Behavior of Quantum Field Theories

Edward Witten ∗1

Given a quantum field theoryX, we want to solve it, that is, to learn the most interesting things
about it. A big piece of “solving” a theory is determining what it flows to in the infrared. Fairly often,
the answer is: “nothing,” that is,X flows to a trivial theory. This happens precisely whenX has a mass
gap, for then all (Euclidean) correlation functions decay exponentially. Showing that a given theory
flows to a trivial theory may, however, be a rather deep result.

Very often, the infrared limit is not trivial but is a free theory of massless particles, together
with an irrelevant interaction which goes to zero in the infrared. In fact, this happens in most of the
simplest examples that we will meet. Note that an irrelevant interaction would, in the ultraviolet, be
considered “unrenormalizable”; the perturbations that are ill-behaved in the ultraviolet are just the
ones that vanish as one flows to the infrared limit.

When a theory is free in the infrared, the question then becomes:whichmassless particles is it a
free theory of? They might not be related to the ones in the original Lagrangian. In fact, as we shall
see in the second part of the lecture, the answer to this question may depend on the vacuum state we
are in.

For the infrared limit to be trivial is a special case of the infrared limit being free; it is the case
that there are no massless particles at all in the physical spectrum.

We begin with an example, and then discuss several general features of infrared limits.

1 Example from last time

Consider a theory which breaksSO(3) to SO(2) = U(1). We have three real scalars which can be
combined to a 3-component object~φ which transforms in the 3-dimensional representation ofSO(3).
The Lagrangian is

L =
1
λ

∫
dnx

[
1
2

(∂µ~φ)2 + V(|~φ|)
]
,

where, lettingρ = |~φ|, V(ρ) is a potential which has a nondegenerate minimum away from the origin.

0

2

4

6

8

0 0.5 1 1.5 2
x

The simplest such potential isV(ρ) = 1
8(ρ2 − ρ2

0)2, with a minimum atρ0. If we let Ω = φ/ρ ∈ S2, we
can rewrite the Lagrangian as

L =
1
λ

∫
dnx

[
1
2

(∂µρ)2 +
1
2
ρ2(∂µΩ)2 + V(ρ)

]
.

The term1
2ρ

2(∂Ω)2 represents the round metric onS2.
Whenλ is small, we can hope that the classical approximation will be good. Sinceρ is a massive

field, we can integrate it out of the theory by setting it equal to its minimum valueρ0 and studying
fluctuations

ρ = ρ0 + w,

1∗Notes by David R. Morrison
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wherew is now the quantum field which will appear in our path integrals. To first approximation, we
would have an effective Lagrangian

Leff(Ω) =
ρ2

0

2λ

∫
dnx (∂Ω)2,

describing a nonlinear sigma model of maps toG/H, which in the present case isS2. The massless
fields are described byΩ.

Can this be an answer? In other words, couldanyquantum field theory flow to this sigma model
in the infrared? In fact, itis a possible answer for spacetime dimensionn > 2, because the nonlinear
sigma-model is non-renormalizable above two dimensions, so the interaction we get is irrelevant. That
is, if ai are Riemann normal coordinates on near a pointP ∈ S2, we can expand schematically nearP

(∂Ω)2 = (da)2 + Ra2(da)2 + . . .

with R being the Riemann tensor ofS2. From this we see that the interaction is irrelevant above two
dimensions. In fact, to give (da)2 dimensionn, we must assign dimension (n − 2)/2 to a, whence
the interaction has dimension 2n − 2, which exceedsn for n > 2. The fact that the sigma model is a
possible answer forn > 2 but not forn ≤ 2 is an aspect of the fact, already discussed last week, that
spontaneous breaking of a continuous symmetry is possible forn > 2 but not forn ≤ 2.

Is the sigma model thecorrect answer for the infrared behavior of our particular problem, at
least for sufficiently smallλ? We claim that it is. To study this point, let us treat the effects ofw
perturbatively. The interactions ofw with the Goldstone boson come from the interaction term in the
Lagrangian:

1
2λ
ρ2(∂Ω)2 =

1
2λ

(ρ0 + w)2(∂Ω)2 =
1
2λ

(ρ2
0 + 2ρ0w + w2)(∂Ω)2.

The operator∂Ω is highly nonlinear, and can be thought of as emitting an arbitrary number of Gold-
stone bosons. We need to calculate Feynman diagrams involvingw’s, in order to find the effective
Lagrangian. A typical diagram is

representingw with a solid line anda’s with dotted lines. Thew-propagator is 1
k2+m2

w
; since we are

interested in small momentak, we expand in powers ofk. The leading term is

const (∂Ω)2 1

m2
w

(∂Ω)2.

This hasSO(3) symmetry and is an irrelevant interaction. It is even more irrelevant than the terms,
sketched above, that come by expanding (∂Ω)2 in powers ofa.

In fact, while it is instructive to study these diagrams, just to show that the sigma model is infrared-
stable, we do not need the details of the diagrams. All we need to know is that the effective action has
SO(3) symmetry. So what possible terms could be generated in the effective action?
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• A potentialV(Ω) is not possible, because there is noSO(3)-invariant function onS2. This is the
basic reason that, given theSO(3) symmetry, the sigma model is infrared stable. A potential
function would change the picture completely. For instance, a generic potential would have an
isolated, nondegenerate minimum, giving us a unique vacuum with an infrared-trivial massive
theory, in contrast to a continuous family of vacua associated with spontaneously brokenSO(3).

• The only term with only two derivatives that respects all the symmetries of the problem is (∂Ω)2

itself. So quantum corrections due to diagrams withw fields should definitely be expected to
modify the coefficient of this term.

• Other possible terms like ((∂Ω2)2 and∂Ω∇2(∂Ω) have more than two derivatives and are more
and more irrelevant.

So the leading infrared behavior is determined by an effective action of the form1
f 2 (∂Ω)2 with

1

f 2
=
ρ2

0

2λ
+ loop corrections.

When this is expanded in Riemann normal coordinates about a given vacuum, that is a given point
P ∈ G/H, one gets interactions (of which the first was sketched above) that involve the Riemann
tensor ofG/H and its covariant derivatives. If one uses these interactions to compute scattering am-
plitudes involving Goldstone bosons with small momenta of orderk, the tree level amplitudes are all
proportional tok2 for k near zero, as the interaction terms all contain precisely two derivatives. Loop
contributions are smaller fork → 0, since the interactions are irrelevant in the infrared. To be more
precise, loop amplitudes all either (i) renormalize the constantf in theSO(3)-invariant Lagrangian, or
(ii) give corrections to the scattering amplitudes that vanish faster thank2 for k→ 0.

Hence, the terms of orderk2 in the Goldstone boson scattering are all completely determined by
the one constantf (or more generally by the choice of aG-invariant metric on the homogeneous space
G/H). In the 1960’s, it was discovered that the low energy scattering of pions beautifully fits such a
description, withG = SU(2)× SU(2) andH a diagonalSU(2). This is how it was discovered that the
strong interactions have a spontaneously broken approximate chiral symmetry; the discovery played
a very major role in the subsequent development of physics.

What happens if one wants to compute terms in the Goldstone boson scattering of higher order
thank2? It is clear that in orderk4, new constants will enter that can only be determined from micro-
scopic calculations (or experiment), since there areG-invariant interactions with four derivatives (such
as the ((∂Ω)2)2 term found above from the explicit tree diagram considered). However, interestingly,
in four spacetime dimensions, the lowest order correction to thek2 amplitude for Goldstone bosons is
not of orderk4 but of orderk4 ln k. It comes from a loop diagram

with vertices drawn from the two-derivative part of the Lagrangian, and hence is uniquely detemined
in terms of the same constantf that controls thek2 terms in the scattering amplitudes. The analysis

20



of low-energy Goldstone boson interactions via the ideas I have explained is known as “current alge-
bra.” In particular, via current algebra relations, one can deduce from experiment what is the broken
symmetry groupG, and many of the parameters in theG-invariant effective Lagrangian.

One final comment about symmetry-breaking examples such as this one: if we begin with aG-
invariant microscopic LagrangianLmicro which we perturb to

Lmicro + ε(δL)

with the termδL not beingG-invariant, then in the infrared we will get

1

f 2
(∂Ω)2 + εV(Ω) + O(ε2),

with V(Ω) being a non-G-invariant operator – of which the most relevant part is of course a potential
with no derivatives, as suggested in the notationV. V(Ω) is highly constrained by the fact that it must
transform underG the same way thatδL does. For example, in the case of strong interactions, a small
δL term, breakingSU(2)× SU(2) to a diagonalSU(2), is actually present; it selects a unique vacuum
from what would otherwise be a continuous family, and gives small masses to the pions. In current
algebra studies of pions, one really takes the momentumk to be of order the pion mass.

2 Which spins?

Now we consider in a general way infrared-free theories in 4 dimensions. (The considerations that
follow generalize above 4 dimensions but become trivial below dimension 4). The general discussion
seems to suggest that infrared-free theories might have massless particles of any spin. But in practice,
in all interesting examples I am familiar with, one can arguea priori that any massless particles will
have spins 0, 1/2 or 1.

Most theories of interest can be formulated not just on flatR4, but on a more general curved 4-
manifoldM4 with a general metricg. In fact, any theory that is part of the description of nature has
this property, since general relativity is part of nature and in nature, space-time is curved! In quantum
field theory, the ability to work on a curved space-time implies the existence of a very special operator,
called the stress tensor or energy-momentum tensorTµν(x). It measures the response to a change in
the metric tensorg. We suppose that a theory is formulated with a generalg by a LagrangianL(φi ; g),
which is invariant under diffeomorphisms acting both on theφi and ong. g is not one of the fields of
the theory – it is arbitrary but is held fixed in studying the classical or quantum dynamics of theφi –
and this diffeomorphism invariance means that the theory, if formulated in a spacetime (M, g), really
depends ong only up to diffeomorphism. In this setup, the stress tensor is defined as

Tµν =
δL
δgµν

.

This implies obviously thatT is a symmetric tensor

Tµν = Tνµ.

T can also be shown to obey
DµT

µν = 0

by virtue of diffeomorphism invariance. If our theory is actuallyconformally invariant, thenT is
traceless, that isgµνTµν = 0.
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Having such a stress tensor leads to powerful statements even if one specializes to the case thatM
is flat Euclidean space. For instance, last fall, when we axiomatized quantum field theory, we required
Poincaŕe invariance, with conserved chargesQ(K) for every Killing vector fieldK in spacetime. The
existence of a conserved, symmetric stress tensor is a local statement that leads to Poincaré invariance
globally. Given any Killing vector fieldK, one uses the Killing vector equation (which readsDµKν +

DνKµ = 0) plus symmetry and conservation ofT to prove that the current

Jν(K) = KµT
µν

is conserved. Then one obtains the conserved charge

Q(K) =

∫

Σn−1
∗ J(K)

where the integral is taken over an initial value hypersurface (such as time zero).
I have presented this as if one needs to have a Lagrangian so as to deduce the existence of a

stress tensorT = δL/δg. Though this is a powerful approach, one can also argue more abstractly.
Consider any theory which can be formulated for any metric onM. To define an operatorT(y), we
must give a definition, for any specifiedn pointsx1, . . . ,xn onM4 distinct from each other and fromy
and operatorsO1, . . . ,On, the correlation function〈O1(x1) · · · On(xn)T(y)〉g (here the subscript serves
to emphasize that the correlation function depends on a metricg). We define this as the derivative of
O1(x1) · · · On(xn)〉g with respect tog:

δ

δg(y)
〈O1(x1) · · · On(xn)〉g = 〈O1(x1) · · · On(xn)T(y)〉g.

The reader should verify that this definition agrees with the previous one in case a Lagrangian exists.
T as defined in this way is obviously symmetric; it is conserved if the theory depends only on the
diffeomorphism class of the metricg. Many of the properties of a local quantum field operator follow
readily from this definition ofT, and it is plausible to believe that they all do in general.

In any event,2 one normally considers in practice theories that have a local, conserved, symmetric
(and of course gauge-invariant) stress tensor. As I have essentially already noted, any theory that
appears in nature has this property, sinceT appears directly in the Einstein equations!

Existence ofT leads3 to sharp restrictions on possible massless particles. The possible spins of a
massless particle in a theory with a stress tensor are 0,1/2, and 1. A further and analogous restriction is
the following. LetJµ be a conserved current associated with a “global symmetry.” Thus,J transforms
as a vector under Poincaré, and the conserved charge

Q(J) =

∫
∗J

is Poincaŕe invariant. ThenQ annihilates any massless particle of spin 1.
The proofs are so similar that we consider the two cases together. In four dimensions, denote by

|p, j〉, a massless one-particle state of momentump and spinj (in generalj ∈ Z/2, and let|p′, j〉 be a
state of different momentum in the same Poincaré representation. Let|p, j〉 be an eigenstate ofQ with
eigenvalueq. Consider the matrix elements〈p′, j|Jν|j,p〉 and〈p′, j|Tµν|j,p〉. The latter cannot vanish
at all, and the former cannot vanish unlessq = 0. For in the limit thatp′ → p, we have by Lorentz
invariance

2Except in studying quantum gravity, which has a very different flavor from quantum field theory in a fixed spacetime,
which is the subject of our lectures this spring.

3S. Weinberg and E. Witten,Limits on massless particles, Phys. Lett. B96 (1980), 59–62.
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1. 〈p′, j|Jν|j, p〉 ∼ pν, and

2. 〈p′, j|Tµν|j, p〉 ∼ pµpν

The proportionality constant isq in the first case and 1 in the second, since (asQ and the momentum
operators are obtained by integration ofJ or T) matrix elements ofJ or T with identical initial and
final states measure the charge or momentum of the state.

On the other hand, one can prove using Lorentz invariance that for allp′ 6= p, these matrix elements
vanish in the first case for spin greater than 1/2, and in the second case for spin greater than 1. The
proof goes by noting first for forp′ 6= p, the subgroup of the Lorentz group that leaves fixed bothp
andp′ is a copy ofSO(2) (orSO(n−2) if we are inn spacetime dimensions; the present considerations
degenerate below four dimensions asSO(n−2) is then trivial). One simply shows thatSO(2) invariance
of 〈p′, j|Jν|j, p〉 ∼ Qpν and 〈p′, j|Tµν|j, p〉, assuming that these matrix elements are nonzero, implies
that the spin is in absolute value≤ 1/2 or ≤ 1, in the two cases. A convenient way to perform this
computation is to go to a Lorentz frame in which (writing the time coordinate first),p = (1,1,0, 0) and
p′ = (1,−1,0,0). TheSO(2) that leaves fixed bothp andp′ is the rotation of the last two coordinates.
Under the generator of thisSO(2), the states|j, p〉 and|j, p′〉 have respectively eigenvaluej and−j. The
minus sign for the|j,p′〉 state, which is crucial, arises because it describes a particle moving in the
opposite direction from|j,p〉; they each have the same spin relative to their own directions of motion,
but opposite spins if referred to a fixed axis. So〈p′, j|Jν|j,p〉 or 〈p′, j|Tµν|j,p〉 can be nonzero only if,
in the SO(2) action onJ or T, there is a term with spin or eigenvalue−2j. As the components ofJ
transform underSO(2) with spin≤ 1 in absolute value, while forT one has components of spin≤ 2,
we get|j| ≤ 1/2 or |j| ≤ 1 in the two cases, as was claimed above.

We can actually be somewhat more precise about this result. We have so far used only representa-
tion theory, but in quantum field theory one has also a CPT theorem, which implies in four dimensions
that every massless particle of spinj is accompanied by one of spin−j. So spins±1/2 will go together,
and likewise spins±1.

In general dimensionn, similar reasoning gives the following result. The spin of a massless par-
ticle is classified by a representation of the “little group”SO(n − 2). If a stress tensor exists, the
allowed representations for massless particles are the spinor representation(s), and exterior powers
of the fundamentaln − 2-dimensional representation (including the trivial representation).4 Global
charges vanish except for massless particles transforming in the trivial or spinor representation. This
n-dimensional formulation is related to the statement in four dimensions as follows:j = ±1/2 corre-
spond to the two spinor representations, whilej = 0 andj = ±1 come from the exterior powers of the
fundamental representation.

3 Why are particles massless?

If the couplings in a theory are generic, massless particles must be massless for a reason. One possible
reason is supersymmetry, but we won’t discuss that now. Other possible reasons are as follows.

Spin 0 particles are massless when they are Goldstone bosons, that is, when there is a broken
symmetry. Spin 1/2 particles are massless when they are chiral fermions; their masslessness is due to
anunbrokenchiral symmetry. This means simply the following: the CPT theorem says that if one has
n massless particles of spin 1/2, one also hasn such particles of spin−1/2. If there is an unbroken
symmetry groupG and the massless particles of spin 1/2 transform in a representationRof G, then the

4 For n− 2 divisible by four, the middle exterior power can be decomposed into self-dual or anti-self-dual pieces which
are eachreal; one can be present without the other.
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massless particles of spin−1/2 transform, by the CPT theorem, in the representationR (the complex
conjugate ofR). If R andR are distinct. this spectrum cannot be perturbed in aG-invariant way to a
give masses to the fermions.

The reasons just mentioned are really the only known reasons to have massless particles of spin
0 or 1/2 without supersymmetry and without adjusting some parameters to make particles massless.
For spin 1 the situation is somewhat different. The Poincaré representation of a massless spin 1
particle, in four (or more) dimensions, simply cannot be perturbed to give a mass to the particle,
unless there is a massless spin 0 particle that can combine with it in a Higgs mechanism as will be
discussed in the second half of lecture. If our massless spin 0 particles are Goldstone bosons, then the
broken symmetries that shift them ensure that they cannot participate and disappear from the massless
spectrum in a Higgs mechanism. So as long as the massless spin 0 particles are Goldstone bosons,
andas long as the theory is infrared-free, the existence of massless spin 1 particles is stable just from
Poincaŕe symmetry.

This depends heavily on the theory being infrared-free since we applied group theory to one-
particle states. If interactions are important even at low energies, the states with different numbers
of particles can “mix,” and we cannot draw a conclusion just by applying Poincaré invariance to the
one-particle states.

What interactions can massless particles of these types have? In the case of spin 0 particles, which
we assume to be Goldstone bosons, there are no relevant interactions. We have already seen at the
beginning of this lecture that there are no relevant or marginal interactions of Goldstone bosons only.
There are likewise no relevant or marginal interactions of fermions only above two dimensions – we
explored such questions in the fall term – and with similar arguments and a little more care, one can
show that there are no relevant or marginal couplings of Goldstone bosons to fermions.

Spin 1 particles are of a different nature, since they correspond to gauge fields, and gauge fields
can have relevant interactions in the infrared. IfG is the gauge group andA is the connection, the
Lagrangian ∫

1

g2
|FA|2d4x

is nonlinear. It contains couplings that in four dimensions are marginal classically. Whether the in-
teractions are relevant or irrelevant quantum mechanically depends on the behavior of theβ-function.
An irrelevant nonlinearity in the infrared will allow the gauge theory to function as an effective de-
scription. On the other hand, if the nonlinearity is relevant in the infrared, then the gauge theory isnot
the answer. (In the intermediate case whenβ = 0 we would get a non-free theory in the infrared.)

Goldstone bosons are always invariant under gauge symmetries – a gauge group acting on them
would violate the global symmetry that leads to having Goldstone bosons in the first place. So if we
see massless spin 1 fields in the infrared without adjusting parameters to make it so, we should expect
that eitherG must be abelian, or else there must be enough fermions in large enough representations of
G so thatβ > 0. To explain their masslessness, the fermions are chiral (that is, the states ofj = 1/2 and
j = −1/2 transform differently) either under the gauge group itself, or under some unbroken global
symmetry group that commutes with the gauge group.
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Lecture II-2, Part II: Spontaneous breaking of gauge symmetry

Edward Witten
Notes by Pavel Etingof and David Kazhdan

In this lecture we will consider gauge symmetry breaking.
2.1. Gauge symmetry.Recall what gauge symmetry is. We have a spacetimeX = Rtime× X0. We
have a compact gauge groupG. We have a field theory where a field configuration is a connection is
some principal bundle overRd and possibly some matter fields.

Recall the Hamiltonian approach to gauge theory. LetM̃0 be the space of solutions to the classical
equations of motion. OñM0 we have an action of the group̂G of gauge transformations. LetM0 ⊂ M̃0

be the space of all solutions where the G-bundle is trivialized in the time direction, and the connection
is trivial in that direction. Such solutions as usual are completely determined by the pairA(t0), dA

dt (t0),
wheret = t0 is a space cycle, and initial data for the matter fields. It is clear that any element of
M̃0 can be brought toM0 by a gauge transformation, soM0 still contains all solutions up to gauge
transformations.

Suppose thatX0 = Rd−1. In this case we may consider only trivial bundles, and connections which
vanish at spatial infinity. In other words, ifA is the space of connectionsA on the trivialG-bundle
overRd−1 which vanish at∞ thenM0 for pure gauge theory isT∗A. If matter fields are present, then
M0 is a product ofT∗A with some other space.

DefineG̃ to be the group of elements ofMaps(Rd−1,G) which have a limit at infinity, and̃G0 to
be the subgroup of̃G consisting of functions which tend to 1 at∞. We haveG̃/G̃0 = G. This quotient
group is called the group of constant gauge transformations at∞ and calledG∞.

The groupG̃ acts symplectically onM0. The physical phase space in gauge theory is the symplec-
tic quotientM = M0//G̃0. Note that we only divide bỹG0 and not by the whole group̃G, so that we
inherit an action of the quotientG∞ onM. It is this symmetry group whose breaking we will discuss.
2.2. Breaking of gauge symmetry and charges at infinity.
Definition. Suppose we have a (classical) gauge theory, and lets ∈ M be its vacuum state. Let
H ⊂ G = G∞ be the stabilizer ofs. In this case we will say that at the vacuum states the gauge
symmetry is broken fromG to H.

Thus, by symmetry breaking we mean essentially the same thing as for global symmetry: there is
a symmetry of the Poisson algebra of functions onM which does not fix a particular vacuum state.
Important remark. The above expression “the same thing ” should be taken with great care. There
are some fundamental differences between the two situations, which will become clear below. They
come from the fact that in the situation we are considering here, (unlike Lecture II1) the physical
observables, being gauge invariant by definition, automatically commute withG and therefore do not,
in general, separate points onM; i.e. not every function onM is “observable”. In other words, the
action ofG on the “theory” (in the sense of Lecture II1) is trivial from the beginning.

Let us now compute the action ofG (classically). First of all, we have a moment mapµ : M0→ g̃∗0,
where g̃0 is the Lie algebra ofG̃0 – the algebra of functions fromRn−1 to the Lie algebrag of G
which vanish at infinity. Thus, for anyε ∈ g̃∗0 we have a HamiltonianQ(ε) ∈ C∞(M0) defined by
Q(ε)(X) = µ(X)(ε).

In fact, it is easy to computeQ(ε) using Noether formalism. Namely,

Q(ε) =

∫

Rd−1
Tr(

∂A
dt
∇Aε)d

d−1x + matter terms, (2.1)

OnM, Q(ε) = 0 if ε vanishes at infinity. Thus, onM we have∇∗A dA
dt = matter terms . In particular,

in pure gauge theory∇∗A dA
dt = 0.
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Taking this into account, we see that onM

Q(ε) =

∫

Rd−1
Tr(∇A(ε

dA
dt

))dd−1x. (2.2)

Using Stokes’ formula, we can rewrite (2.2) as

Q(ε) = lim
r→∞

∫

Sn−2(r)
∗d−1Tr(ε

dA
dt

) = lim
r→∞

∫

Sn−2(r)
∗dTr(εF), (2.3)

whereF is the curvature of the spacetime connection corresponding to the given point ofM0, and
Sk(r) is the k-sphere of radiusr. This formula defines the hamiltonians for the action ofG = G∞ on
M.

This formula shows thatQ(ε) vanishes for all gauge transformations (not necessarily vanishing at
infinity) on a particular state ifF = o(r2−n), r → ∞ on that state. However, if this is not the case, then
Q(ε) may be nonzero for a constantε.
Example. Consider aU(1) gauge theory with a charged complex scalar. The fields are a connection
A on a hermitian line bundle and a sectionφ of this bundle. The Lagrangian is

L =
1

4e2

∫
F2 +

∫
|DAφ|2d4x +

∫
λ

8
(|φ|2 + v2)2d4x. (2.3)

This is the most general renormalizable Lagrangian in these fields in 4 dimensions. Heree, λ, v are
parameters ande2, λ are positive whilev2 can be positive or negative. For simplicity we assume first
thatv2 , 0.

This theory is not believed to exist in the UV, but we will regard it as an effective theory for some
more fundamental theory.

Classically (and quantum mechanically fore2, λ << 1) we have two cases.
1. v2 > 0; the potential has a single minimum.
2. v2 < 0; the potential has a circle of minima.
Let us consider how in these two cases the theory behaves in the infrared.
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Figure 1. The potential forv2 > 0.

Case 1.v2 > 0. In this case the minimum of energy is attained whenφ = 0. First consider the case
when the gauge coupling vanishes:e2 = 0. In this case our theory is a direct product of a pure (free)
abelian gauge theory and theφ4 theory. Therefore, it has a unique vacuum, and the particles which
occur at the lower part of the spectrum are a massless vector, or gauge boson (coming from gauge
theory) and two massive real scalars (coming forφ4 theory).

If we turn on smalle2 the situation should remain the same. Indeed, certainly nothing can happen
to the massive scalars (the part of the Hilbert space with the nonzero charge, where these scalars are,
has a mass gap, and massiveness is an open condition); moreover, their masses must be equal since
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there is aU(1) symmetry at infinity (theQ(ε) for constantε) which prohibits the masses to differ. The
fact thatQ(ε) , 0 is clear since this is so ate2 = 0, whenQ(ε) represents theU(1) global symmetry.

Furthermore, the massless vectors cannot become massive. Indeed, recall that a massless vector
means an irreducible representation ofSO(3,1) with p2 = 0 and spin 1, i.e. the space of sections of a
2-dimensional equivariant vector bundle over the light cone. This vector bundle cannot be deformed
to an equivariant vector bundle over the hyperboloid, since the stabilizer groupSO(3) of a point on
the hyperboloid does not have an irreducible 2-dimensional representation. Thus, the quantum theory
for small coupling will have the same particles – two massive scalars (the real and imaginary part of
φ) and a massless vector (the gauge boson).
Remark. The above argument on non-deformability of a massless vector fails in 3 and 2 dimensions.
For example, in 3 dimensions, the massless vector is just the space of functions over the cone, which
can be successfully deformed into the space of functions over a hyperboloid. This actually happens
when in pureU(1) gauge theory one introduces a Chern-Simons termc

∫
A ∧ dA. The theory re-

mains free but becomes massive, yielding one massive scalar. In the theory we are considering (for
3 dimensions), this cannot happen dynamically since the Chern-Simons term is odd under change of
orientation, but in other theories this could happen.

In fact, quantum mechanically the operatorQ(ε) (for a suitable normalization ofε) has integer
eigenvalues, and thus defines (in quantum theory) aZ-grading of the corresponding Hilbert space. In
particular, sinceQ(ε) , 0, there are sectors of the Hilbert space which cannot be reached from the
vacuum by applying local operators. This shows that we have a fundamental violation of Wightman
axioms: the representation of the operator algebra in the physical Hilbert space is not irreducible.
However, the theory still has one vacuum only: the minimal energy in the sectors with nonzero charge
Q(ε) is positive.
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Figure 2. The potential forv2 < 0.

Case 2.v2 < 0. Let v2 = −b2. Then classically we have a minimum of energy on the circle|φ| = b.
This implies that any finite energy configuration has the propertyφ = beiθ0 at infinity, whereθ0 is a
constant. Therefore, by a gauge transformation which has a finite limit at infinity, we can arrange that
φ is real and positive:φ = b + w wherew is a new real variable. Writing the Lagrangian in terms of
the new variables, we will get something with the following quadratic part:

Lquadratic =
1

4e2

∫
F2 +

∫
d4x((dw)2 + M2w2) +

∫
d4xb2A2. (2.4)

It is seen from (2.4) than now all fields are massive. Of course, Lagrangian (2.4) is not gauge invariant
for A, since we have already “spent” the gauge symmetry on makingφ real.

Thus, infrared limit of the corresponding quantum theory is trivial for small values of the cou-
plings. In particular, there are no massless gauge bosons: they have been “eaten” by theφ-field. This
situation is called Higgs phenomenon, or spontaneous breaking of gauge symmetry.
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Note that in spite of the presence of a circle of zero energy states, our theory has only one vacuum.
In other words, all points of the circle are regarded as the same state, on the grounds that they are gauge
equivalent to each other and therefore define equivalent realizations (i.e. give the same expectation
values of gauge invariant local operators) This is a fundamental difference between gauge and global
symmetry breaking. In global symmetry breaking, the points of the circle represent different vacua
(realizations) of the theory, since there exist non-symmetric operators which have different expectation
values at different point of the circle.

Note also that the operatorQ(ε) doesn’t act in the Hilbert space of states, since classicallyQ(ε)
generates a group which rotates the circle and permutes the zero energy states. In particular, in this
case local operators act irreducibly in the Hilbert space, and there are no sectors which cannot be
reached from the vacuum. This is the difference between case 2 and case 1: in case 1, as you remem-
ber,Q(ε) acts in the Hilbert space nontrivially and defines a splitting into sectors.
Remark. If one tries to computeQ(ε) in Case 2 (when the symmetry is broken) using formula (2.3),
the answer will be zero since the integrand dies rapidly at infinity.

The particles which are found in the infrared in the situation of Case 2 are, according to (2.4), a
massive vector (A) and a massive scalar (φ). There is only one scalar sinceφ is now real. Thus, at the
level of representation theory the Higgs phenomenon arising in Case 2 boils down to a deformation
of representations of the Poincare group: a massless vector plus a massless scalar is deformed to a
massive vector. Recall for comparison that a massless vector separately cannot be deformed into a
massive representation.

Finally, consider the special casev2 = 0. In this case classically we have no symmetry breaking as
for v2 > 0, and the particles are a massless vector and two massless scalar. However, it is not expected
to be the quantum answer, since this configuration is not stable under perturbations.
Remark. If the Lagrangian we start with is not IR free (say, it is the Lagrangian of an asymptotically
free gauge theory) then the classical analysis we discussed above does not apply in quantum theory.
In this case the infrared behavior of the theory is difficult to determine. In particular, it could happen
that in the infrared the gauge group of the ultraviolet theory will be replaced with some completely
different group, which is not even a subgroup in the original group.
2.3. Symmetry breaking and gauging.In conclusion, let us discuss the connection between global
symmetry and gauge symmetry breaking. Suppose we have a LagrangianL of a field theory (say in
4 dimensions) which has a globalU(1) symmetry. A typical example is when the theory contains
some scalar fieldsφj which are sections of hermitian vector bundles, andU(1) acts by multiplication
of these sections byeinjθ ThisU(1) symmetry can be gauged, by introducing aU(1) gauge fieldA and
new Lagrangian

Lgauged=
1

4e2

∫
F2

A + LA, (2.5)

whereLA is L in which all derivatives ofφj are replaced by covariant derivatives.
The statement is that ifL is infrared free then for small gauge couplings the symmetry breaking

behavior of the theories defined byL andLgaugedis usually the same. Namely, if there is breaking of
global symmetry forL then there is breaking of gauge symmetry forLgaugedand vice versa.

Indeed, let us consider both cases.
Case 1. No global symmetry breaking. In this case classically the minimum of energy is atφj = 0, and
thus there is aU(1)-invariant vacuum. In quantum theory,U(1) acts in the Hilbert space, and there
are no massless particles (Goldstone bosons) corresponding toU(1). In this case, for small gauge
couplinge, the matter partLA of the Lagrangian almost decouples from the gauge part; so classically
we get a massless gauge boson.
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To consider the quantum mechanical situation, we assume that there are no massless particles in
the ungauged theory. In this case, the above classical answer is also quantum mechanical for small
couplings, by the non-defomability of representations from massless to massive. However, if massless
particles (say Goldstone bosons corresponding to other symmetries which are broken) are present, this
answer may not be true.
Case 2. Global symmetry breaking. In this case at the minimum of energy some of theφj is not
zero. There is no invariant vacuum, and there is a Goldstone boson corresponding to this symmetry
breaking. In this case, pick a vacuum state and a componentφ(n)

j which is not zero at this vacuum.
In the gauged theory, we can perform a gauge transformation which will make this component real
and positive. This shows that if there are no other massless particles (in particular, no other broken
global symmetries), all fields in the theory will become massive. This happens classically, due to
Higgs mechanism as in Case 2 above, and also quantum mechanically for small couplings. Thus, we
have breaking of gauge symmetry.
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Lecture II-3: Infrared behavior and the S-matrix of the 2-dimensional sigma-model
with target spaceSN−1

Edward Witten
Notes by Pavel Etingof and David Kazhdan

3.1. Infrared behaviour of 2-dimensional sigma-models with target spaceSN−1.
Consider the theory ofN scalar bosons, with the Lagrangian

L =

∫
ddx(

1
2

(∇φ)2 +
g
4!

(φ2 − a2)2), (3.1)

whereφ : Rd → RN. In Lecture II-1 we saw that aboved = 2 this theory has symmetry breaking,
from SO(N) to SO(N−1). In particular, for any pointy on the sphereφ2 = a2 there exists a realization
Hy of this theory, with〈φ〉 = y. We also saw that the low energy effective theory for (2.1) is the
sigma-model with target spaceSN−1.

In 2 dimensions the first statement fails: there is no symmetry breaking, and there is only one
realization, with an action ofSO(N). However, the second statement remains valid: the low energy
effective theory is the sigma-model.

In d > 2, we know that the sigma-model is infrared free (in the zero approximation); more pre-
cisely, it converges in the infrared limit to a free theory of N-1 massless scalars (Goldstone bosons).
This is not the case in 2 dimensions. Indeed, in 2 dimensions the sigma-model is renormalizable, so
it has marginal interactions (i.e. interactions with a 0-dimensional coupling). On the other hand, it
was shown in Gawedzki’s lecture on sigma-models that theβ-function of the 2-dimensional sigma
model into a space of positive curvature is negative (the model is asymptotically free in the UV limit).
Therefore, the marginal interactions are relevant in the infrared, and apriori we cannot conclude that
the model is not infrared free, even in the zero approximation. In fact, what happens (as we will see
today) is that instead ofN − 1 massless particles that we had ind > 2, we will haveN − 1 mas-
sive particles, so the infrared limit is trivial (the correlation functions are analytic at the origin in the
momentum space, and decay exponentially at infinity in position space).

In the first half of the lecture, we will show that the 2-dimensional sigma-model is indeed infrared
trivial for large N. Namely, we will show that all coefficients of the expansion of the correlation
functions in a series in 1/N are analytic at the origin in momentum space, and the first term of this
expansion gives the correlation functions forN free massive particles.
Remark 1. Since theβ-function of the 2-dimensional sigma-model into the sphere is negative, it is
believed that this theory actually exists. So we will now study the infrared behavior of a (probably)
actual quantum field theory.
Remark 2. Since the theory defined by the quartic Lagrangian (3.1) exists rigorously ind = 2, it
can be regarded as an ultraviolet cutoff of the sigma-model. The characteristic momentum scaleΛ of
this cutoff is the mass of the radial component ofφ. This cutoff is called the linear sigma-model, as
opposed to the nonlinear sigma-model, which is the model of maps to the sphere.

3.2. Computation of the infrared behavior in theN→ ∞ limit.
Now we will compute the infrared behavior of the sigma model in the limitN → ∞ using the

saddle point approximation in the path integral. We will operate with path integrals formally, without
worrying whether they exist or not.

The path integral which defines the generating series for the Euclidean correlation functions of the
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sigma-model is given by the formula

Z(J) =

∫

φ:φ2=1
Dφe−

1
2λ

∫
d2x|dφ|2+ZJ

∫
d2xJφ, (3.2)

whereφ, J : R2 → RN, andλ is a coupling constant. The factorZJ is added because the operatorφ

has anomalous dimension (see Gross’ lecture 3) and requires multiplicative renormalization. (As we
know,ZJ is cutoff-dependent, and diverges as the cutoff goes to infinity.)

It is more convenient to integrate over maps to a linear space than over maps to a curved manifold.
Therefore, it is useful to rewrite integral (3.2) in the form

Z(J) =

∫

φ:R2→RN
Dφ

∏

x∈R2

δ(φ2(x) − 1)e−
1
2λ

∫
d2x|dφ|2+ZJ

∫
d2xJφ. (3.3)

We will now use the formula

δ(a) =
1
2π

∫ ∞

−∞
eiaσdσ. (3.4)

Substituting (3.4) into (3.3), we get (up to a factor):

Z(J) =

∫
Dφ

∫
Dσei

∫
d2x(σ2 (φ2−1))− 1

2λ

∫
d2x|dφ|2+ZJ

∫
d2xJφ. (3.5)

Thus, the use of formula (3.4) led to introduction of an auxiliary scalar fieldσ.
Now we will change the order of integration and integrate with respect toφ. Our goal is to reduce

the integral to the form in whichN (the dimension of the target space) enters analytically. We are
lucky that the sphere is a quadric, so the integral with respect toφ is Gaussian. So we can compute it
explicitly, and get

Z(J) =

∫
Dσdet

(
−∆

λ
− iσ

)−N/2
e−i

∫
d2xσ2− 1

2Z2
J

∫
d2xJ·(∆/λ+iσ)−1J (3.6)

(the power−N/2 of the determinant appears because we are doingN independent Gaussian integrals
in the componentsφi of φ). It is useful to raise the determinant into the exponential:

Z(J) =

∫
Dσe−

N
2 Tr ln(− ∆

λ −iσ)−i
∫

d2xσ2− 1
2Z2

J

∫
d2xJ·(∆/λ+iσ)−1J. (3.7)

Now we want to bring integral (3.6) to the form where there is a factor ofN in front of all terms in the
exponential (except for the J-term, which serves to expand the answer in the formal series inJ), and
then evaluate the integral using the saddle-point approximation. For this purpose we have to make the
change of variableρ = σ/N and rescale the coupling constant byλ̃ = λN. After these changes the
integral, up to a factor, looks like

Z(J) =

∫
Dσe−

N
2 [Tr ln(−∆−iλ̃ρ)+i

∫
d2xρ] − λ̃

2N Z2
J

∫
d2xJ·(∆+iλ̃ρ)−1J. (3.8)

In this form, we can already apply the saddle point approximation. (This is really saddle point and not
stationary phase, as the function in the exponential is complex).

The most natural thing is to look for a Poincare invariant saddle point, since the integral we are
considering is Poincare-invariant. Thus, we should look for a saddle pointρ(x) which is a constant,
ρ(x) = ρ. The value ofρ is found from the saddle point equation

d
dρ

[Tr ln(−∆ − iλ̃ρ) + iρ
∫

d2x] = 0. (3.9)
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(at this point we are making an IR cutoff L, i.e. assume that the spacetime is a torus of sizeL × L).
Let us rewrite (3.9) using the momentum space reprsentation of the operator−∆ − iλ̃ρ, and sendL to
infinity. Then we get

λ̃

∫
d2k

(2π)2

1

k2 − iλ̃ρ
= 1. (3.10)

The integral on the left hand side is logarithmically UV divergent. So we should introduce an UV
cutoff Λ in momentum space (i.e. consider the integral over the ball|k| < Λ). Then (3.10) becomes

λ̃

4π
ln

Λ2

−iλ̃ρ
= 1. (3.11)

This shows that

ρ =
iΛ2

λ̃
e−

4π
λ̃ . (3.12)

In Gross’ lecture 3 it was shown that in an asymptotically free theory, the effective coupling constant
at scaleΛ depends on the scale according to the formula

λ̃(Λ) =
1

A ln Λ
+ o(

1
ln Λ

),Λ→ ∞, (3.13)

whereA is minus the coefficient of the 1-loop beta-function. In the sigma-model it turns out that
A = (2π)−1 N−2

N , so it equals to (2π)−1 modulo 1/N (see the end of Gawedzki lecture 3). It can be
shown, that modulo 1/N, the beta-function equals to its 1-loop approximation. This implies that there
exists a limitM2 = limΛ→∞(−iλ̃ρ), which is positive.
Remark. Thus, in the quantum theory we have a characteristic momentum scale defined byM, despite
the fact that the classical theory is conformally invariant, and the Lagrangian has only a dimensionless
couplingλ and defines no particular momentum (or length) scale. This phenomenon is called “dimen-
sional transmutation”. It gives a very vivid demonstration of the fact (which we already know), that
there may be no canonical way of renormalizing a theory defined by a scale-invariant Lagrangian.

Recalling the form of the J-term in the integralZ(J), we conclude that theJ2 term of the expansion
of Z(J) has order 1/N. Thus, we should rescale the fieldsφ, φ → N1/2φ, to get a nonzero limit of
correlation functions asN → ∞. After this change it turns out that the 2-point functions ofφi have a
nonzero limit, while the connected 4, 6, ...-point functions vanish modulo 1/N. Thus, in the first order
approximation in 1/N, our theory is free. Moreover, the propagator of this first order theory is1

k2+M2 ,
whereM is defined as above. Thus, the limiting theory is the theory ofN independent free massive
scalars of massM.

The connected 4-point function is of order 1/N. Therefore, the effective coupling constant between
the massive scalars is of order 1/N.

The fact that the fieldsφi decouple in the largeN limit and become massive scalar fields, has the
following probabilistic explanation.

Consider the theory ofN free massive bosonsai , described by the Lagrangian

L =

∫
(
∏

Dai)e
−N

∑
i (|dai |2+M2a2

i ). (3.14)

Consider the expectation value〈a2
i 〉 of the operatora2

i in this theory for a fixedi. This value requires
renormalization: it is given by the integral

∫
d2k

(2π)2

1

N(k2 + M2)
, (3.15)
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which is UV divergent. So we should introduce an UV cutoff Λ. Then we have〈a2
i 〉 = 1

4πN ln Λ2/M2.
Therefore,〈∑i a2

i 〉 = 1
4π ln Λ2/M2. On the other hand, by the law of large numbers, ifd is the disper-

sion ofa2
i , then the dispersion of

∑
a2

i is d/
√

N, so for largeN the vector (a1, ..., aN) stays close to the
the sphere

∑
x2

i = 1
4π ln Λ2/M2. Thus, the theory ofN independent massive fields for largeN behaves

like the sigma-model for the sphere, whose radius varies logaritmically with the cutoff.
3.3. Computation of the S-matrix.

Now we will study the sigma-model into the sphere in a totally different way. Namely we will
show that this model is integrable even for finiteN, which means that its S-matrix can be computed
explicitly.

Recall the Coleman-Mandula theorem (Bernstein’s lecture 1): in a field theory of dimensiond > 2
with a mass gap and a nondegenerate S-matrix, any even infinitesimal symmetry of the S-matrix is a
linear combination of an element of the Poincare Lie algebra and a symmetry which commutes with
the Poincare Lie algebra. In other words, if there exists a “forbidden” symmetry (not having such a
decomposition), then the S-matrix, under some technical conditions, equals 1, i.e. the theory is free.

In two dimensions, the Coleman-Mandula theorem is false. That is, there exist 2-dimensional
quantum field theories withS, 1 which have an infinitesimal symmetry forbidden by the Coleman-
Mandula theorem. In fact, we will see that the 2-dimensional sigma-model has this property.

Thus, in 2 dimensions the information that there exists a “forbidden” symmetry is not enough to
conclude thatS = 1. However, this information still allows to compute the S-matrix. In this section
we will show how to do it for the sigma-model intoSN−1.

We will work on a flat Minkowski spacetime with coordinatesx+, x− and the metricdx+dx−. Let

L =
1
2λ

∫
d2x(∂+φ∂−φ), φ2 = 1. (3.16)

be the Lagrangian of the sigma-model with targetSN−1 (φ ∈ RN). Since this Lagrangian can be written
naturally on a curved spacetime, it has a stress-energy tensorT = δL

δg . This is a symmetric, rank 2
tensor, so it has 3 components in coordinatesx+, x−: T++,T−−,T+−.

Let us consider some properties of the stress-energy tensor. Classically, we have

T++ = (∂+φ)2,T−− = (∂−φ)2. (3.17)

Since the sigma-model is classically conformally invariant, we haveT+− = 0. However, we should
expect that quantum mechanically conformal invariance is broken (in fact, we know this from the large
N limit), so quantum mechanically,T+− , 0; in fact, we will see that it is proportional to∂+φ∂−φ (see
below). Still, the current conservation equations

∂−T++ + ∂+T+− = 0, ∂+T−− + ∂−T+− = 0, (3.18)

(which classically reduce to∂−T++ = 0, ∂+T−− = 0, because of vanishing ofT+−) are still satisfied
quantum mechanically, if the operatorT+− is suitably renormalized (this follows from the fact that the
Poincare symmetry exists in the quantum theory).

Let us give another demonstration of why the equation

∂−T++ + ∂+T+− = 0. (3.19)

is satisfied under a suitable renormalization ofT+−. For this purpose recall that classically operators
in our theory have a bigrading (d+, d−) (with respect to dilations ofx+, x−). In quantum theory, since
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conformal invariance is broken, only the diagonal gradingd+−d− survives, and the bigrading becomes
a (bi)filtration.

Let us classifySO(N)-invariant operators of various bidegrees (under (d+, d−) we will list operators
of bidegreed+ − n,d− − n, n ≥ 0).

(0,0): 1
(0,1): none
(1,0): none
(2,0): (∂+φ)2 = T++

(0,2): (∂−φ)2 = T−−
(1,1): ∂+φ∂−φ,1
(2,1): ∂2

+φ∂−φ
This table shows that (3.19) has to be satisfied, under a suitable renormalization ofTij , for dimen-

sional reasons (to be more specific, because any operator of bidegree (2.1) is∂+ of an operator of
bidegree (1,1), and there is no operators of bidegree (1,0).
Remark. In fact, it can be shown thatT+− = β∂+φ∂−φ, whereβ is the beta-function. Thus, the
beta-function measures the failure of conformal invariance.

We will now construct a symmetry forbidden by the Coleman-Mandula theorem using the (quan-
tum) stress-energy tensor. The idea of constructing this symmetry is the following. Suppose that we
found two local operatorsX+,X− such that∂+X− = −∂−X+, butX− , ∂+Y for anyY. In this case the
operator-valued formJ = X+dx+ − X−dx− is a nontrivial conserved current, and the charge operator
Q =

∫
C

J, whereC is a spacelike cycle, is an infinitesimal symmetry. So we should constructX+,X−.
Classically,X+ = T2

++ satisfies the above condition, as∂−(T++)2 = 0. Quantum mechanically,
however, this equation is not satisfied. So we will again use dimension counting to demonstrate the
existence of a conservation law.

We want to show that there exist operatorsX+,X− of degrees (4,0) and (3,1), such that∂−X+ +

∂+X− = 0, andX+ , ∂+Y. To do this, let us extend the above table of operators:
(3,0): ∂+φ∂

2
+φ

(3,1): (∂−φ∂+φ)(∂+φ)2, ∂−φ∂3
+φ, (∂+φ)2.

(4,0): ((∂+φ)2)2, (∂2
+φ)2, ∂3

+φ∂+φ

(4,1): ∂−φ∂4
+φ, (∂−φ∂+φ)(∂+φ∂

2
+φ), (∂−φ∂2

+φ)(∂+φ)2, ∂+φ∂
2
+φ.

Let Hd+,d− be the space of operators of bidegreed+−n,d−−n for all n ≥ 0. We have: dimH3,0 = 1,
dimH3,1 = 3, dimH4,0 = 3, dimH4,1 = 4. We have two maps∂+ : H3,1 → H4,1, ∂− : H4,0 → H4,1. For
dimensional reasons, there is a 2-dimensional subspaceZ in H4,0 such that forX ∈ Z ∂−X ∈ Im∂+.
On the other hand, the imageB of ∂+ in H4,0 is 1-dimensional. Therefore, the “cohomology” group
H = Z/B is not zero (it is 1-dimensional). This “cohomology” group represents the conservation law
that we are looking for.
Remark. It is easy to define the complex for whichZ are cocycles,B are coboundary, andH are
cohomology.

Denote the charge operator corresponding to this conservation law byQ. It is easy to show that
[Q,P±] = 0, and [K,Q] = 3Q, whereK is the infinitesimal boost operator of the Poincare group
(the generator ofso(1,1)), normalized in such a way that [K,P±] = ±P±, whereP± are infinittesimal
translations ofx+, x−.

Thus,Q is an infinitesimal symmetry violating the conclusion of the Coleman-Mandula theorem.
Remark. Of course, by interchanging+ and− in the definition ofQ, we can obtain another “forbid-
den” conserved chargeQ′, with [K,Q′] = −3Q′.
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Now let us see how we can useQ. Let Hm ⊂ H be a subrepresentation of the Poincare group
which represents a particle of massm (H = L2(O+

m)). Let |k〉 denote the state of this particle in which
its momentum isk = (k+, k−), wherek+k− = m2. (Of course,|k〉 < Hm, but for anL2-functionf onO+

m,∫
f (k)|k〉dk ∈ H+

m.) We haveP±|k〉 = k±|k〉, andQ|k〉 = ck3
+|k〉, wherec is ak-independent constant.

Let λ be the parameter on the hyperbolak+k− = m2 defined by the equationsk± = me±λ. As we
know, a 1-particle state is represented by a wave function, which satisfies the Klein-Gordon equation:

ψ(x+, x−) =

∫ ∞

−∞
ψ̂(λ)ei(k+x++k−x−)dλ, (3.20)

The operatoreiγP± of the Poincare group acts on the wave function by translatingx+, x− by γ. Let
us now compute how the “forbidden” symmetryeiδQ acts on the wave function:

eiδQψ(x+, x−) =

∫ ∞

−∞
ψ̂(λ)ei(δck3

++k+x++k−x−)dλ (3.21)

Thus, the operatoreiδQ transforms the weight function of a particle with momentumk by translating
x+ by the effective amountγeff = δck2

+.
Suppose now that we have a particle whose wave function is localized near a classical worldline

x = x0 + vt (t + x = x+, t − x = x−). Then the symmetryeiδQ shifts the worldline in a way dependent
on the velocityv. (This property is characteristic for all symmetries which don’t commute with the
Poincare group, and don’t belong to it).

Now it is easy to explain the idea of proof of the Coleman-Mandula theorem, and why it fails in 2
dimensions.

In dimensiond > 2, two lines generically don’t intersect. So, in a theory with a “forbidden”
symmetry, if we have two particles heading for a collision (i.e. their worldlines intersect), we can apply
the “forbidden” symmetry and obtain two other worldlines which don’t intersect, and are arbitrarily
far from each other. Since the S-matrix is invariant under the symmetry, this argument shows that it
equals 1.

In two dimensions, however, two lines generically do intersect, so we cannot conclude from the
above argument that the S-matrix is 1. Still, since three lines generically do not intersect at the same
point, the above argument shows that scattering reduces to a successive 2-particle collisions, in which
two particles are produced.

The presence of symmetryQ also shows that in the 2-2 scattering, the momenta (and hence
masses) of incoming particles are equal to those of outgoing particles. Indeed, let 1, 2 label incoming
particles, and 3, 4 label outgoing particles. The chargeQ acts on the state of the i-th particle by by
multiplication byCi(ki)3

+. So by charge conservationC1(k1)3
+ + C2(k2)3

+ = C3(k3)3
+ + C4(k4)3

+. On the
other hand, by momentum conservation (k1)+ + (k2)+ = (k3)+ + (k4)+. So if k1, k2 are known, (k3, k4)
can take only a discrete set of values. This implies that (k3, k4) = (k1, k2) or (k3, k4) = (k2, k1).

Now let us return to the sigma-model with target spaceSN−1. In this case, as we know for large
N (and believe for allN ≥ 3), we haveN massive particles of the same massm, which form anN-
dimensional representaionV of SO(N) (i.e. the space of 1-particle states isV ⊗ L2(O+

m)). The above
arguments allow us to make the following conclusions about the scattering matrix.

(i) The scattering matrix is in this case an honest matrix, i.e. a function of the formS(λ1−λ2) with
values in EndSO(N)(V ⊗ V), whereλi are defined byki = (meλi ,me−λi ), andki are the momenta of the
incoming particles. Thus,

S(θ)kl
ij = F(θ)δk

i δ
l
j + G(θ)δl

iδ
k
j + H(θ)δj

iδ
l
k, (3.22)
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whereF,G,H are complex-valued functions.
(ii) S(λ) satisfies the quantum Yang-Baxter equation:

S12(λ1 − λ2)S13(λ1 − λ3)S23(λ2 − λ3) = S23(λ2 − λ3)S13(λ1 − λ3)S12(λ1 − λ2). (3.23)

(iii) S(λ) is unitary.
(iv) Crossing symmetry:Scontinues meromorphically to the complex plane, andSkl

ij (λ) = Sjk
li (πi −

λ).
Property (i) we have already explained. Property (ii) follows from the fact that the 3-3 scattering

matrix factors as a product of three 2-2 scattering matrices, and the order in which these three 2-2
collisions occur can be reversed by the “forbidden” symmetry. Property (iii) is satisfied for the S-
matrix of any field theory. Property (iv), roughly, follows from the fact that the 2-2 S-matrix is the
residue of the pole of the 4-point function, which extends to the complex values of momenta, so the
S-matrix has to be invariant under the discrete part of the Poincare group, which permutes past ant
future.

A.Zamolodchikov and Al.Zamolodchikov showed in 1979 (Annals of Physics, vol. 120) that the
S-matrix is uniquely determined by these conditions forN ≥ 3, up to a scalarθ-dependent factor,
provided it is nontrivial (which we can get from the largeN expansion). The functionsF,G,H for this
S-matrix is given by an easy explicit formula:

F(θ) = 1,G(theta= − 2πi
N − 2

θ,H(θ) = − 2πi
(N − 2)(πi − θ) . (3.24)

This solution of the quantum Yang-Baxter equation was one of the main examples from which the
theory of quantum groups has originated. The quantum group corresponding to it is now called “the
Yangian ofso(N)” (see Drinfeld’s talk “Quantum groups” at the International Congress of Mathemati-
cians at Berkeley).

As we indicated, the S-matrix is defined by (3.24) up to multiplication by a scalar functionf (θ),
which satisfies the conditionsf (θ)f (−theta) = 1, andf (πi − θ) = f (θ). Thus, the functionf is 2πi-
periodic. Which periodic function corresponds to the actual S-matrix of the theory is a nontrivial
question. A perturbative calculation indicates that this function should be chosen in such a way that
the S-matrix has the smallest possible number of singularities. There are two such choices, and one of
the is believed to be realized in the sigma-model. The other choice is believed to be realized similarly
in the Gross-Neveu model.

Thus, we have shown the integrability of the sigma-model intoSN−1.
One can show in a similar way the the Gross-Neveu model introduced in Gross’ lecture 4 is also

integrable, in the sense that its S-matrix and 1-particle matrix elements of composite operators can be
computed. The S-matrix turns out to be the same as above, up to the scalar factor.

But these two models are an exception. Already in the next lecture we will consider a slightly
more complicated sigma-model – with target spaceCPN, for which the explicit form of the S-matrix
is unknown.

Also define the space and time coordinatest, x by t = 1
2(x+ + x−), x = 1

2(x+ − x−).
At t = 0 we have

ψ(x, 0) =

∫ ∞

−∞
ψ̂(λ)ei(k+−k−)xdλ, (3.21)

and the wave function is completely determined by its value atx = 0, via the Klein-Gordon equation,
and the energy positivity condition.
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Lecture II-4: The large N limit of the CPN−1 model

Edward Witten
Notes by Dan Freed

Remark The lecture treated theσ-model into projective space, but these notes cover the general-
ization to a Grassmannian, as requested in Problem Set 3.

In this lecture we discuss the largeN behavior of the two dimensionalσ-model into the Grass-
mannianGr(k,N) of k dimensional subspaces ofCN. Herek is fixed asN → ∞. We also consider
the real Grassmannian. Since Grassmannians have positive Ricci curvature these field theories are
asymptotically free, but in any case our task is to investigate the infrared behavior.

The Euclidean action of theσ-model is

S[φ] =
1

g2

∫

Σ

d2x |dφ|2 − iθ
∫

Σ

φ∗(α), (1)

whereΣ is a Riemann surface,φ : Σ → Gr(k,N) a map into the Grassmannian,α ∈ H2(Gr(k,N),Z
)

a
generator of the cohomology, andg, θ are parameters of the theory. We specify the metric onGr(k,N)
shortly. The second term is a topological term;5 for Σ closed the integral is integer-valued. Thus a
shift θ → θ+ 2π does not affect the model. The parameterθ is also a parameter of the quantum theory,
but renormalization exchanges the dimensionless coupling constantg with a mass parameterµ.

The rescaled coupling constant ˜g, defined by

g2 = g̃2/N, (2)

is more natural in the largeN limit, as we will see.

4.1 The Questions We ask specific questions about the behavior of the model.

1. Is there a mass gap?

2. What is theθ dependence of the partition function?

Remark.ForΣ small the partition function

Z(θ) =

∫
Dφ e

− 1
g2
eff

∫
Σ

d2x |dφ|2
eiθ

∫
Σ
φ∗(α)

can be studied using perturbation theory. Heregeff is the effective coupling, which varies with
the distance scale in the theory set by the size of the surfaceΣ. (Classically the model is
conformally invariant, so does not depend on the size ofΣ, but quantum mechanically this is
no longer true.) By asymptotic freedom this coupling is small at small distances, hence the
assertion that perturbation theory applies in this regime. Now the classical solutions to (1) are
harmonic mapsΣ → Gr(k,N). Note that the onlyθ dependence is through the degree ofφ,
and so we split the integral as a sum over mapsφ of varying degrees. In degree 0 we obtain

5The factor ofi is present in theEuclideanaction so that the action conjugates under orientation reversal. In this way its
continuation to Minkowski space is real. See Freed’s notesActions and Realityfor more details.
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constant maps and in general for degreen some moduli spaceMn of harmonic maps, which are
theinstantonsof this model. Degree 1 instantons are (anti)holomorphic maps. The perturbation
expansion around these solutions has the rough form

Z(θ) ∼ Vol
(
Gr(k,N)

)
√

det(·) (1 + · · · ) +
∑

±
e±iθe−cN/g2

eff
VolM1√

det(·) (1 + · · · ) + higher instantons (3)

The constantc in the exponential is the action of a 1-instanton, which is independent ofN. The
factor of N comes from (2). Ifgeff << 1 we see that theθ dependent term ofZ(θ) vanishes
exponentially asN → ∞. As the area ofΣ increases the effective couplinggeff also increases.
Equation (3) is the answer forΣ compact and of small area, but we will find a vastly different
result forΣ = R2.

3. Symmetry Breaking.Symmetry breaking in two dimensions is possible for a discrete symmetry,
and in this model we have the parity symmetry

P: Σ 7−→ Σ (Σ is Σ with the opposite orientation)

θ 7−→ −θ (4)

For Σ = R2 we implement the orientation reversal by an orientation-reversing isometry, i.e., a
reflection. Then forθ = 0 andθ = π the parity symmetryP acts on a fixed theory and we ask
if it is broken in the quantum theory.

4. The groupPSU(N) of isometries of the Grassmannian acts in the classical theory. Since con-
tinuous symmetry groups are unbroken in two dimensions, this symmetry acts in the quantum
theory as well. However, it is possible that a realization of the theory has a symmetry group
which is a cover ofPSU(N), the latter being the group which acts on the operator algebra. Does
that happen here?

4.2 An Equivalent Formulation To study the model we rewrite it, that is, we construct an action
with the same classical and quantum physics. As a preliminary we recall some basic geometry of the
Grassmannian. OverGr(k,N) lies a canonical sequence of vector bundles

0 −→ S
s−→ Gr(k,N) × CN −→ Q −→ 0, (5)

where the fiber ofS at ak-planeπ is simplyπ viewed as a subspace ofCN. Fix the standard metric
on CN. It induces a metric onS and identifiesQ � S⊥. There is a canonical connection∇ on S,
obtained by projecting the natural connection on the trivial bundleGr(k,N) ×CN. We easily compute

∇ = d − s∗ds, (6)

wheres is the inclusionS
s−→ Gr(k,N) × CN. Then

∇s: T
(
Gr(k,N)

) −→ Hom(S,S⊥) (7)

is an isomorphism. We use it to induce a metric onGr(k,N), the metric needed to write down the
σ-model action (1).

Now if φ : Σ → Gr(k,N) we pullback (5) to obtain a sequence of bundles overΣ, and by (7) the
lagrangian density ofφ is

|dφ|2 = |(φ∗∇)φ∗s|2. (8)
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Noteφ∗s: φ∗S→ Σ × CN determinesφ. The idea is to replaceφ by such a bundle map, and so first
to replaceφ∗Sby a fixed bundle. Note deg(φ∗S) = deg(φ) so that the topology ofφ∗Sdetermines the
cohomology classφ∗(α), which appears in the second term of the action (1). Hence fix a vector bundle
E→ Σ of rankk and degreed. Also fix a hermitian metric onE. We introduce a new field

φ̂ : E −→ Σ × CN

which we constrain to be an isometric immersion:

φ̂∗φ̂ = idE . (9)

The image ofφ̂ determines a mapφ : Σ → Gr(k,N) which is unchanged if we shift̂φ by a unitary
gauge transformation ofE. To rewrite (8) in terms of̂φ we need a connection onE, and as there is no
natural choice we introduce a variable unitary connectionA. Usingφ̂ we identifyE with a subbundle
of the trivial bundleΣ × CN, so can differentiateφ̂ using the usual derivatived. Writing A as a 1-form
plus this trivial connection we find

|dAφ̂|2 = |dφ̂ + φ̂A|2
= |dφ̂|2 + 2 Re(dφ̂, φ̂A) + |A|2, (10)

sinceφ̂∗φ̂ = idE. This expression is quadratic inA, so if (10) is a classical lagrangian forA we can use
the equations of motion to obtain

A0 = −φ̂∗dφ̂. (11)

Comparing with (6) we see thatA0 is the pullback of the canonical connection onS, and so by (8)

|dφ|2 = |dA0φ̂|2.
In other words, the lagrangian (10) is equivalent to|dφ|2 for fields which satisfy the constraint (9). We
impose the constraint via a lagrange multiplier field

σ : Σ −→ HermitianEnd(E).

The θ term in the original action (1) can be computed using the (skew-Hermitian) curvatureFA via
Chern-Weil theory. Altogether we obtain for our new action6

S[φ̂,A, σ] =
1

g2

∫

Σ

|dAφ̂
2| − i

∫

Σ

Trσ(φ̂∗φ̂ − idE) +
θ

2π

∫

Σ

Tr FA. (12)

As we have explained, the classical equations of motion (and other classical constructs) computed
from (12) are equivalent to those computed from the original action (1). The classical computation
which led to (11) is valid quantum mechanically since the dependence of (12) onA is quadratic and
the Hessian is the identity operator (see (10)). (We ignore the constant determinant factor which we
obtain from theA integral.) Thus the quantum physics is the same as well.

6Some explanation about the lagrange multiplier term is in order. It is based on the general formula
∫

ei(σ,x)dσ = δ(x),

whereσ lies in the dual space tox, the measuredσ is suitable normalized, andδ(x) is theδ-distribution supported at the
origin. In the Minkowski space lagrangian the lagrange multiplier term is

∫

Σ

Trσ(φ̂∗φ̂ − idE),

andσ should be interpreted as a 2-form (or density); it lies in the dual space to the functionφ̂∗φ̂− idE. Rotation to Euclidean
space yields the second term of (12).
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4.3 The LargeN Effective Theory The argument here is almost identical to that for the largeN
σ-model into a sphere (see lecture II–3). So we will be brief.

First, theφ̂ integral is Gaussian, so the partition function is

Z =
∑

E

∫
DA
vol

DσDφ̂e−S[φ̂,A,σ]

=
∑

E

∫
DA
vol

Dσ exp−
[
Tr ln

(
d∗AdA

g2
− iσ

)
+ i

∫

Σ

Trσ +
θ

2π

∫

Σ

Tr FA

]
.

(13)

Here
∑
E

is the sum over bundlesE. We takeΣ = R2. Then the sum overE is irrelevant, as is the

topological term. In a first approach to this problem, the topology of the bundle will not be important,
since it is spread over an infinite volume. Once we get a basic understanding of what the quantum
vacuum looks like, it will not be hard to go back and see how the topology enters. We evaluate the
leading behavior in largeN by evaluating at a stationary point of the exponential in the integrand, i.e.,
a classical solution of the effective action.

The only Poincaŕe invariant (that is, Euclidean invariant) possibility for the gauge field isA = 0.
In that case we rewrite minus the integrand in the last line of (13) as

Seff[A, σ] = N Tr ln

(
d∗d
g2
− iσ

)
+ i

∫
Trσ,

where the operator in the first term acts on sections ofE∗. Now the only Poincaŕe invariant possibility
isσ constant, and so we diagonalizeσ and pass tok one dimensional problems for an eigenvalue. At
this point we rescale

σ = Nσ̃

g2 = g̃2/N,
(14)

and so for each eigenvalue we have exactly the problem we had for the largeN σ-model in to a sphere.
Thus the solutioñσ0 has all eigenvalues equal and is specified by

−ig̃2σ̃0 = Λ2e−4π/g̃2
= M2

for Λ an ultraviolet cutoff and nowg̃2 the running coupling constant. We defineM2 to be this dynam-
ically generated mass squared.

So in the largeN effective actionσ̃ acquires a mass. Note that theA field has no transverse degrees
of freedom—it is a gauge field in two dimensions—so does not enlarge the spectrum of the model
(though, of course, it affects the Hamiltonian as we will see, and in fact diminishes the spectrum).
Thus the largeN limit has a mass gap. This is the answer to the first in our list of questions.

To answer the other questions we need to compute something more precise, namely the leading
approximation to the largeN effective action. This means that we do perturbation theory for the
action (12) about the point̂φ0 = 0, A0 = 0, σ̃0 = iM2/g̃2. So shiftingσ̃ by σ̃0 and rescalinĝφ we have
from (12)

S′[φ̂,A, σ̃] =

∫

Σ

|dAφ̂|2 + M2
∫

Σ

|φ̂|2 − ig̃2
∫

Σ

Tr σ̃φ̂∗φ̂ +
θ

2π

∫

Σ

Tr FA. (15)

Here we omit a constant term (which only shifts the partition function by a constant) and a linear term
in σ̃ (since we are expanding around a solution of the effective action).

The effective action is computed in perturbation theory using one particle irreducible Feynman
diagrams with external lines forA andσ and with internal̂φ lines. So the inverse propagator forσ̃ is
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Figure 1: The inversẽσ propagator

νµ

µ ν

Figure 2: The inverseA propagator

computed from the diagram shown in Figure 1, where the solid line representsφ̂ and the dotted line
representsσ. (Note that (15) has no quadratic term inσ̃, else Figure 1 would be a correction to such
a term.) We evaluate the diagram in momentum space as

−g̃4Nk
∫

d2q

(2π)2

1

q2 + M2

1

(p− q)2 + M2
= − g̃4Nk

4π2

∫ 1

0
dα

∫
d2q

1

[q2 + (M2 + α(1− α)p2)]2

= − g̃4Nk
π

∫ 1

0

dα

M2 + α(1− α)p2

= − g̃4Nk

πM2
+ O(p2) asp→ 0.

(16)

This corresponds to a term
C|σ̃|2

in the effective action, withC > 0. (The minus sign comes since in the Euclidean theory diagrams
compute negative contributions to the effective action.) This is the dominant term in the infrared,
which means that̃σ is massive and does not affect the long range behavior of the theory.

The inverse propagator forA is computed by the diagrams in Figure 2, which come from the first
term in (15). Here the wavy line representsA. To compute these diagrams we need the Feynman rules
for the vertices indicated in Figure 3, which correspond to the terms

2 Re(dφ̂, φ̂A)

|φ̂A|2

in the action (15). The indices refer to a standard orthonormal basis forR2. The Feynman rule (in
momentum space) for the second vertex is easy:

II = −δµν.
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µ

k

k

k2

1

3

µ ν

I II

Figure 3: The interaction vertices for theA field

(There is a minus sign since the Euclidean functional integral involvese−S.) For the vertexI we must
remember that̂φ is complex and thatA is skew-Hermitian:

2 Re(∂µφ̂, φ̂Aµ) = −∂µφ̂Aµφ̂
∗ + φ̂Aµ∂µφ̂

∗.

Thus the vertex is
I = −i(k1 − k2)µ.

Note that one of the solid lines in the vertex representsφ̂ and the other solid line representsφ̂∗. So the
sum of the diagrams in Figure 2 is

∫
d2q

(2π)2

(p− 2q)µ(p− 2q)ν
(q2 + M2)((p− q)2 + M2)

− 2δµν

∫
d2q

(2π)2

1

(q2 + M2)
. (17)

The factor of 2 in the second term is from the two ways of attaching theA lines to the external vertices;
the corresponding factor of 2 in the first term is canceled by the symmetry which exchanges the two
internal vertices in the first diagram. (That is, there is a factor of 1/2 from the expansion of the
exponential, since we have two triple vertices.) Each term in (17) is divergent, but the divergences
cancel in the difference, and after some computation similar to (16) the answer to leading order inp is

N

12πM2
(pµpν − p2δµν). (18)

This corresponds to a term
N

24πM2
|FA|2 (19)

in the effective action. (Again we must recall that diagrams contribute negatively to the effective
action.) In fact, (18) and (19) correspond precisely ifk = 1 (theσ-model into projective space), since
thenA is an abelian connection. In the nonabelian case there are cubic and quartic terms, but by gauge
invariance their leading contribution must be as in (19). We remark that (19) is the lowest order gauge
invariant term we can write, and so its appearance can be predicted from gauge invariance alone, but
of course we must do a computation to determine the coefficient.

So, finally, the long distance behavior of the two dimensionalσ-model into the GrassmannianGr(k,N),
in the largeN limit, is equivalent to the long distance behavior of a two dimensional gauge theory with
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gauge groupU(k) and charged massive scalars. The action is

N

2e2

∫

Σ

|FA|2 +
θ

2π

∫

Σ

Tr FA +

∫

Σ

|dAφ|2 + M2
∫

Σ

|φ|2. (20)

The first term in (20) was just computed, where the couplinge2 summarizes the numerical factor
in (19). The second term is theθ term in (15). The last two terms are the first two terms in (15), except
we now drop the ‘̂ ’ for convenience. Soφ is a section of (E∗)⊕N.

4.4 Real Grassmannians From the beginning we can replace the complex Grassmannian with the
real Grassmannian. In that case the bundleE is real,φ̂ : E → Σ × RN, and there is no other change
except in the representation of theθ term. For simplicity we consider theσ-model into the Grassman-
nian Gr0

R(k,N) of orientedk-planes inRN. (It is a double cover of the Grassmannian of unoriented
k-planes.) NowH2(Gr0

R(k,N);Z
)
� Z/2Z and theθ term is meant to detect this class. Thus the second

term of (1) is replaced by
iθdeg2α,

where deg2 is the mod 2 degree (0 or 1) andθ = 0 or θ = π. In the reformulation of the problemE is
an oriented realk-plane bundle overΣ, and the topological term in (12) and subsequent formulas is

iθw2(E)[Σ], (21)

wherew2 is the second Stiefel-Whitney class. ForΣ = R2 we can rewrite (21) in terms of aWilson line
operator. Namely, a field configuration with finite action (12) hasA essentially flat at infinity. Since
R2 is contractible we can lift theSO(k) connection A to a Spin(k) connectionÃ, and the holonomy
on a large loopC ⊂ R2 is approximately±1 depending on the Stiefel-Whitney class of the induced
bundle onS2. (We let ‘−1’ denote the nontrivial element of Spin(k) covering 1∈ SO(k).) Choose a
representationRof Spin(k) and consider

WR(C) =
TrR holC(A)

dimR
. (22)

In the limit where the loopC becomes large, this computes the exponential of (21), whereθ = 0 if
R is a representation ofSO(k) andθ = π if R is a representation of Spin(k) but not ofSO(k).

The generalization to an arbitrary connected compact Lie groupG is clear. AG bundle overΣ has
a characteristic class inH2(Σ, π1G). It pairs with a homomorphismeiθ : π1G→ T to give a term in the
exponentiated action. HereT = U(1) is the circle group. On the other hand a representation of the
simply connected covering group induces a homomorphismeiθ : π1G→ T, so we can use the Wilson
operator (22) to write theθ term onR2.

4.5 Pure Gauge Theory We still must determine the quantum behavior of the theory with effective
action (20). For this, we will first practice by analyzing the pure gauge theory in two dimensions,
whose action is the sum of the first two terms of (20). We may as well consider an arbitrary connected
compact Lie groupG. The norm in the first term of (20) is defined via a bi-invariant metric onG.
We quantize the theory on the circleS1

V of circumference (=volume)V. In general, to quantize a
gauge theory inn dimensions on ann-manifold Y, we consider connections onR × Y in temporal
gaugeand take solutions to the equations of motion up to time-independent gauge transformations.
(See Kazhdan’s lectures on the quantization of gauge theories.) For pure gauge theory without the
θ term the resulting space is the (co)tangent bundle of the space of connections onY modulo gauge
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transformations. ForY = S1
V we first fix a basepoint; then a connection up to gauge equivalence is

specified by the holonomy, an element ofG. A change of basepoint conjugates the holonomy, and so
the quantum Hilbert space is

Hgauge(θ=0) = L2(G)G,

the space of conjugacy invariant functions onG. A basis for this space is the set of characters of
irreducible representations.

Next we compute the Hamiltonian. LetAt = At(x)dx be a connection onR × S1
V (with coor-

dinatest, x) in temporal gauge, relative to some trivialization, and letgt ∈ G be the corresponding
path of holonomies. In a gauge whereAt is constant, we havegt = eVAt . Then the first term in the
action (20) is

N

2e2

∫ ∫ ∣∣∣∣∣
dA
dt

∣∣∣∣∣ dtdx=
N

2e2V

∫
|ġ|2 dt. (23)

This is the lagrangian for a classical particle of massN/e2V moving on the Riemannian manifoldG;
the corresponding quantum Hamiltonian is

Hgauge=
e2V
2N

∆G, (24)

where∆G is the laplacian onG. The eigenfunctions are the characters of the irreducible representa-
tions with eigenvalues proportional to the Casimir.

Now consider theθ term in (20). ForG = U(k) we have a natural closed imaginary 1-formα ∈ iΩ1
G

which is the trace of the Maurer-Cartan form. Then in terms of the pathgt of holonomies theθ term
in the action is

θ

2π

∫
g∗α. (25)

This is a topological term—it is invariant under reparametrizations of the pathgt. More geometrically,
θα is a flat connection on a topologically trivial hermitian line bundleLθ overG, and up to equivalence
it is given by an element inH1(G;T). Then (25) is parallel transport in this flat bundle.7 More
generally, we can “twist” our mechanical system by any hermitian line bundleL with connection.
Physically this describes a particle moving in an electromagnetic field. The quantum Hilbert space is
the the space of sections ofL with Hamiltonian the laplacian for such sections. In our case we obtain
the space

Hgauge(θ) = L2(G,Lθ)
G

of invariant sections with Hamiltonian (24). For arbitraryG an elementeiθ ∈ H1(G;T) corresponds
to a homomorphismeiθ : π1G → T. Recall thatπ1G is a subgroup of the center ofG. Then the
eigenfunctions of the laplacian acting onHgauge(θ) are the characters of representations of the simply
connected cover ofG whose restriction toπ1G is eiθ; the eigenvalue is again proportional to the
Casimir.

For the unitary groupG = U(k) we identifyθ ∈ R/2πZ as before. The smallest Casimir occurs for
a representation detθ̃/2π, whereθ̃ ∈ R is a representative ofθ of smallest absolute value. Ifθ 6= π there
is a unique such̃θ, but for θ = π there are two possibilities:̃θ = π and θ̃ = −π. For G = SO(k) the
simply connected cover is̃G = Spin(k). For θ = 0 there is a unique lowest representation, the trivial
representation ofSO(k). Forθ = π the lowest representation is the spin representation ifk is odd, and
the two half spin representations ifk is even. In the large volume limit only the lowest eigenvalue

7In general, the classical field theory action on a manifold with boundary—here the interval—is not a number, but we
do not stress that point here.
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survives, so we have two vacuua forθ = π in the complex
(
U(k)

)
case and fork even in the real(

SO(k)
)

case. Observe that the two vacuua correspond under the involutiong 7→ −1 · g in these cases.
(Notice also that the bundleLθ=0 is real.) We will see that this vacuum structure persists when we add
matter. Thus parity symmetry (4) is spontaneously broken atθ = π for G = U(k) andG = SO(2ell).
This answers the third of our questions.

As the volumeV → ∞ the eigenvalues of (24) become widely separated. In particular, in the
infinite volume limit there is no state of finite energy above the vacuum (or vacuua). So the physical
Hilbert space in infinite volume consists only of the vacuum (or vacuua)—pure gauge theory onR2 is
trivial.

Specialize toG = U(1). Then thevacuum energy density, which is the minimum eigenvalue of
the Hamiltonian (24) divided by the volumeV, is

Evac(θ) =
e2

2N
min
n∈Z

(n− θ

2π
)2. (26)

Notice that the derivative ofEvac has a discontinuity atθ = π.
ForG = U(k) formula (26) is simply multiplied byk.
The partition functionZΣ(θ) of the pure gauge theory forΣ = [0,T] × S1

V has the Hilbert space
interpretation

ZΣ(θ) ∼ 〈Ω|e−TH(θ)|Ω〉 asT → ∞,
whereH(θ) is the Hamiltonian andΩ the vacuum. For the pure gauge theory, we obtain from (26) for
G = U(1)

ZΣ(θ) ∼ exp
(
cTV− e2TV

2N
min
n∈Z

(n− θ

2π
)2) asT → ∞. (27)

Herec is a constant which represents the indeterminacy of the path integral, or equivalently the fact
that we are free to add a constant (independent ofθ) to the Hamiltonian. This is quite different than
the prediction (3) from the instanton sum. Note that due to the classical conformal invariance of the
σ-model, the instantons used in deriving (3) do not have a definite size; they can be rescaled. For that
reason the instanton sum is not reliable at large distances. In any case (27) answers question 2 for
pure gauge theory.

4.6 Classical Electromagnetism in Two Dimensions Before analyzing the quantum gauge theory
with bosonic matter—theφ field in the action (20)—we discuss the classical physics. For the classical
analysis we work in theG = U(1) theory. The classical equations—Maxwell’s equations—for pure
gauge theory are

N

e2
d∗AFA = 0. (28)

Since we are in two spacetime dimensions, this implies that the electric fieldf = fA = ∗FA is a
constant. Let ‘x’ denote the coordinate on space, which is simply a copy ofR. Add a point charge of
charge 1 atx = x0. Then the electric fieldf as a function ofx satisfies (28) with a right hand side due
to the charge:

N

e2

df
dx

= −δ(x− x0).

Thus the value of the electric field jumps by−e2/N across a charge. (See Figure 4.) Allowing for
many charges, and assuming all of them are multiples of the basic charge (which is a conclusion of
the quantum theory), we see that

θ =
2πNf

e2
∈ R/2πZ (29)
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f ↑ f − e2

N
f ↓ f +

e2

N

Figure 4: Change in electric field across a positive or negative charge

e2

2N
↑ −e2

2N

Figure 5: A one particle state forθ = π

is a constant. So there is an angle in the classical theory (assuming charge quantization).
The classical energy density of an electric fieldf is computed from the action (23) (wheref =

dA/dt) to be N
2e2 f 2. As in the quantum theory, for a fixed value ofθ in (29) there is a unique minimum

obtained at somef = f0 as long asθ 6= π. Any valid configuration must have finite energy compared
to the vacuum energy. Thus ifθ 6= π we must havef (x) → f0 as x → ±∞. Using the formula
above for the jump of the electric field across a charge, we see that the total charge of a finite energy
configuration is zero. This means that there isconfinement—it is impossible to have a single charged
particle or any other isolated collection of charges with nonzero total charge. On the other hand,
for θ = π we have minimum energy density atf0 = ±e2/2N, and so for any finite energy configuration
f (x) → ±e2/2N asx → ±∞. Thus there is a finite energy configuration with a single particle: the
electric field satisfiesf (−∞) = e2/2N, f (∞) = −e2/2N. (See Figure 5.) In this case there is no
confinement. Also, in this case there are four components of finite energy configurations, depending
on the value off at±∞.

Notice that whereas in three space dimensions the Coulomb potential between point charges sep-
arated by distancer is proportional to 1/r, the Coulomb potential in one space dimension is propor-
tional to r. This means the potential energy grows as the charges separate, which is another way of
understanding that confinement occurs.

4.7 Quantum theory with matter Now we want to show that there is confinement in the quan-
tum theory of the lagrangian (20) as long asθ 6= π. This is the assertion that every finite energy
configuration in the quantum theory has total charge zero.

As a preliminary, consider the theory of matter only (no gauge field). In the simplest casek =

N = 1 there is a single free complex scalar fieldφ with massM. The Hilbert spaceHφ of this theory
is the completed symmetric algebra ofW⊕W, whereW is the scalar representation of Poincaré with
massM. There is a globalU(1) symmetry which rotatesφ. The corresponding quantum operatorQφ,
the Noether charge, has value 1 onW and−1 onW, so valuep − q on Symp W ⊗ Symq W. A state
in this subspace representsp positively charged particles andq negatively charged particles. For arbi-
traryk,N we havekN copies of this picture. In particular, fork = 1 there is a globalSU(N) symmetry
(beyond theU(1) symmetry already discussed.)

Now add the gauge field. Fork = N = 1 we have aU(1) gauge theory with a single charged
scalar field. The globalU(1) symmetry of the preceding paragraph is now a local symmetry. Consider
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first the caseθ = 0. For small couplinge2 we construct the quantum Hilbert space of the joint
system by quantizing the symplectic manifold of classical solutions to (20). Thus takeΣ to be the
cylinderR×S1

V. Then the space of classical solutions is a vector bundle over the cotangent bundleT∗A
to the spaceA of connections onS1

V; the fiber of this vector bundle at the trivial connectionA = 0
is the real symplectic vector space underlyingW ⊗W. (Note we quantize by a complex polarization,
which leads to the Hilbert spaceHφ described above.) To implement gauge symmetry we must take
the symplectic quotient by the groupG of gauge transformations. Fix a basepoint (infinity) onS1

V.
Then the subgroupG0 of gauge transformations which equal the identity at the basepoint acts freely
onA, and the quotient is identified withU(1) via holonomy. In the pure gauge theory the symplectic
quotient ofT∗A byG0 is diffeomorphic toT∗U(1); its quantizationL2(U(1)

)
was discussed previously.

As the lengthV → ∞ recall that the only state which remains of finite energy is the vacuum state.
Classically, the vacuum corresponds to the zero section, a lagrangian submanifold ofT∗U(1). The
subgroupU(1) ⊂ G of constant gauge transformations acts trivially onA—hence trivially onT∗A—
so does not enter into pure gauge theory. In the theory with matter the symplectic quotient byG0 is a
vector bundle overT∗U(1) with fiberW⊕W at the identity. Now the constant gauge transformations act
nontrivially in the fibers by scalar multiplication. To implement the symmetry we have two choices:
we can quantize the symplectic quotient or we can consider the subspace of Hilbert space annihilated
by the corresponding quantum operatorNe. Pursuing first the latter, we see that in the infinite volume
limit the quantum Hilbert space before implementing theU(1) is simplyHφ, since the gauge field
contributes only the vacuum state. The operatorNe is simply equal toQφ. Thus the Hilbert space of
the theory is the subspace of states with total chargeQφ = 0. Therefore, just as in the classical theory
we have confinement. There is a mass gap, and the smallest mass is 2M. In the theory with small
coupling, the qualitative picture is the same.

If instead we take the symplectic quotient ofW⊕W by U(1), we are led to a singular space. The
moment map isµ(w, w̄′) = |w|2− |w̄′|2, andµ−1(0) is singular at (0, 0). In the quantization this singular
point corresponds to the vacuum, and it is not hard to see heuristically that we are led to the same
description as before.

Now allowθ 6= 0. In the language of geometric quantization the prequantum line bundle overT∗U(1)
is now twisted by the pullback ofLθ → U(1). Quantum states correspond to “Bohr-Sommerfeld”
leaves of the given polarization, which are equally spaced parallel circles in the cylinderT∗U(1). More
precisely, ifp is the (momentum) coordinate in the cotangent space, the circles occur atp = n−θ/2π for
integraln. The energy of the corresponding quantum state (in pure gauge theory) is given in (26), and
asV → ∞ we only keep the closest circle(s) top = 0, which corresponds to the vacuum state. Ifθ 6= π

there is a unique such circle, and we have the same picture of confinement as above. Forθ = π there
are two such circles, corresponding to the two vacuum states. Thus in the theory with matter, before
dividing out by the constant gauge transformations, we must quantize two disjoint copies ofW ⊕W
to obtainHφ ⊕ Hφ. If, as before, we assign zero charge to each of the vacuum states, then the oper-
atorNe which corresponds to theU(1) symmetry isQφ ⊕ Qφ. The subspace ofHφ ⊕ Hφ annihilated
by Qφ ⊕Qφ is simply two copies of the system seen previously, each copy with a vacuum. These are
two “realizations” of the quantum theory, each with a mass gap of size 2M. It turns out—and this is
hard to explain from this viewpoint—that we can also assigndifferentcharges to the two vacuua. In
that case the operatorNe is (Qφ − 1)⊕Qφ or Qφ ⊕ (Qφ + 1). The kernel in each case has one particle
states of massM, and there is no confinement. There is no vacuum state in either realization. The four
realizations correspond to the classical picture of the previous section.

47



To justify these heuristic pictures we compute. From (20) we see that the Hamiltonian is

H =

∫ ∞

−∞
dx

(1
2
|πφ|2 + |dAφ|2 + M2|φ|2 +

N

2e2
|fA|2), (30)

whereφ is a field onR. Hereπφ is the conjugate momentum toφ, andf = fA is the Hodge star of the
curvature as before. We derive an effective Hamiltonian forφ by plugging in the equation of motion
of A. The latter is obtained by varying the lagrangian (20) with respect toA:

N

e2

df
dx

= j, (31)

where the current is
j = φπφ − φπφ.

We integrate (31) to obtain

f (x) =
e2

N

{∫ ∞

−∞
dy G(x− y)j(y) + c

}
(32)

for some constantc, where

G(x− y) =


1, x ≥ y;

0, x < y.

Note that

lim
x→−∞ f (x) =

e2c
N
. (33)

Plugging into (30) we see
H = H0 + ∆H,

whereH0 is the Hamiltonian for the free scalar particle (if we compute atA = 0), and

∆H =
e2

2N

∫ ∞

−∞
dx

{∫ ∞

−∞
dy G(x− y)j(y) + c

}2

.

The perturbation term∆H is nonlocal and singular.
Now we must determine the subspace of statesΨ on which∆H is finite. Consider firstc = 0.

Then〈Ψ|∆H|Ψ〉 is finite if and only if

lim
x→∞〈Ψ|f (x)|Ψ〉 = 0,

wheref (x) is defined by (32). Now

lim
x→∞

∫ ∞

−∞
dy G(x− y)j(y) =

∫ ∞

−∞
dy j(y) = Qφ

is the charge operator in the Hilbert spaceHφ. So if c = 0 we have confinement:

〈Ψ|Qφ|Ψ〉 = 0.

In general,c is related toθ through (33) and (29):

|c| = min
n

(
θ

2π
+ n

)
.
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This is the value of the electric field at−∞. Also, we subtract an (infinite) constant from∆H to
account for the nonzero energy at∞:

(∆H)normalized=
e2

2N

∫ ∞

−∞
dx

[{∫ ∞

−∞
dy G(x− y)j(y) + c

}2

− c2
]
.

This is finite on statesΨ which satisfy

Qφ(Qφ + 2c)|Ψ〉 = 0, (34)

i.e.,Qφ|Ψ〉 = 0 orQφ|Ψ〉 = −2c. Forθ 6= π the only possibility isQφ|Ψ〉 = 0 and we have confinement.
For θ = π we have eitherc = ±1/2, and (34) is satisfied by states withQφ|Ψ〉 = 0 or Qφ|Ψ〉 = ∓1.
As in the classical theory, this gives four sectors. We denote themH++,H+−,H−+,H−− according to
the value of the electric field at−∞ and+∞. There is a vacuum state and confinement inH++,H−−;
there is neither a vacuum nor confinement inH+−,H−+.

In the confining cases the symmetry groupPSU(N) acts. In the sectors of theθ = π theory with
no confinement the covering groupSU(N) acts.

The story fork > 1 is similar.
Finally, we make a remark about the electric charge. In the quantum picture it is an operatorQe,

and from Noether’s theorem applied to (20) we compute the relation toNe:

Qe =
e2

N
(Ne +

θ

2π
).

The eigenvalues ofNe are integral, but those ofQe are shifted frome2

NZ if θ 6= 0. Note the flow
(monodromy) in the eigenvalues ofQe asθ runs around the circle fromθ = 0 to θ = 2π. We will
encounter this phenomenon again in four dimensional gauge theory.
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Lecture II-5: The Bose-Fermi correspondence and its applications

Edward Witten
Notes by Pavel Etingof and David Kazhdan

5.1. 2-dimensional gauge theories with fermions.
Today we will consider 2-dimensional gauge theories with fermions. We will work with Euclidean

Lagrangians.
In 2 dimensions, the two spinor representationsS+,S− are 1-dimensional and complex. They are

defined by the formulaθ → e±iθ/2, θ ∈ [0,4π), whereθ is the parameter onSpin(2).
Let Σ be a Riemann surface with a specified Spin structure. ThenS+,S− define holomorphic line

bundles onΣ, which are called the Spin bundles, and denoted by the same letter. We haveS+S− = C,
andS2

+ = TΣ,S2− = T∗Σ. Sections ofΠS− (respectively,ΠS+) will be called left (respectively, right)
moving fermions, by analogy with the Minkowski picture.

We denote byD+ : S− → S+, D− : S+ → S− the corresponding Dirac operators in Spin bundles.
We will do gauge theory with gauge groupG (a compact Lie group). LetEL,ER be orthogonal,

unimodular representations ofG. Let P be a principal G-bundle onΣ, and letER,EL denote the

orthogonal vector bundles associated to the representationsER,EL. Let
−→
ψ+,
−→
ψ− be sections of the

bundlesER⊗ S+, EL ⊗ S−.
The Lagrangian of a 2-dimensional gauge theory with fermions is

L =

∫
d2x

(
1

4e2
| ∗ FA|2 +

1
4π
−→
ψ+(DA

−)
−→
ψ+ +

1
4π
−→
ψ−(DA

+)
−→
ψ−

)
, (5.1)

whereA is a connection inP, andDA± are the corresponding Dirac operators.
In order for this theory to make sense quantum mechanically, the representationsEL,ER have to

satisfy an additional condition. To derive this condition, recall that the partition function of (5.1) is
given by

Z =

∫
DA

∫
D
−→
ψ+D
−→
ψ−e−L. (5.2)

(in this integral, we sum over all topological types of principal bundles). The fermion integral is easy
to compute: it equalsIA = Pf(DA−|ER)Pf(DA

+|EL), wherePf denotes the Pfaffian. The expressionIA

is a section of the Pfaffian line bundleB = PF(DA−|ER)PF(DA
+|EL) on the space of gauge classes of

connections. In order for the A-integral to make sense, this expression should be a function, i.e. the
bundleB has to be trivial. It is easy to show that this boils down to the condition

Tr(ρL(t)ρL(t′)) = Tr(ρR(t)ρR(t′)), (5.3)

wheret, t′ ∈ g, whereg is the Lie algebra of the Gauge groupG, andρL,R : g → SO(EL,R) are the
representation maps. IfG is simple, andEL,ER are irreducible, this condition means that the Casimirs
of EL,ER are the same. Equation (5.3) is called the condition of cancelations of anomalies.

Today we will consider a simple case:G = U(1), andEL,ER are irreducible 2-dimensional real
representations. In this case (5.3) says thatEL,ER are the same:EL = ER = E. We will takeE = C

with metric |z|2, andU(1) acting by multiplication (but remember that tensor productsS± ⊗ E are
overR). We decomposeS± ⊗ E in a direct sum of two 2-dimensional representations. Using this

decomposition, we will write
−→
ψ± = (ψ±, ψ̄±), where forz ∈ U(1) one hasz(ψ, ψ̄) = (zψ, z̄ψ̄).

In the new notation, Lagrangian (5.1) has the form

L =

∫
d2x

(
1

4e2
| ∗ FA|2 +

1
2π
ψ̄+DA

−ψ+ +
1
2π
ψ̄−DA

+ψ−

)
, (5.4)
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We can also add to this Lagrangian a topological term:

Lθ = L − iθ
2π

∫
F, (5.5)

and a mass term:
Lθ,m = Lθ +

m
2π
ψ̄−ψ+ +

m̄
2π
ψ̄+ψ−, (5.6)

(herem is complex).
5.2. Chiral symmetry.

Chiral symmetry is aU(1)-symmetry of the classical Lagrangian (5.4) or (5.5) given by

ψ+ → ψ+, ψ− → eiγψ−. (5.7)

This symmetry is violated by the mass term. However, even if there is no mass term, this symmetry
may be violated quantum-mechanically, for the following topological reason.

Let the spacetime be a closed Riemann surface. Then under the chiral symmetry, the “measure”
µ = Dψ−Dψ̄− transforms asµ→ eiγIµ, whereI is the index of the operatorDA

+ : S− ⊗C E→ S+ ⊗C E.
“Proof”: I = dim({ψ−}) − dim({ψ̄−}); since ({ψ̄−}) = ({ψ−})∗, we haveI = dim({ψ−}) − dim({ψ+}) =

ind(DA
+|S+⊗CE).

It is known that the indexI equalsc1(P) =
∫

FA
2π . Thus, since the bundleP may be nontrivial

topologically, chiral symmetry is violated in the quantum theory.
This effect is called an anomaly: a classical symmetry does not hold quantum mechanically, be-

cause the measure is not invariant. The difference with spontaneous symmetry breaking, discussed in
Lecture II-1, is that in the case of spontaneous symemtry breaking, the classical symmetry does exist
in the quantum theory, but cannot be realized. Unlike spontaneous symmetry breaking, anomalies can
occur even in 1 dimension.

Let us discuss the mechanism of chiral symmetry breaking in the language of currents. Classically,
chiral symmetry is generated by the current

JA = ψ̄−ψ− (5.8)

(this is a 1-form of type (0,1)), which is of course conserved:dJA = 0. Quantum mechanically, this
differential equation may be deformed:dJA = O, whereO is some operator with values in 2-forms on
the surface. It is not hard to show by listing all possible operators that there is only one operator (up
to a factor) that can arise: it is the curvature operatorF. Namely, it is enough to show thatdJA is a
functional ofF, which can be seen by considering Feynman diagrams. Thus,dJA = αF, whereα is a
constant, and the previous topological computation shows thatα = 1/2π.

Now consider Lagrangian (5.5), which depends on the theta-angle. The thing we learn from the
above index computation is that the value of the correlation functions defined by the path integral
with Lagrangian (5.5) depend onθ in a very trivial way. Namely, ifOi are any operators such that∏

i Oi → einγ ∏
i Oi under chiral symmetry, then all nontrivial contributions to the correlator〈∏Oi〉

are from bundlesP with c1 = n, so this correlator has the formeinθ〈∏ Oi〉0, where〈∏ Oi〉0 is θ-
independent. For example,〈ψ−ψ∗+〉 = Ceiθ, whereC is theta-independent.

If instead of (5.5) we consider Lagrangian (5.6) with the mass term, then this argument shows that

〈
∏
Oi〉(m, θ) = einθ〈

∏
Oi〉0(m̃), (5.9)

wherem̃ = me−iθ. Thus, the really important parameter of the theory is ˜m, which we will write as
m∗e−iθ∗ , m∗ ≥ 0. Our goal in this lecture to study this theory as a function of ˜m.

51



5.3. Behavior of 2-dimensional gauge theory with massive fermions
Now we will describe the behavior of the theory defined by Lagrangian (5.6), and later will justify

this conclusion.
First of all, we will see that for largem∗ (i.e. m∗ >> e) the theory is similar to the 2-dimensional

gauge theory with massive bosons, considered in the previous lecture. In particular, it has a mass gap.
It also has a unique vacuum forθ , π, and two of them forθ = π. The discrete symmetry of reversal
of space orientation (t → t, x → −x), which acts bym∗ → m∗, θ∗ → −θ∗, is broken on the negative
real axis (far away from 0), but not on positive real axis.

Next, we will show that form̃ = 0 the theory is in fact free, i.e. becomes a free massive theory
after a change of variables. Thus the theory has a unique vacuum and a mass gap for smallm∗ (i.e. for
m∗ << e).

Unfortunately, we do not know for sure what happens in the regionm∗ ∼ e. The most natural thing
would be that the cut in the plane ofm∗, representing points with symmetry breaking which starts at
−∞, ends at some point−mc, mc = e/λ, andλ is dimensionless. At ˜m = −mc, the theory should have
no mass gap (since it is a point of transition from two vacua to one vacuum).

This is what is in fact believed. Furthermore, there is a conjecture that the theory at the critical
valuem̃ = −mc is in fact conformal, and isomorphic to the theory of a free neutral fermion.
5.4. Heavy fermions.

In this section we will study the casem∗ >> e. In this case we can regard our theory as a
perturbation of a theory withe = 0 with perturbation parameterλ = e/m∗. At λ = 0, we have a
direct product of a 2-dimenisonal pure gauge theory (which is free), and a free theory of massive
fermions (to be safe here, we should introduceB = A/e; this makes sense, as fore = 0, only the trivial
U(1)-bundle contributes to the path integral).

It turns out that the situation here is similar to the bosonic case. Namely, the smalle perturbation
of the free theory fore = 0 is singular. This means, the space of states of the deformed theory is
actually smaller than that of the undeformed theory. More precisely, confinement of fermions takes
place: the only allowed states (forθ , π) are states of total charge 0 (here the charge ofψ± is 1 and of
ψ̄± is −1, andθ ∈ [0,2π)). In particular, the fermions can only exist in pairs, quadruples, and so on,
and a single fermion cannot exist.

Like in the bosonic case, the theory has a mass gap by deformation argument (the fact that the
deformation is singular does not invalidate this argument, since the Hilbert space does not increase
but only becomes smaller). More precisely, we have one realization forθ , π, and two of them for
θ = π (as in the pure gauge theory), and any realization has a mass gap.
5.5. Bose-Fermi correspondence.

Before studying the case of light fermions, we will consider Bose-Fermi correpondence, which
will be useful in studying the case of smallm∗.

Consider two 2-dimensional free field theories
1. The fermionic theory defined by the Lagrangian

Lf =
1
2π

∫
d2x(ψ̄−D+ψ̄− + ψ̄+D−ψ̄+). (5.10)

2. The bosonic theory defined by the Lagrangian

Lb =
1

4πR2

∫
d2x|dφ|2, (5.11)

These two theories are conformal (both classically and quantum-mechanically), and have Virasoro
central charge 1. So we can suspect there may be some connection between them. And indeed, such
a connection exists, and it is called the Bose-Fermi correspondence.
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Remark. Conformal field theories with small central charge are very scarce. For instance, forc < 1
they are completely classified by Friedan, Qiu, Shenker (Ref ???). The answer is that there is no
continuous parameters, and the theory is almost completely determined byc, which can take only a
discrete sequence of values. Forc = 1, such a classification is unavailable, but very few examples are
known, and all of them have a construction in terms of a free Bose field.

Let us now take a look at the bosonic theory (5.11). As we remember from Lecture II-1, in order
for this theory to make sense,φ has to be angle-valued, i.e. take values in the circleR/2πZ. The
constantR in the Lagrangian has the meaning of the radius of this circle.
Remark. We always model the target circle asR/2πZ, but consider various Riemannian metrics on
it, which are parametrized by values of the radiusR.

Recall from Lecture II-1 that the Hilbert space of this theory (in its unique realization) is of the
formHb = ⊕k∈Z(Fb⊗F∗b)k, whereFb is the bosonic Fock space. The operator algebraAb of the theory
is generated by the derivatives ofφ (but notφ itself), and :einφ : (for brevity in the future we will
drop the colons). Operator product expansion is given by formula (3.9) of Lecture 3 in the fall, where
D(x− y) = −R2 ln |x− y|. The action ofAb inHb: Derivatives ofφ do not changek, and :einφ : maps
(Fb ⊗ F∗b)k to (Fb ⊗ F∗b)k+n.

Now consider the theory (5.12). The Hilbert space of this theory isHf = Ff ⊗ F∗f , whereFf is

generated from the vacuum by holomorphic operatorsψ+, ψ̄+, andF∗f is generated from the vacuum

by ψ−, ψ̄−. The operator algebraAf is generated byψ+, ψ̄+, ψ−, ψ̄−, with the standard OPE of the free
theory.

Consider more closely the operator :einφ : for n ∈ Z. As we know (Lecture 3 in the fall, Lecture
II-1), this operator has holomorphic dimensionn2R2/4 and antiholomorphic dimensionn2R2/4 (the
total ofn2R2/2, as we saw in Lecture 3 in the fall).

Classically, the operatoreinφ locally factors as a product of a holomorphic one and an antiholo-
morphic one:einφ = einφ+einφ− , whereφ = φ+ + φ−, and∂−φ+ = ∂+φ− = 0. (Of course, hereφ+, φ−
are defined only up to adding a constant). There is no analogs ofeinφ± in our operator algebraAb.
However, imagine for a second that the operatorseinφ± make sense. Then we will find from the OPE
for eiφ thateiφ+ has holomorphic dimensionR2/4 and antiholomorphic dimension 0, and

〈eiφ+(x1)...eiφ+(xn)e−iφ+(y1)...e−iφ+(yn)〉 =

∏
1≤i<j≤n(xi − xj)R2/2 ∏

1≤i<j≤n(yi − yj)R2/2

∏
1≤i,j≤n(xi − yj)R2/2

. (5.12)

wherexi , yj are viewed as complex numbers. From this formula it is clear that in order foreiφ+ to make
any sense, we needR2/2 ∈ Z, so that the function on the R.H.S. of (5.12) is single-valued. Similarly,
in order foreinφ+ to make sense,n2R2/2 has to be an integer.

Let us consider the simplest case whereeinφ+ can make sense, i.e.R =
√

2. In this case, we have

〈eiφ+(x1)...eiφ+(xn)e−iφ+(y1)...e−iφ+(yn)〉 =

∏
1≤i<j≤n(xi − xj)

∏
1≤i<j≤n(yi − yj)∏

1≤i,j≤n(xi − yj)
. (5.13)

It is clear from (5.13) thateinφ+ behaves like a fermion whenn is odd, and like a boson whenn is even.
This makes us hope that it is atR =

√
2 that our theory is related to the theory of fermions.

Let us see why this is indeed the case. Let us compute the fermionic correlation function

〈ψ+(x1)...ψ+(xn)ψ̄+(y1)...ψ̄+(yn)〉
. Using Wick’s formula, it is easy to find that

〈ψ+(x1)...ψ+(xn)ψ̄+(y1)...ψ̄+(yn)〉 = det(
1

xi − yj
). (5.14)
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The coincidence of the right hand sides of (5.13),(5.14) is a famous combinatorial identity, which
follows from comparison of zeros and poles, and asymptotics at infinity.
Remark. In fact, the explicit form of (5.13),(5.14) is not relevant to the proof of the fact that they are
equal. What is relevant is only the structure of zeros and poles, and the asymptotics at infinity, which
in both cases are obvious from the OPE.

Let Âb be the operator algebra generated byAb andeinφ± . Equalities (5.13),(5.14) show that we
have a homomorphismξ : Af → Âb defined byξ(ψ±) = e±iφ± , ξ(ψ̄±) = e∓iφ± , which preserves
expectation values.

Using the OPE, it is easy to find

ξ(: ψ̄+ψ+ :) = lim
ε→0

ξ(ψ̄+(x + ε)ψ+(x) − 1
ε

) = lim
ε→0

(e−iφ+(x + ε)eiφ+(x) − 1
ε

) = −i∂+φ. (5.15)

Likewise,ξ(: ψ̄−ψ− :) = i∂−φ. Also, ξ(ψ+ψ̄−) = eiφ, ξ(ψ−ψ̄+) = e−iφ. In fact, it is not difficult to see
that this homomorphism is an isomorphism.

At the level of Hilbert spaces,ξ induces a bigraded isomorphismFf → Fb⊗l2(Z) (bidegree=(quantum
scaling dimension, charge)), where the charge ofeiφ+ and the charge ofψ+ equal 1. Writing the cor-
responding character formula, we obtain

∑
n∈Z qn2/2zn

∏
n≥1(1− qn)

=
∏

n≥1

(1 + qn−1/2z)(1 + qn−1/2z−1), (5.16)

which is the famous Jacobi triple product identity.
The correpondenceξ is called the Bose-Fermi correspondence.

Remark 1. If the radius of the circle is not
√

2, but 1, then the operatoreiφ+ is meaningless, as its 2-
point function would be (x− y)−1/2, which is not single-valued. However, the operatore2iφ is defined,
and its 2-point function is 1

(x−y)2 . This indicates thate2iφ behaves like a current of some symmetry.

And indeed, it turns out that the corresponding model is equivalent to thêSU(2)-WZW model with
Kac-Moody central charge 1, so it has anSU(2)-symmetry. In fact, the Fourier components of the
operatorse±2iφ+ and∂+φ generate the left-movinĝSU(2), and the Fourier components of the operators
e±2iφ− and∂−φ generate the right-movinĝSU(2).
Remark 2. In fact, the Bose-Fermi correspondence is true not only locally (at the level of operators),
but also globally (at the level of path integral). Namely, for any Riemann surfaceΣ one has the identity
of partition functions

∫
Dφ e−

1
8π

∫
|dφ|2 =

∑

ε

∫
Dψ+Dψ̄+Dψ−Dψ̄−e−Lf (ψ), (5.17)

whereLf is the Lagrangian given by (5.10), andε runs over spin structures onΣ (the same spin
structure is taken forψ+ andψ−). There is a similar identity for correlation functions of operators, if
the correspondence between operators is made as explained above.
5.6. Bose-Fermi correspondence for nonlinear theories.

We have established a correspondence between two free theories – the theory of a boson and the
theory of fermions. A remarkable fact is that this correspondence generalizes to the case when the
Lagrangian of one or both of the theories is not free. Consider examples of such situations.

1. Recall that under our correspondenceLf → Lb(
√

2), whereLb(R) is given by (5.11). Since
ξ(ψ̄±ψ±) = ∓i∂±φ, we find

Lf +
1
2π

∫
d2x(gψ̄+ψ+ψ̄−ψ−)→ Lb(

√
2(1+ g)−1/2). (5.18)
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This shows that, to our surprise, the theory with the LagrangianLf + 1
2π

∫
d2x(gψ̄+ψ+ψ̄−ψ−) is free.

In particular, itsβ-function is zero. This is obvious when the theory is described in Bose variables,
but not obvious in Fermi variables.

2. On the other hand, consider the theory of free massive fermions, with the LagrangianLf +
1
2π

∫
d2x(mψ̄−ψ+ + m̄ψ̄+ψ−). Using the fact thatξ(ψ̄±ψ∓) = −e∓iφ, we get that underξ, this free

Lagrangian goes to

Lb(
√

2)− 1
2π

∫
d2x(meiφ + m̄e−iφ). (5.19)

So we get another surprising fact that the nonlinear theory defined by (5.19) is in fact free.
Remark. It may appear that the second term in (5.19) has a wrong scaling dimension. This is not
the case, because the operatore±iφ has anomalous dimension 1. More precisely, (5.19) does not fix a
theory but fixes a family of theories depending on a scaleµ of momenta, which is introduced when the
operatorseiφ are renormalized. This scale enters in front of the corresponding term in the Lagrangian
and cancels the discrepancy in dimensions.

Using the symmetryφ → φ + θ we can reduce (5.19) to the case of realm. In this case, (5.19)
looks like

Lb(
√

2)− m
π

∫
d2xcosφ. (5.20)

Thus, the classical equation of motion is∆φ = −4msinφ. This equation is called the sine-Gordon
equation, and it is a well-known completely integrable soliton equation.

Now consider The Lagrangian

Lb(R) − m
π

∫
d2xcosφ. (5.21)

This Lagrangian is proportional to (5.20), withm′ = mR2/2, so classically the two Lagrangians are
equivalent. However, quantum mechanically, this is not the case, as the scale of Lagrangian is now
relevant. In fact, the theory now essentially depends onR. If R =

√
2, the theory is free, but for a

generalR it is not. The mapξ shows that for a generalR the theory is equivalent to the fermionic
theory with the Lagrangian

Lf +

∫
d2x(mψ̄−ψ+ + mψ̄+ψ− + gψ̄+ψ+ψ̄−ψ−), (5.22)

whereR =
√

2(1+ g)−1/2.
As we mentioned, the theory described by the Lagrangian (5.21) is not free forR,

√
2. However,

it is solvable, in the sense that its S-matrix can be computed explicitly. This computation and the
result are similar to the computation of Lecture II-3, for the sigma-model into the sphere. Solvability
for this theory for largeR (i.e. in the classical limit) is related to the complete integrability of the
sin-gordon equation at the classical level.

Now we want to apply the Bose-Fermi correspondence to gauge theory. Consider the Lagrangian
Lθ,m given by (5.6). Define

Lf
θ,m = Lθ,m +

1
2π

∫
d2xgψ̄+ψ+ψ̄−ψ−. (5.23)

Let us rewrite it in Bose variables. Then we will get the Lagrangian

Lb
θ,m =

∫
d2x

(
1 + g
8π
|dφ|2 − m

2π
eiφ − m̄

2π
e−iφ + A+(

i∂−φ
2π

) + A−(
−i∂+φ

2π
) +
| ∗ F|2
4e2

− iθ
2π

F

)
. (5.24)
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For simplicity we assume thatφ is a homotopically trivial map. (It is easy to generalize everything
to the homotopically nontrivial case). Then the integral

∫
(A−∂+φ−A+∂−φ) can be taken by parts, and

it equals
∫
φ(∂−A+ − ∂+A−), whereφ is now understood as a lifting of the originalφ to a mapΣ→ R.

The expression∂−A+ − ∂+A− equals to the curvatureF, so (5.24) is simplified:

Lb
θ,m =

∫
d2x

(
1 + g
8π
|dφ|2 +

m
2π

eiφ +
m̄
2π

e−iφ +
| ∗ F|2
4e2

− i(φ + θ)
2π

F

)
. (5.25)

From this equation it is clear that whenm = 0, the theory is free, and there is no essentialθ-
dependence. This is the first thing we promised to show. Now, form , 0, by changingφ to φ + θ we
find that theta can be absorbed inm.

Let us now see what happens form, 0. It follows from Lecture II-4 that for an external fieldφ(x)
∫

DA e
i

2π

∫
φFA− 1

4e2

∫
|∗FA|2 = Ce−

e2
2π

∫
d2xminn(n− φ(x)

2π )2
, (5.26)

Therefore, the effective Lagrangian forφ for the Lagrangian (5.25) is

Lθ∗,m∗ef f =

∫
d2x

(
1 + g
8π
|dφ|2 − m∗

π
cos(φ − θ∗) +

e2

2π
min

n
(n− φ

2π
)2
)
. (5.27)

From this formula, it is seen, that the theory has a mass gap for smallm∗: the potential

U(φ) = −m∗
π

cos(φ − θ∗) +
e2

2π
min

n
(n− φ

2π
)2 (5.28)

has a unique global minimum (modulo 2π) with positive second derivative. This is the case for allm∗
if θ , π. However, ifθ = π andm∗ grows from 0 to∞, the global minimum atφ = 0 keeps flattening,
and at some point splits in two symmetric minima, when the second derivative becomes zero. This
should indicate that starting at some finite value ofe/m∗ there should be symmetry breaking. Of
course, this proves nothing, because (5.28) is not the quantum effective potential for our system (it is
the potential only classically). However, we hope that the true effective potential behaves similarly,
and the picture is qualitatively the same.

For more on this model, see S.Coleman’s article in Annals of Physics, vol. 101, p. 239-267
(1976).
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Lecture II-6: Gauge theory in 2 dimensions with self-interacting bosons, the Wilson
line operator, and confinement

Edward Witten
Notes by Pavel Etingof and David Kazhdan

In the last lecture we considered 2-d gauge theories with fermions. Today we will consider 2-
dimensional gauge theories with bosons. As before, we will work with Euclidean Lagrangians.
6.1. Infrared behavior of U(1) gauge theories with bosons in 2-dimensions.

We consider aU(1) gauge theory with bosons in 2 dimensions.
Our spacetime is a Riemann surfaceΣ. Our fields areA – aU(1) connection in some line bundle

L, andφ1, ..., φN – complex scalar fields, which are sections ofL.
Our Lagrangian is

∫
d2x

(
(∗F)2

4e2
+

1
2
|dφ|2 +

λ

4
(|φ|2 − a2)2

)
− iθ

2π

∫
F, (6.1)

where|φ|2 =
∑ |φi |2, |dφ|2 =

∑ |dφi |2.
We want to understand the infrared behavior of this theory.
Clasisically, the “mass” of the bosons is given byφi is m2 = −λa2. If λ → 0 andm2 > 0

remains fixed, this Lagrangian becomes the Lagrangian of a gauge theory with “free” massive bosons
(i.e. bosons interacting with the gauge field only and not interacting with each other), which was
considered in Lecture II-4.

The parameters of the theory arem, θ, λ,e (with λ > 0). We will now keepλ,e fixed, and vary
m, θ, to see how the behavior of the theory depends on them.

First consider the situationm2 → +∞ (i.e. m2 >> e2). In this situation the quartic term in the
Lagrangian becomes unimportant, and the situation is essentially the same as in Lecture II-4. Namely,
the theory has a mass gap, and the interaction between bosons is approximated by the 1-dimensional
Coloumb potential, which causes their confinement: all states in the theory are of total charge zero.
Also, the space reversal symmetry is preserved forθ = 0, but broken forθ = π, thus producing two
vacua and a cut atθ = π. For example, the vacuum energy density, which is a 2π-periodic function of
θ given for−π ≤ θ ≤ π by formula (6.2) below, has a discontinuous derivative atθ = π.

Now consider the situation whenm2 → −∞ (i.e. m2 << −e2). In this case, the situation is totally
different: because of the presence of the quartic term, the classical potential for bosons has a minimum
at |φ|2 = a2, so the space of minima isS2N−1. The gauge groupU(1) acts freely on this space, so the
space of classical vacua isCPN−1 = S2N−1/U(1). Thus, the low energy effective theory is the theory
of maps fromΣ toCPN−1 with the round metric (the sigma-model).
Remark. In Lecture 3 we saw that the theory with the Lagrangian density1

2(dφ)2 + λ(φ2 − a2)2

flows in the infrared to the sigma-model of maps to the sphere. We remarked that this means that
this (superrenormalizable) theory is a good cutoff for the sigma-model to the sphere. Similarly, the
superrenormalizable (and hence rigorously existing) theory defined by Lagrangian (6.1) is a good UV
cutoff for the theory of maps toCPN−1.

For LargeN, we found that the sigma-model of maps toCPN−1 behaves in the infrared as the
gauge theory of massive bosons. Today we will consider in more detail the caseN = 1. In this case
CPN−1 is one point, so the theory defined by (6.1) has a mass gap and a unique vacuum.
6.2. The vacuum energy density.

57



Recall that form2 >> e2 in Lecture II-4 we found the following value of the vacuum energy
density:

Evac(θ) =
e2

2

(
θ

2π

)2

. (6.2)

So theθ-derivative of the energy density is proportional to the first power of the couplinge2.
In the casem2 << −e2, the situation is totally different. Namely, now the contributions to the

path integral from nontrivial line bundles (relative to infinity) is exponentially small ine2, since any
section of such a bundle has to vanish somewhere, and this will have a big action due to the presense
of the quartic potential. Thus, to any finite order of perturbation theory (ine2), the path integral,
and hence the vacuum energy density are independent ofθ. More precisely, the theta-dependence
is exponentially small, and comes from the sum overinstantons– lowest action configurations of
nontrivial first Chern class.
6.3. Instantons.

Let us compute the coefficient ofeiθ in the Fourier expansion of the path integral with Lagrangian
(6.1). This is equivalent to taking the path integral over connections in line bundles withc1 = 1.

As usual, the main contribution to the path integral comes from field configurations which are
close to the configuration minimizing the action. Such a configuration (φ,A) is called an instanton.

Let (φ,A) be an instanton. In order for its action to be finite, we must have

|φ(x)| → a,FA(x)→ 0, x→ ∞, (6.3)

whereFA is the curvature ofA. Moreover, sinceφ is classically massive, this convergence is exponen-
tially fast. Thus, an instanton in our problem has to be a highly localized field configuration.

In our further discussion of instantons, we will assume thatΣ = R2, andc1 is measured with
respect to trivialization at infinity. In this case, we expect that instantons are rotationally symmetric,
with respect to some center of rotationx0. Without loss of generality we can assume thatx0 = 0, so
that the instanton has the formφ = aeiαf (r), A = g(r)dα, wheref (r), g(r) are some functions of the
radiusr (wherer, α are polar coordinates onR2). It is easy to show that in this case one must have
f (0) = 0, f (∞) = 1, andg(0) = 0, g(∞) = 1. Thus, we get a boundary value problem for ordinary
differential equations. It can be proved by considering the corresponding ODE that this problem has
a unique solution. Thus, the instanton is unique, up to translations. In particular, it has a definite size,
and its action is a well-defined positive constantI .
Remark. In this respect, our instanton is different from the instantons of theCPN−1 model, which
could be transformed by any conformal automorphism, and therefore had no definite size.

By dimensional analysis it is clear thatI is of the forma2h( λ
e2 ), whereh is a dimensionless func-

tion. It is possible to show thath(z) ∼ Czasz→ ∞, whereC is a constant, so for smalle (compared
to λ), I ∼ Cλa2

e2 . This calculation illustrates the fact that the contribution of the instanton to the path
integral is exponentially small with respect toe2.
6.4. Instanton gas.

Now we want to understand how to compute the contribution of the instantons to the path integral,
and when such a computation gives a good approximation.

First of all consider line bundles withc1 = 2. It can be shown that there is no instanton in this
topological class ife2/λ is sufficiently large. We will assume that there is no instanton forc1 > 1,
but what we will say can be generalized to the case when there is one (for smalle2/λ). In the case
when there is no instanton withc1 > 1, the problem of minimization of action in the casec1 = 2 has
no global minimum (the infinum is not attained). However, we can consider approximate instantons,
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whose action approaches the infinum arbitrarily closely. More precisely, if we takeA(x) = A∗(x−x1)+

A∗(x− x2), φ(x) = φ∗(x− x1)φ∗(x− x2)/a, where (A∗, φ∗) is the instanton centered at 0, then the action
of (A, φ) equals 2I , plus a correction which is of ordere−c|x1−x2|, wherec is a positive constant. Thus,
the infinum of actions forc1 = 2 is 2I .

Similarly, the infinum of actions forc1 = n is nI, for anyn ∈ Z+. This follows from the fact that
the action of the field configuration

n∑

i=1

A∗(x− xi), a
n∏

i=1

φ∗(x− xi)
a

has action which is exponentially close tonI when|xi − xj | are big.
Now consider the situation whenc1 < 0. It is easy to see that (−A∗, φ̄∗) is the instanton forc1 = −1.

It is called the antiinstanton. Thus, the situation forn < 0 is symmetric to the situation forn ∈ Z+: the
field configuration

−
|n|∑

i=1

A∗(x− yi),a
n∏

i=1

φ̄∗(x− yi)
a

has action exponentially close to|n|I when|yi − yj | is big.
More generally, one can consider field configurations

n∑

i=1

A∗(x− xi) −
m∑

i=1

A∗(x− yi), a
n∏

i=1

φ∗(x− xi)
a

m∏

i=1

φ̄∗(x− yi)
a

,

with c1 = n − m which have action exponentially close to (n + m)I whenxi , yj are distant from each
other.
Remark. Such field configurations are called “instanton gas”. The term “instanton gas” refers to a
gas with long range Coulomb forces (like the instantons we studied later in the Polyakov model in
2+1 dimensions). This gas with exponentially small forces at long range is more like an ordinary
gas of atoms, for instance the air in the atmosphere. It is an almost ideal gas, the ideal gas law of
thermodynamics is the case that the forces are exactly zero. Any real gas (hydrogen, oxygen) behaves
as an almost ideal gas if the density is small enough, because then the particles are generally at big
distances where the interactions are small. That is the case for the instantons in this model because
the instanton action is big (and the instantons have a definite size)
6.5. Summing over instantons.

As we remarked, the perturbation series with respect to powers ofe2 for the path integral with
Lagrangian (6.1) does not involve contributions from instantons, as they are exponentially small. Let
us introduce a refined perturbation series, which will take instantons into account. For this purpose we
will work on a Riemann surface of volumeV, and introduce a new perturbation parameterW = Ve−I .
We will consider the perturbation expansion with respect to bothW ande. The key fact is that in this
refined perturbation expansion, the only contributions of finite order inW andeare from the instanton
gas. Thus, the approximation to the partition function obtained this way has the form

Z(e2, θ,W) = eVP0

∞∑

n,m=0

Wm+nPn
+Pm−eiθ(n−m)

m!n!
, (6.4)

whereP0,P+,P− are the perturbation series around the zero solution, the instanton, and the antiin-
stanton, respectively.
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Here the term with indicesm,n comes from a field configuration withn instantons andm antiin-
stantons, distant from each other. The factorials in the denominator arise from the fact that instantons
and antiinstantons are not labeled, and their permutation does not change the configuration.

Summing (6.4) by ordinary calculus, we get

Z(e2, θ,W) = eVP0+W(P+eiθ+P−e−iθ). (6.5)

In our case,P+ = P− = P, so we get

Z(e2, θ,W) = eVP0+2WPcosθ. (6.6)

Now we can compute the energy density of the vacuum in this approximation. This can be done
from the equalityZ = e−VEvac, which is the definition of the vacuum energy densityEvac. Thus,

Evac = −P0 − 2Pe−I cosθ. (6.7)

As we expected, the theta-dependence is exponentially suppressed, but we were able to compute the
main term of this dependence.

The next order correction to (6.7) is of ordere−2I , but it is hard to calculate. But if we had an
instanton forc1 = 2 with I ′ < 2I , then the correction would be of the forme−2I ′ cos 2θ.

We see that unlike the casem2 >> 0, whereEvac = e2θ2/8π2 is a non-smooth function ofθ (it has
a cut atθ = ±π), in the casem2 << 0 the functionEvac(θ) = −P0 + 2Pe−I cosθ is smooth in the first
approximation. Thus, form2 << 0 there is no cut atθ = ±π, and there is a mass gap and a unique
vacuum for anyθ.

Thus, the cut atθ = ±π has to add at some pointm2 = m2
c ∈ R. At this point the effective potential

of the theory (if it makes sense) has a quartic critical point at the origin, so that the theory has no mass
gap. It is conjectured that this theory is conformal, and is the continuous limit of the 2-dimensional
Ising model.
6.6. The Wilson line operator.

In this and subsequent sections we will define the Wilson line operator, and try to understand its
physical and formal properties.

Suppose we have a gauge theory with gauge groupG on a spacetimeM. Let A denote the cor-
responding gauge field with values in the Lie algebrag of G. Let C be a closed loop inM, and
Hol(A,C) ∈ G be the holonomy of the connectionA alongC (it is only defined up to conjugation).
Let R be a finite-dimensional representation ofG. Define the classical Wilson line (or Wilson loop)
functional to be

WR(C)(A) = Tr|R(Hol(A,C)). (6.8)

It is clear that this functional is gauge invariant.
If C is a union of disconnected loopsCi labeled with representationsR = (Ri), then by definition

WR(C) =
∏

WRi (Ci).

If G is abelian, andC is cotractible, thenWR(C) = ei
∫
D F, whereF is the curvature ofA, andD is

a disk such that∂D = C.
An important generalization of this is the following:̂G is the simply-connected cover ofG, and

R is a representation of the universal coveringĜ of G. In this case it is easy to see thatWR(C) is
still well-defined whenC bounds a diskD. (in the abelian case, it follows from the above integral
representation ofW).
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Now we want to define an analogue ofWR(C) in quantum theory. For this purpose we need to
renormalize the classical functionalWR(C). This can be done by expandingWR(C) in powers ofA
(like the exponential is expanded in Taylor series):

WR(C) = dim(R) +

∫
dlTr|R(A(l)) +

1
2

∫
dldl′Tr|R(A(l)A(l′)) + ..., (6.9)

wherel is some parameter onC, andA(l) is the evaluation of the formA on the tangent vectorddl to C
at the pointl, with respect to this parametrization. Each term of this expansion is polynomial and can
be renormalized as usual.

In fact, one can show in most cases that the operatorWR(C) has only multiplicative renormal-
ization. This follows from the fact that classically,WR(C) is the trace of the monodromy of the
differential equationx′ = Ax along the loop. This equation is renormalized tox′ = (A + c)x, where
c is an operator in the theory, invariant under the same symmetries asA, in the adjoint representation
of the gauge group, of dimension the same and lower thanA. If there is no such operators except
for constants (constants come up for theU(1)-case) then this equation will change tox′ = (A + c)x
under renormalization, wherec is a scalar operator. This shows thatWR(C) will have multiplicative
renormalization.

More precisely, one can show that in critical dimension 4, the divergent renormalization factor
has the formeL(C)Λf (e2)+o(Λ), whereΛ is the cutoff andL(C) is the length ofC, while in the super-
renormalizable case (in less than 4 dimensions), the divergent factor has power growth with respect to
Λ.

A more physical way of thinking of the Wilson loop operator is the following. We will use the
Hamiltonian picture. Thus,M = Ms × R, whereMs is the space manifold. The Hilbert space of the
theory is thenH the space of functions onA, whereA is the space of gauge classes of connections
onMs. The spaceH has the formH = (H0)G̃, whereH0 is the space of functions on all connections,
andG̃ is the group of gauge transformations.

Now let C be a loop inM. Suppose first that the loopC is in the submanifoldt = 0. In this case,
the Wilson loop operator is obviously just the operator of multiplication by the functionWR(C).

Now consider the situation whenC is not in a horizontal section of the spacetime, but a general
curve. In this case,WR(C) is no longer multiplication by a function.
Remark. We think ofC as a worldline of a “charge” which transforms in a representationR. The
best is to think of two charges of typeR,R∗ which are born at some timet0 from nothing at the same
point x0, then fly around for a while (untilt1), and finally recombine at the timet1, back into nothing,
at a pointx1. We think of these charges as classical, external objects. That is, the expectations in the
presence ofC are conditional expectations, given that the worldlines of the charges form the loopC.
In this setting, we can regardeiH (t1−t0)WR(C) as the evolution operator from timet0 to time t1, in the
system with presence ofC (hereH is the Hamiltonian of the system).

The operatorWR(C) allows us to define the time ordered correlation functions in the presence of
C for any set of local operators at points (x, t) such thatt < [t0, t1], simply as correlation functions
with the insertion ofWR(C) in the right place. But what should we do fort0 < t < t1?

The most natural method is to set the Hilbert space of states att to beH(t) = (H0 ⊗ R(x(t)) ⊗
R∗(y(t)))G̃, whereR(x), R∗(y) are the evaluation representations of the groupG̃ at the pointsx.y, and
x(t), y(t) are the positions of the two charges at the timet. Define operatorsWR(C+(t)) : H → H(t),
WR(C−(t)) : H(t) → H – the Wilson “open line” operators corresponding to the upper and lower
half-loopsC+(t),C−(t) (the parts ofC lying above and below timet). The definition of the “open
line” operators similar to the definition of the closed loop operators. Now, the expectation value
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of a local operatorO(x, t) in the presence ofC is just the usual expectation value of the operator
WR(C+(t))φ(x, t)WR(C−(t)).
6.7. The path integral representation of the Wilson line operator.

It is convenient to represent the classical Wilson line functional as a 1-dimensional path integral.
Such a representation will be deduced in this section.

Let R be an irreducible, finite-dimensional representation of a simple compact Lie groupG. By
Borel-Weil theory, we can think ofRasH0(G/T,LR), whereLR is a suitable holomorphic line bundle.
The bundleLR has a natural Hermitian metric, and therefore a natural connectionB. For any map
φ : S1 → G/T, define the actionIR(φ) = − ln Hol(φ∗(B)) (Hol is for holonomy). The numberIR is
only defined up to 2πin, bute−IR(φ) = Hol(φ∗(B)) is well defined.

Consider the path integral ∫
Dφe−IR(φ). (6.10)

It can be represented in the form ∫
Dφei

∫
D φ
∗(FB), (6.11)

whereFB is the curvature ofB, andD is a disk whose boundary is the image ofS1. The quantum theory
defined by this path integral is the Hilbert spaceR with the zero Hamiltonian (as the path integral is
invariant under diffeomorphisms).

Now let P be the total space of a principalG-bundle over the circle, with a connectionA, and
let P/T be the associatedG/T bundle. SinceL is a G-equivariant line bundle onG/T, it defines
a complex line bundle onP, which we denote byLP. The hermitian connectionB on L defines
a connection onLP in the vertical direction (along fibers ofP). This connection can be naturally
extended to a connectionBP onLP using the connectionA: in a local gauge whereP is trivial and
A = 0, B is extended by the condition that constant paths are horizontal paths.

For any smooth sectionφ of P/T, define the action

I (φ,A) = − ln Hol(φ∗(BP)). (6.12)

As before,I is defined up to 2πin.
Let WR(A) denote the trace inR of the holonomy ofA around the circle. It is now easy to see that

the functionalWR(A) has the following integral representation:

WR(A) =

∫

φ∈Γ(P/T)
e−I (φ,A)Dφ. (6.13)

Now letC is a loop inM, andA is a connection in a principalG-bundleP overM. Let f : S1→ C
be a parametrization. Then we have

WR(C)(A) =

∫

φ∈Γ(f ∗P/T)
e−I (φ,f ∗A)Dφ. (6.14)

This gives an integral representation of the Wilson line operator. This representation allows us to
represent the theory in the presence ofC (for instance, for pure gauge theory) by a double path integral

∫
DADφe−

1
4e2

∫
Tr|F2|−I (φ,A)

. (6.15)

Remark. Note that the integrand of (6.13),(6.14) is the holonomy of an abelian connection, so it
can be explicitly computed as the exponential of the integral of curvature. This, we have represented
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the monodromy of an arbitrary linear differential equation on the circle as an explicit integral over
infinitely many auxiliary variables. It is well known in classical analysis that such a reopresentation
with finitely many auxiliary variables is, in general, impossible: it is only possible for some special
equations of “hypergeometric” type.
6.8. The Higgs and the confinement regimes.

Consider a Wilson loop which is approximately a rectangle: two charges are born, move away
from each other at distanceL, stay at that distance from each other for a timeT >> L, and then anni-
hilate each other. Then The expectation value〈WR(C)〉 of the Wilson loop operator (in the Euclidean
setting) has the following meaning: it is approximately equal toCe−TV(L), whereV(L) is the energy
of interaction of the charges at distanceL, andC is a constant. This is clear from the interpretation of
the Wilson loop operator as an evolution operator, which is given above.

So the asymptotics of〈WR(C)〉 depends on the asymptotics ofV(L) asL→ ∞.
Physicists believe that above 2 dimensions, in gauge theories with a mass gap, there are two

possibilities:
1. Higgs regime:VL→ const,L→ ∞.
In this regime, charges can separate from each other.
2. Confinement regime:V(L) ∼ constL asL→ ∞, where the constant is positive.
In this regime charges are confined, and cannot separate without spending an arbitrarily large

amount of energy.
Now let us consider a Wilson loopC of any shape, with circumferenceSand minimal area of the

spanning surfaceA. There is a general conjecture that patterns 1 and 2, if they hold forT >> L >> 0,
hold for an arbitraryC (large in all directions) in the following form: the Higgs regime corresponds
to the asymptotics〈WR(C)〉 ∼ e−wS (the circumference law), and the confinement regime corresponds
to the asymptotics〈WR(C)〉 ∼ e−wA (the area law), wherew > 0.
Remark. Actually, confinement can only occur ifR is a representation of the universal coverĜ of G
and not ofG itself. Indeed, ifR is a representation ofG, there are physical processes contributing to
〈WR(C)〉 in which large portions of the Wilson line have zero charge (i.e. carry the trivial representa-
tion of G) (i.e. some particles have annihilated the charges on the Wilson line). These processes have
an amplitude which is bigger than that predicted by the area law.

As a toy example, let us consider the 2-dimensional theory with Lagrangian (6.1), which we
studied in the first part of the lecture. In this case,G = U(1). LetRbe the representation of̂G defined
by λ ∈ R: x→ eiλx. Then, classically,WR(C) = eiλ

∫
D FA. Thus, quantum mechanically

〈WR(C)〉 =

∫
DADφDφ̄e−Leiλ

∫
D F. (6.16)

Let V be the volume of spacetime, andAC be the area enclosed byC. We will split the path integral
(6.16) into a product of two – the integral over values of fields inside the loopC and over the val-
ues outside. Observe that the last factor in (6.16) (the holonomy factor) is of the same type as the
topological term in (6.1). Therefore, according to the results of the first part of this lecture, (6.16)
yields

〈WR(C)〉 =
1
Z

e−(V−AC)E(θ)−ACE(θ+λ), (6.17)

up to boundary terms, which we will neglect here. (HereE(θ) is the vacuum energy density). Since
Z = e−VE(θ), we get

〈WR(C)〉 = eAC(E(θ)−E(θ+λ)). (6.18)
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According to our calculations, forθ = 0

E(θ + λ) − E(θ) = E(λ) − E(0) = 2(1− cosλ)e−I/e2
P. (6.19)

This is always positive whenλ is not a multiple of 2π. Thus, theory (6.1) forθ = 0 exhibits the
confinement regime.

In more than 2 dimensions, one expects that this theory obeys Higgs regime.
6.9. The confinement conjecture.

The following conjecture is central in quantum field theory.

Conjecture Let G be a simple compact Lie group, andR be a representation ofG which is not a
representation of the adjoint groupGad. In 3 and 4 dimensions, the pure gauge theory with gauge
groupG and Lagrangian

∫
TrF ∧ ∗F exhibits confinement for charges with values inRandR∗.

The physically interesting case of this theory isG = SU(3), R = C3. This special case of the
conjecture would explain confinement of quarks.

In 2 dimensions, this conjecture is true, as we saw in the previous lectures.
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Lecture II-7: Abelian Duality

Edward Witten ∗1

1 Introduction

Today, we will discuss abelian duality in two and three dimensions (with a brief mention of four
dimensions, which will be further developed in the next lecture). In two dimensions, abelian duality
is often referred to as the “R goes to 1/R” equivalence. In a certain supersymmetric version, it leads
to a linear version of mirror symmetry.

In three dimensions, after studying the duality we will give an application to Polyakov’s model of
confinement.

Abelian duality in four dimensions will eventually have an application to Donaldson theory, that
is, to N = 2 supersymmetric theories in dimension 4. This again gives a model of confinement. In
fact, these two applications of duality are the most concrete models of the phenomenon of confinement
which are known.

We begin with the classical statements of duality. In two dimensions, consider a theory which
involves fieldsφ, σ, both obeying the Laplace equation

∇2φ = 0; ∇2σ = 0, (1.1)

and which are related by
dφ = ∗dσ. (1.2)

Classically, either of these fields can be taken as the fundamental field of the theory. For example, if
we begin withσ such that∇2σ = ∗ d∗ dσ = 0 thend∗dσ = 0 so locally we can write∗ dσ = dφ for
some fieldφ, i.e.,σ determinesφ (locally and up to an additive constant).

Likewise in three dimensions, consider a theory with a fieldφ obeying the Laplace equation, as
well as a connectionA on some line bundleL with curvatureF = dAobeying Maxwell’s equations

dF = d∗F = 0, (1.3)

whose duality relationship is
∗ dφ = F. (1.4)

Again, as above, either of these fields can be taken as fundamental.
In four dimensions, the analogue is two connectionsA andB on line bundlesLA andLB, each

satisfying Maxwell’s equations, and related by

FA = ∗FB. (1.5)

For abelian duality, we could keep going to higher dimensions if we wish, but we quickly run out of
field theory applications. (There are some applications in string theory.)

1∗Notes by David R. Morrison
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2 Duality in two dimensions

We wish to study quantum versions of these classical statements. We begin with the two-dimensional
case. We identifyS1 with R/2πZ, and use additive coordinates on the circle. We takeφ to be a map
φ : Σ → S1 whereΣ is a compact oriented surface equipped with a Riemannian metricgαβ. (We will
consider a variant later on, in whichφ is not required to be defined at some specified pointsPi , that is,
φ will map Σ − {Pi} to S1.) Our Lagrangian2 is

L(φ) =
R2

4π

∫
d2x
√

g∂αφ ∂
αφ =

R2

4π

∫
dφ ∧ ∗dφ. (2.1)

The equations of motionddφ = d∗ dφ = 0 reproduce the classical theory discussed above.
We will study this theory in various ways. The usual trick is to introduce new variables with the

property that integrating them out would lead back to the original theory, and then integrate out the
old variables instead of the new ones in order to produce a dual formulation of the theory.

So we actually wish to study a different theory, one which will contain fieldsφ andA, with φ a
section of a trivialS1-bundleS andA a connection onS. Choosing a trivializationφ0 of S (so that
A = φ∗0Ã for some 1-formÃ on the total space of the bundle), we can define a covariant derivative

DAφ = dφ + A, (2.2)

and introduce a new Lagrangian

L(φ,A) =
R2

4π

∫
d2x
√

g(∂αφ + Aα)(∂αφ + Aα) =
R2

4π

∫
DAφ ∧ ∗DAφ. (2.3)

While we can recover the old Lagrangian by settingA to zero, there is no mechanism which enforces
this, unless we introduce yet a third fieldσ which plays the role of a Lagrange multiplier. We takeσ
to be a map fromΣ to S1, and write a Lagrangian

L(φ,A, σ) =
R2

4π

∫
DAφ ∧ ∗DAφ − i

2π

∫
σ ∧FA, (2.4)

whereFA is the curvature ofA.
This last term requires some comment. Since we are assuming that the circle bundleS is trivial,

we can globally writeFA = dAand the last term should be interpreted asi
2π

∫
dσ∧A (after integration

by parts); this step is needed becauseσ is not single-valued. More generally, to define such a term
even whenS is nontrivial, one can use a bit of topology to define exp(i

2π

∫
σ∧FA), similar to defining

a Chern–Simons form.
The point of writing this Lagrangian is thatL(φ,A, σ) is equivalent toL(φ), as we will now show.

A na¨ive analysis goes as follows:σ appears without derivatives, and its equation of motion isFA = 0;
imposing this, we can then go to a gauge whereA = 0 and recover the original theory.

More globally, we consider the path integral

Z =
1

vol(G)

∫
DφDADσ exp

[
−R2

4π

∫
DAφ ∧ ∗DAφ +

i
2π

∫
σ ∧FA

]
. (2.5)

(We focus on the partition function for now, but path integrals with operator insertions can also be
treated this way, as we will discuss later.) In light of the standard formula

∫
dx
2π

eixy = δ(y), (2.6)

2All Lagrangians in this lecture are written in Euclidean signature.
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we would like to say that doing theσ-integral will setFA to zero. We should treat this statement with
care, since we are studying circle-valued functions.

Bearing in mind our identification ofS1 with R/2πZ, our mapσ : Σ → S1 can be locally written
as a real-valued function, but it might not be globally single-valued; however,dσ will be a (single-
valued) real 1-form onΣ. Choose a circle-valued functionσh : Σ→ S1 such thatdσh is theharmonic
representative in the de Rham cohomology class ofdσ. (We normalize the choice ofσh by picking
some pointP ∈ Σ and demanding thatσh(P) ∈ 2πZ.) Then we can writeσ = σh + σR, with σR a
single-valued real function.

Notice that 1
2πdσ, or equivalently 1

2πdσh, must have integral periods. In particular, if we choose a
basisλj of integral harmonic 1-forms, and writedσh =

∑
2πmjλj , thenmj ∈ Z.

Now we compute:
∫
Dσe

i
2π

∫
σ∧FA =

∫
DσR e

i
2π

∫
σR∧FA

∑

dσh∈H1(Σ,2πZ)

e−
i

2πdσh∧A (2.7)

= δ(FA)
∏

j


∑

mj∈Z
e−imj

∫
λj∧A

 . (2.8)

The first factor tells us thatA is a flat connection. Moreover, among flat connections the gauge equiv-
alence classes [A] are labeled by the holonomies, or equivalently by the quantities

∫
λj∧A. Since the

remaining part of the integrand is gauge invariant, we can gauge fix (omitting the factor of (detG)−1)
and integrate over the space of gauge equivalence classes (a finite dimensional integral):

Z =

∫
DφD[A] e−

R2
4π

∫
DAφ∧ ∗DAφδ(FA)

∏

j


∑

mj∈Z
e−imj

∫
λj∧A

 (2.9)

=

∫
Dφe−

R2
4π

∫
DAφ∧ ∗DAφδ(FA) δ(

∫
λi ∧A = 0 mod 2πZ). (2.10)

So there are delta functions setting the holonomies as well as curvature to zero. SoA is zero modulo
gauge transformations, and our new theory is indeed equivalent to the original theory, with partition
function

Z =

∫
Dφe−

R2
4π

∫
dφ∧ ∗dφ. (2.11)

Now let us integrate out in the opposite order, integrating outφ andA but keepingσ. To integrate
outφ, we fix the gauge in such a way thatφ = 0, and suppress the factor of (vol(G))−1 from the path
integral. Then the path integral (2.5) reduces to

∫
DADσ exp

[
−R2

4π

∫
A∧ ∗A +

i
2π

∫
σ ∧FA

]
. (2.12)

An exercise you might enjoy is verifying that the Faddeev-Popov determinant associated with this
gauge fixing is ∫

DcDc exp

[
−R2

4π

∫
d2xcc

]
. (2.13)

To do the integral overA, we need to complete the square, thinking of the second term in the
exponent as− i

2π

∫
A∧dσ, i.e., it is the term linear inA. We make a change of variablesA′ = A+ i

R2 ∗dσ;
the result, including the Faddeev-Popov integral, is

(∫
DcDc e−

R2
4π

∫
d2xcc

) (∫
DA′e−

R2
4π

∫
A′∧ ∗A′

) (∫
Dσe−

1
4πR2

∫
dσ∧ ∗dσ

)
. (2.14)
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(The Gaussian integral overA′, like the Faddeev-Popov determinant, can be thought of as a normal-
ization factor.)

The Faddeev-Popov integral gives a factor of (
∫

dt e−tR2/4π)−1 for each 0-form and each 2-form

on Σ; the integral overA′ gives a factor of
∫

dt e−tR2/4π for each 1-form onΣ. Thus, ifnj denotes the
“number ofj-forms onΣ”, those terms combine to give an overall factor of

(
√
π/(R2/4π))(−n0+n1−n2) = (R/2π)χ(Σ). (2.15)

That is, the transformation rule which relates these dual formulations is
∫
Dφ exp

[
−R2

4π

∫
dφ ∧ ∗dφ

]
= (R/2π)χ(Σ)

∫
Dσexp

[
− 1

4πR2

∫
dσ ∧ ∗dσ

]
. (2.16)

(The factor of (R/2π)χ(Σ) did not show up in previous explicit calculations we have done because they
were done in genus 1.) A coupling ofR in the first theory maps to a coupling of 1/R in the second
theory, which is why this duality is sometimes referred to as “Rgoes to 1/R.”

Now we would like to follow the operators in this theory through the duality transformation, and
determine the effect on correlation functions as well as the partition function. The easy case isdφ,
which we expect to map to∗dσ, as in the classical theory (actually it will map to a multiple of∗ dσ,
when normalizations are taken into account). We need to repeat the above calculation with an insertion
of operators

∏Oi(φ), one of which isdφ. In order to do this, we need a gauge-invariant extension of
the operatordφ, which is provided by the covariant derivative:

dφ(x) in first theory−→ DAφ(x) in big theory. (2.17)

One then easily checks that this maps back todφ when we integrate outσ (and gauge fixA to zero).
The difficult thing about mapping operators in general will be finding the appropriate extension

to an operator in the larger theory, which reduces to the original operator whenσ has been integrated
out.

How will our calculation be modified? Earlier, when we completed the square, we made a change
of variablesA′ = A + i

R2 ∗dσ. This means that ifDAφ has been inserted in the path integral, it now
becomesDA′φ − i

R2 ∗dσ. Thus, whenA′ is integrated out, we are left with an insertion of− i
R2 ∗dσ in

the dual theory.
Some care must be used in manipulating these mappings between operator insertions. For exam-

ple, even thoughdφ maps to− i
R2 ∗dσ, (dφ)2 will not map to ( i

R2 ∗dσ)2 in the dual theory, due to
nonlinearities introduced when we complete the square.

What made this case easy was that the covariant derivative is a natural gauge-invariant extension
of the ordinary derivative.

The hard operator insertion to deal with iseiφ. There is no gauge-invariant version of this. On the
other hand, we don’t really need it, because〈eiφ(P)〉 = 0. On the other hand, the two-point correlators
〈eiφ(P) e−iφ(Q)〉 are not zero in general, so we should try to dualize such insertions, whenP , Q.

We are going to do something rather strange. It is impossible to construct a gauge-invariant
extensionlocally for this pair of operator insertions, so we work non-locally during the duality (i.e.,
in the intermediate theory), introducing a term in the path integral of the form

eiφ(P)e−iφ(Q)e
i

2π

∫
θ∧A (2.18)

whereθ is a 1-form such that
1
2π

dθ = δP − δQ (2.19)
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and all periods ofθ are 0 modulo 2πZ.
To find such aθ, take a path ell fromP to Q and letθ be Poincaŕe dual to ell (regarded as a

distribution). We can rewrite our term (2.18) as

eiφ(P)e
i

2π

∫
ell Ae−iφ(Q), (2.20)

from which we see that this is a gauge-invariant expression. (This is an example of a choice ofθ, but
we allow more generalθ’s than that.) We will eventually think ofθ as a connection form on a trivial
S1-bundle onΣ − P−Q.

Thus, we have found a gauge-invariant nonlocal object (2.18). Suppose we try to insert this into
the path integral. First, if we setA to zero, we recover our original operator insertioneiφ(P)e−iφ(Q),
so we have correctly extended this pair of operators to the gauge theory.

To integrate out the other way, we gauge fixφ to zero, which reduces (2.18) toe
i

2π

∫
θ∧A. This is a

new contribution to the term linear inA in the exponent of the path integral, of the form− i
2π

∫
A∧θ,

so to complete the square we now must make the change of variablesA′ = A + i
R2 ∗(dσ + θ), and this

makes our dualized path integral take the form
∫
Dσ exp

[
− 1

4πR2

∫
(dσ + θ) ∧ ∗(dσ + θ)

]
. (2.21)

That is, we have obtained the same theory as before, but now formulated onΣ − P − Q, and now
performing the path integral over maps toS1 that donot extend overP or Q. That is, we write
σ̃ = σ + α, with dα = θ, α being a map fromΣ − P − Q to S1, and theñσ is the map ofΣ − P − Q
to S1 that does not extend overP or Q. In fact, it has winding numbers 1 and−1 aroundP andQ,
respectively.

P

Q

There are two kinds of operators now, one local in one picture, and the other local in the other
picture. The operatoreinφ(P) in one description is mapped to an instruction “deleteP from Σ, and
perform the path integral overσ’s that have winding numbern aroundP” in the other description.
Conversely, there is an ordinary local operatoreinσ(P) in the second description, that corresponds to a
nonlocal recipe in the first description.

3 Duality in three dimensions

We now turn to three-dimensional theories. Our initial theory is the theory of anS1-valued functionφ
on a (fixed) compact 3-manifoldM (possibly with boundary), governed by the Lagrangian

L =
Λ

4π

∫
d3x
√

g∂αφ ∂
αφ =

Λ

4π

∫
dφ ∧ ∗dφ. (3.1)

One novel feature of three dimensions is that the prefactorΛ has the dimensions of mass. SinceΛ is
a dimensionful quantity rather than a constant, it will be impossible for anything special to happen at
a numerical value ofΛ.
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We reinterpretφ as a section of a trivialS1-bundleLB with a connectionB, and write a Lagrangian
which includes the covariant derivativeDBφ = dφ + B:

L(φ,B) =
Λ

4π

∫
d3x (∂αφ + Bα)(∂αφ + Bα) =

Λ

4π

∫
DBφ ∧ ∗DBφ (3.2)

This would be a trivial theory if left as it is. To get somewhere, we introduce a line bundleL with
connectionA, and the Lagrangian

L(φ,B,A) =
Λ

4π

∫
DBφ ∧ ∗DBφ − i

2π

∫
A∧FB, (3.3)

interpreting the last term as−i
2π

∫
FA∧B (after integrating by parts) which makes sense sinceLB is

trivial. As before, the extension to the case ofLB not being trivial is a term in the path integral
e−

i
2π

∫
A∧FB, the Chern–Simons form for the structure groupU(1)× U(1) of the bundleL ⊕LB.

In order to carry out the duality transformation, we need to sum over line bundlesL, producing a
path integral

1
vol(G) vol(G′)

∑

L

∫
DφDADB exp

[
− Λ

4π

∫
DBφ ∧ ∗DBφ +

i
2π

∫
FA ∧B

]
. (3.4)

whereG andG′ are gauge groups forL andLB.
We would like to integrate outA. The crude statement is that we getδ(FB), which implies thatB

is a flat connection. As in the computation we did in two dimensions, the complications arise from
the possibility of nontrivial holonomies forB. In fact, if FB = 0 we can regardB as an element of
H1(M,R/Z) and define for eachx = c1(L), the quantityei

∫
x∧[B] . When this is summed over [x]

in doing the path integral, the result isδ([B]), showing thatB is gauge-equivalent to the trivial flat
connection. Thus, we reduce back to the original theory; we’ve learned that the extended theory with
A andL is equivalent to the original theory.

Now we do the integral in the opposite direction, by doing theφ andA integrals. As in the two-
dimensional case, we setφ to zero by a gauge transformation, removing the normalization factor
(vol(G))−1. (Unlike in two dimensions, the Faddeev-Popov determinant does not contribute anything
interesting, so we will not explicitly include it.) The square can be completed in the resulting path
integral

1
vol(G′)

∑

L

∫
DADB exp

[
− Λ

4π

∫
B∧ ∗B +

i
2π

∫
B∧FA

]
(3.5)

=
1

vol(G′)

∑

L

∫
DADB′ exp

[
− Λ

4π

∫
B′ ∧ ∗B′ − 1

4πΛ

∫
FA ∧ ∗FA

]
, (3.6)

where we shiftedB′ = B− i
Λ
∗FA.

The integral inB′ is Gaussian, and can be absorbed into the normalization of the path integral, leaving
us with

1
vol(G′)

∑

L

∫
DA exp

[
− 1

4πΛ

∫
FA ∧ ∗FA

]
, (3.7)

the familiar path-integral from Yang–Mills theory! (With gauge coupling e=
√

Λ.)
Now we want to map operators. An analogous calculation to the one we did in two dimensions

shows thatdφ extends to the covariant derivativeDBφ = dφ + B in the larger theory, and becomes
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i
Λ
∗FA in the dual theory. This is the meaning in the quantum theory of the duality between solutions

of the Laplace equation and solutions of Maxwell’s equation.
What about operators such aseiφ(P)? We will not do this, though I will state the answer.einφ(P)

is mapped, in the dual gauge theory, to the instruction: delete the pointP from the 3-manifoldM and
consider the path integral for connections on a line bundleL whose first Chern class evaluates ton on
a small sphere aroundP. The argument leading to this is quite along the lines of what we did in two
dimensions.

I will not present that argument (which I recommend as an exercise) and instead discuss what is
roughly the reverse. We consider Wilson loop operators in the gauge theory, and try to map those back
to the scalar field theory.

Let C be a circle inM which is a boundary, and letλ ∈ R. We have an operator exp(iλ
∮
C

A) in
the gauge theory. Let us insert this into the path integral of the big theory (the one with Lagrangian
L(φ,B,A)). (More generally, we can do this even ifC is not a boundary, but thenλ must be restricted
to be an integer.C being a boundary, say of a two-surfaceD, lets us write exp(iλ

∮
C

A) = exp(iλ
∫
D

F),
showing gauge-invariance for anyλ. )

When we integrate outA with this insertion, instead of gettingδ(FB = 0) we getδ(FB = 2πλ[C])
with [C] being the Poincaré dual toC. In other words, performing theA integral determinesB to be
such thatFB = 2πλ[C], and the modified Lagrangian after integrating out is

∫
DBφ ∧ ∗DBφ. HereB

is a flatU(1)-connection with monodromye2πiλ around the circle. So the Wilson loop operator for
a circleC is dual to a recipe “deleteC and interpretφ as a section of a flat bundle with monodromy
aroundC.” In other words, we modifyφ to φ̃ such thatdφ̃ = dφ + B, and interpret̃φ as a section of a
trivial S1-bundle onM −C with a flat connection of monodromye2πiλ aroundC. (To get such a trivial
S1-bundle, we either need to assume thatC is a boundary, or thatλ is an integer.)

4 Application to the Polyakov model

We will describe a model constructed by Polyakov around 1975. It was the first use of duality in a
nonlinear relativistic theory. The model exhibits the phenomenon known as confinement.

We work in three dimensions, and studySO(3) gauge theory with a scalar fields in the 3-
dimensional representation, governed by the Lagrangian

L =
1

4πe2

∫
d3x Tr |F|2 +

∫
d3x (D~s)2 +

∫
d3xλ(~s2 − a2)2. (4.1)

This model exhibits the Higgs mechanism at tree level.
Classically, the vacuum can be rotated to

〈~s〉 =


a
0
0

 (4.2)

by a gauge transformation. In the vacuum state, theSO(3) symmetry of the Lagrangian is broken to
anSO(2) = U(1) symmetry, and the only massless field is theU(1)-connection. (This is the so-called
Higgs mechanism.) The low-energy theory looks like theU(1) theory in three dimensions.
First Step. This theory looks classically, at low energies, like aU(1) gauge theory with Lagrangian

L =
1

4e2

∫
F ∧ ∗F. (4.3)
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Is that the answer? Is the Gaussian fixed point of the freeU(1) theory stable?
One possible source of instability is a Chern–Simons interaction

−in
2π

∫
A∧FA (4.4)

which could be added to the original LagrangianL. (In the flow to the infrared, this term is more
relevant than those appearing inL, hence the instability.)

There are two obstacles to this being a source of instability in our problem. The first is that the
coefficient n in the Chern–Simons term must be an integer. This implies that even if you can only
approximately calculate the theory, you can determinen if the approximation can be made arbitrar-
ily accurate. One can, in particular, calculaten in perturbation theory, and – as higher loop terms
would involve positive powers ofe – it could only arise from a one-loop term. So the effectiven in
any three-dimensional gauge theory can be determined by an explicit one-loop computation. In the
specific example we are considering here, one can simply notice that the Chern–Simons term is odd
under parity (i.e., it depends on a choice of orientation of the 3-manifold) whereas our original theory
was not. The parity-invariance is a symmetry of the one-loop determinants (whether or not parity
ultimately is spontaneously broken at low energies) and ensures thatn = 0.

Thus, anything which could make this theory unstable will be hard to describe in terms ofA.
However, we know that theU(1) gauge theory is equivalent (dual) to a scalar theory

L =
e2

4π

∫
d3x∂αφ∂

αφ (4.5)

In this theory, we could add a term

g
∫

d3x cosnφ (4.6)

for somen. We have chosen the potential to be periodic asφ is really a map to a circle. Notice that the
theory withg , 0 has a mass gap, the theory withg = 0 does not. Thus, we have identified something
which qualitatively changes the physics, but can only be conveniently interpreted by means of the
dual variables. This is strange, because doing the duality requires going to a low energy description
to begin with!

How do we see this effect in the originalSO(3) theory? Consider the Feynman diagrams of the
SO(3) theory. We represent these with massless modes given by wavy lines, massive ones by solid
lines. A typical Feynman diagram such as

will be completely tame: we have massive propagators, which are analytic in the momenta at low
momentum. Such diagrams merely give corrections to the effective action for theU(1) gauge fieldA
which can be described as additional local, gauge-invariant terms in the Lagrangian.

We need something completely different: instantons. Let us work onR3. We have anSO(3)
bundle onR3 whose structure group has been reduced toU(1) at infinity. On theS2 at infinity, aU(1)
bundleL can have a nontrivial first Chern class,c1(L) , 0.
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Pick a trivialization of theSO(3) bundle, so that we can identify the spatialR3 with the bundleR3,
and simply treat our sectionsas a maps : R3→ R3. To construct such a map with nontrivial topology
on theS2 at infinity, we takesof the form

s(~x) = a
~x
|x| f (|x|), (4.7)

with f (|x|) an increasing function satisfyingf (0) = 0, lim|x|→∞ f (|x|) = a, e.g.,

0

0.2

0.4

0.6

0.8

0 2 4 6 8 10x

Such a section is invariant under combined rotations of space and gauge rotations.
We would like the minimum action solutions in this class. It should be spherically symmetric,

with asymptotic behaviorDs ∼ 1
|x|2 for |x| → ∞. This leads to an ODE, which has a unique solution.

The action can be written as (I/e2) for some constantI , so it will diverge as the coupling goes to 0.
Note that since~svanishes precisely at the origin, the structure group is reduced toU(1) away from

the origin, but this reduction does not extend over the origin. In fact, over a sphere surrounding the
origin, the line bundle has a nonzero first Chern class (which actually is 2 if we work inSO(3); that
is, the adjoint bundle ofSO(3) decomposes over a two-sphere surrounding the origin asO ⊕ L ⊕ L−1

whereL has degree 2).
From this point of view, the difference between a pureU(1) theory and a theory that looks like a

U(1) theory only at long distances is that the latter can have bundles that over a largeS2 at infinity
have a nonzero first Chern class. The Chern class can be any multiple of the 2 that was found in the
explicit solution that we just described.

Note that in abelian gauge theory, it was not possible to use a bundleL for whichc1(L) , 0 over
a sphere around the origin. The qualitative difference between anSO(3) theory broken toU(1) and
a U(1) theory is that the former admits singularities where theU(1) description breaks down in this
way.

If we did a similar thing in 3+ 1 dimensions, we would find a time-independent solution of finite
energy (rather than finite action). This solution looks like a particle sitting there, and in fact is a
magnetic monopole. (The nonzero magnetic charge comes from the fact thec1(L) , 0 which implies
that the magnetic field integrates to a nonzero amount.) The point of making this analogy is that we
can think of the instanton as behaving like a zero-time slice of a magnetic monopole.

What do instantons look like at long distances? A monopole has a field which behaves like

F = const
~x

|x|3 = const
x̂

|x|2 (4.8)

(by Maxwell’s equations).
The contribution to the path integral from each instanton ise−I/e2

, which is small.
To return to our theory, we now ask how it behaves at long distance. For example, how does a

two-point function〈F(x) F(0)〉 behave as|x| → ∞?
The answer in the free theory, by dimensional analysis, is−1/|x|3. (One sees that the curvature

F has dimension 3/2 in three-dimensional theories by considering the basic term1
4πe2

∫
F∧ ∗F in the

Lagrangian.) A bit more precisely, we are asserting that

〈Fij (x) Fkell(0)〉 =
1

|x|3 (δikδjell + . . . ). (4.9)
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The Feynman diagrams don’t affect this asymptotic behavior: there is a slight renormalization of
e2, plus other corrections which are unimportant at big distances.

How does an instanton affect this analysis? Consider an instanton localized neary, and its effect
on the two-point function betweenx and 0.

y

F(0)
F(x)

The leading approximation to the path integral in the instanton sector is

e−I/e2
∫

d3y
(~x− ~y)

|x− y|3
~y

|y|3 . (4.10)

Thus, the overall behavior is

〈F(~x) F(~0)〉 � 1
Z

(
pert. theory+ e−I/e2

(instanton sector)
)

(4.11)

�
1
Z

(
(1 + . . . )

1

|x|3 + e−I/e2
(

1
|x| + . . . )

)
. (4.12)

Since the instanton contribution is more important in the infrared than the free theory term (1/|x|
compared to 1/|x|3), the instanton triggers an instability.

To see in more detail what is happening in the infrared, we first note that instantons arerare: the
probability to have an instanton in a small volumeV0 is proportional toV0e−I/e2

, so the volume of
space per instanton is given byV ∼ eI/e2

, and the spatial separation between two of them isR ∼
V1/3 ∼ eI/3e2

.
In the infrared, though, if we consider a large enough volume of space, we will get lots of instan-

tons, which we can treat as a gas of particles of definite size. The particles arecharged, so we can’t
ignore the interactions between them, given by Coulomb potentials. The picture is as follows

1t s

t

s1 t

t

s

2

3

2

3

4

We have labeled the positions of instantons (which are positively charged) withsi ’s, and the positions
of anti-instantons (which are negatively charged) bytj ’s. The sum over all of these takes the form

∞∑

n,m=0

1
n!m!

∫
d3si |ni=1

∫
d3tj |mj=1e−

I
e2 (n+m)e

∑
i<j

(
1

|si−sj |+
1
|ti−tj |

)
−∑i,j

1
|si−tj | . (4.13)
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We also need an operator insertion, of

F(x) =
∑ x− si

|x− si |3
−

∑ x− tj
|x− tj |3

, (4.14)

and similarly forF(0).
The physics involved is the classical statistical mechanics of a plasma in space, with chemical

potentialI/e2; energyE given by the Coulomb potential between the instantons and anti-instantons,
and temperatureT = 4πe2.

The phenomenon we need is known as “Debye screening”—a plasma screens external charges.
As a result of this screening, the system will have a mass gap.

Here is a quick mathematical derivation of Debye screening (in this context). We go back to our
low-energy theory, writing in dual variables—a scalar theory withF = ∗ dφ. We will add a term to
the Lagrangian to account for the instanton effect: the term we will use (justified by the results of
the calculation to come) is

∫
e−I/e2

(e2iφ + e−2iφ). (The 2 is present in the exponent because the basic
instanton has first Chern class 2.) The operator insertions ofF become insertions of∗dφ, and the
quantity we are calculating can be written:

Ω =

∫
Dφ (∗dφ(x)) (∗dφ(0)) exp

[
− 1

4πe2

∫
|dφ|2 +

∫
e−I/e2

(e2iφ + e−2iφ)

]
. (4.15)

First we want to show that this is a correct description in the dual variables, then we will analyze this
version.

We will expandΩ in perturbation theory:

Ω =

∞∑

n,m=0

1
n!m!

∫
Dφe−

1
4πe2

∫
dφ∧ ∗dφ (∗dφ(x)) (∗dφ(0))

(∫
e−I/e2

e2iφ(y)d3y

)n (∫
e−I/e2

e−2iφ(z)d3z

)n

.

(4.16)
We expand further, using the principle that

(∫
dy f(y)

)n
=

∫
dy1 . . .dyn f (y1) . . . f (yn). Thus, we can

rewrite (4.16) as

Ω =

∞∑

n,m=0

∫
Dφ

∫
d3si |ni=1d3tj |mj=1 (∗dφ(x)) (∗dφ(0)) e−

I
e2 (n+m)e2i

∑
(φ(si )−φ(tj ))e−

1
4πe2

∫
|dφ|2

. (4.17)

Theφ-integral is Gaussian after the square has been completed; that integral will contribute

e
∑

i
∑

j G(si ,tj ) (4.18)

to the overall answer, whereG(s, t) = 1/|s−t| is the Green’s function for the Laplacian. We thus recover
the previous formula. Note that thei = j terms contributed a divergence which is renormalized, so
they do not appear.

The lesson we have learned is this: our original problem (SO(3) gauge theory) can be described
in the infrared, using dual variables, by means of the Lagrangian

1

4πe2

∫
|dφ|2 + e−I/e2

∫
d3x cos 2φ. (4.19)

The second term in unrenormalizable, but is well-behaved in the infrared. Expanding around the
minimum of the potential, we see thatφ has a mass. Thus, what used to be a masslessU(1) photon
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was (i) dualized and reinterpreted as a scalar, and (ii) got a mass that was more easily described in that
language.

Here is another way to understand the above derivation. Start with the massless scalar field and
dualize it, as in section 3 of this lecture, to a massless gauge fieldA. Now perturb the theory of the
massless scalar by adding a weak perturbation

∫
d3xε(e22iφ + e−2iφ). In terms of the gauge field, the

operatore2iφ(P) becomes, as we noted at the end of section 3, an instruction “delete the pointP, and
consider bundles with first Chern class 2 on a small sphere aroundP.” In other words, from the point
of view of anSO(3) that looks likeU(1) at low energies, the instruction is “include an instanton atP.”
If we take the interaction term

∫
d3xε(e2iφ + e−2iφ), and expand in powers ofε, we simply generate the

instanton gas, with each insertion ofe2iφ or e−2iφ corresponding to an instanton or antiinstanton.
Now we want to study confinement. An important preliminary is to note the symmetries of the

problem. In general, in the duality from an abelian gauge theory,φ is an angular variable, a map
to a circle, soφ is equivalent toφ + 2π. However, because the instanton-induced interaction is a
trigonometric function of 2φ, there is a symmetry underφ→ φ + π.

In the original description, we could consider a curveC ⊂ M

and the associated Wilson line operator

〈TrR Hol(A,C)〉 (4.20)

whereR is the 2-dimensional representation ofSU(2) and Hol denotes the holonomy. What does
this operator translate to in our infrared description? As we have seen at the end of section 3, it
translates into a recipe “deleteC from spacetime and interpretφ as a section of a flat circle bundle
with monodromy aroundC.” The monodromy is given by the angle 2πλ whereλ, introduced in the
discussion in section three, is theU(1) charge appearing in the Wilson loop, modulo 1. We have
chosen a Wilson line in the two-dimensional representation ofSU(2); theU(1) charges are±1/2 in
units of the weight lattice ofSO(3). Hence our example hasλ = 1/2. The monodromy around the
circle is thusφ→ φ+ π, which, as we noted a moment ago, is a symmetry of the theory even with the
instanton-induced interaction.

The problem is now classical: we want to find the minimum of the action

1

4πe2

∫
|dφ + B|2 − e−I/e2

∫
d3x cos 2φ (4.21)

with φ required to have monodromyπ aroundC. Thus, in particular,φ cannot be constant. In fact, the
least action solution will be given approximately in terms of a surfaceΣ with ∂Σ = C of least area;φ
will be constant far fromΣ, and will jump byπ in crossingΣ.

The easiest case is whenC is a large curve in the plane, say given byx = 0, withx a linear function
onR3. We wantφ to jump byπ in going from negativex to positivex. In the limit thatC is very large,
φ, if observed somewhere deep in the interior ofC, becomes a function ofx only. What needs to be
minimized is then ∫

dx((
dφ
dx

+ B(x))2 − (cos 2φ − 1)) (4.22)
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with the boundary conditions thatφ → 0 for x → −∞ andφ → π for x → +∞. This variational
problem, with the boundary conditions, has a solution that is unique up to translation ofx, with φ

approaching its asymptotic value exponential fast (because of the mass gap) and with some actionL.
Now in general, ifD is the minimal area surface with boundaryC, and A(D) is its area, the

minimum actionφ that is a section of the appropriate flat bundle has the property thatφ is very near
zero orπ except nearD, jumps byπ in crossingD, and looks in profile nearD just like the solution
of the idealized one-dimensional problem discussed in the last paragraph. Its action is very nearly
A(D)L, so the expectation value of the Wilson line is approximatelye−A(D)L, showing the area law and
confinement.
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Lecture II-8, Part I: Solitons

Edward Witten
Notes by Pavel Etingof and David Kazhdan

8.1. What is a soliton?
In classical mathematical physics, by a soliton one usually means a “traveling wave” solution of

a nonlinear PDEut = F(u,ux, ...), i.e. a solution of the formu(x, t) = f (x − vt). Solitons play a
very important role in the theory of integrable systems, where any solution can be approximated by a
superposition of solitons, moving at different velocities. As a result, the theory of integrable systems
is sometimes called soliton theory.

Today we will be interested in solitons arising in field theory (as traveling wave solutions of the
classical field equations) and primarily in the role they play in quantization of field theories. This is a
different point of view from the one in soliton theory. In particular, no claim is made about nonlinear
superposition of solitons, and the models we consider will not, in general, be exactly integrable.

We will consider solitons for Poincare invariant field theories on Minkowski space. By a soliton
for a particular field theory we will mean a traveling wave solution of the field equations (i.e. a
solution which depends onx − vt), which is localized in space and has finite energy. By Poincare
invariance, we can always assume thatv = 0, i.e. that the solution is time-independent. We will be
mostly interested in solitons which provide the global minimum for the energy in the corresponding
homotopy class.
Remark. It is important to distinguish solitons from instantons. Instantons are localized in Euclidean
spacetime (i.e. only exist for an instant) and have finite action, while solitons are localized in space
(of Minkowski spacetime), exist eternally, and have finite energy.
8.2. Solitons and components of the space of classical solutions

Classically, existence of solitons is related with existence of different components of the space of
classical solutions of finite energy. In a connected component which does not contain a zero energy
solution, the minimum of energy is often attained at a soliton. As an example of this, you may
recall the situation discussed in Lecture II-1: a 2-dimensional scalar field theory with the potential
U = (φ2 − a2)2. In this case, the space of t-independent classical solutions of finite energy has 4
components:X++,X−+,X+−,X−−, whereX+− = {φ : φ(−∞) = a, φ(∞) = −a} etc. On two of these
components,X+− andX−+, the energy is strictly positive, and its minimum is attained at 2 solitons,
φ = f (x) andφ = −f (x), wheref (x) is the solution of the Newton equationf ′′ = U′(f ) for the potential
−U, with boundary valuesa at−∞ and−a at∞ (such a solution is defined uniquely up to translations).

Notice that solitons are not invariant under the Poincare group. But one often encounters solitons
which have rotational symmetry in space, around some “center of mass”. In a scalar field theory, this
would mean that the group of symmetry of such a soliton isPs = SO(d − 1)× R. Since the Poincare
group isP = SO(d − 1,1) × Rd−1,1, the P-orbitO of the soliton in the space of solutions, i.e. the
quotientP/Ps, is ad− 1-dimensional vector bundle over the upper part of a 2-sheeted hyperboloid. It
is easy to check the following.

1. This bundle is naturally isomorphic to the cotangent bundle.
2. The restriction of the symplectic structure on the space of solutionsO is nondegenerate, and

thus defines a symplectic structure onO.
3 (normalization of symplectic form) Letm be the mass (i.e. the energy in the center of mass

frame) of the soliton. Then there exists a P-equivariant symplectic diffeomorphismO → T∗O+
m,

whereO+
m is the upper part of the hyperboloidx2 = −m2 in Rd−1,1.

8.3. Solitons and quantization
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Since classically solitons correspond to components in the space of solutions, quantum mechan-
ically they should correspond to direct summands in the Hilbert space. As an example, consider a
scalar field theory with the spaceX of classical solutions of finite energy, in which there is a compo-
nentXs containing a solitons ∈ Xs. Then we have a symplectic embeddingT∗O+

m → Xs, wherem is
the mass ofs. Let us assume that the minimum of energy at the image of this map is nondegenerate,
in the sense that there is no other solutions of energym, and the second derivative of the energy in a
direction transversal to the image is positive.

In this case, in the weak coupling region we should expect that
1. The componentHs of the Hilbert spaceH of the quantum theory has no vacuum (because

classically there is no P-invariant solution).
2. The HamiltonianH onHs satisfies the inequalityH ≥ m′, wherem′ is some positive mass

parameter, such thatm′ → m in the weak coupling limit (in general, we should expectm to get
quantum corrections). If the theory has a mass gap, we should expect that the states withH = m form
a space which is a quantization ofT∗O+

m, i.e. the irreducible representation ofP of the formL2(O+
m).

We should also expect that the spectrum nearm is discrete since the second derivative is positive.
Note that if the action (or energy) functional of the theory is multiplied by a constantC, the mass

of the soliton is also multiplied byC, while masses of usual particles do not change. This means that
in the classical approximation (C → ∞), solitons are much heavier than usual particles. Therefore,
a soliton cannot be seen in perturbation theory: the contribution to the correlation functions of an
intermediate state containing a soliton is exponentially small (compared to the coupling constant) in
the weak coupling limit.
8.4. Solitons in theories with fermions

In theories with fermions, the orbit of a soliton underP is often not the whole space of lowest
energy states in the corresponding connected component of the space of solutions. For example, if
the model is supersymmetric, it is clear apriori that the orbit is not the whole space of lowest energy
solutions: the space of lowest energy states is the orbit of the superPoincare and not just the Poincare
group.

Let us consider an example of such a situation. Consider the theory in 2 dimensions with a scalar
and a pair of fermions:

L =
1
2λ

∫
d2x(|dφ|2 + (φ2 − a2)2) + i

∫
d2x(ψ+∂−ψ+ + ψ−∂+ψ− − gφψ+ψ−). (8.1)

Remark 1. For a suitable value ofg this model is supersymmetric.
Remark 2. This model has a chiral symmetryφ → −φ, ψ± → ±ψ±, which prohibits a mass term
mψ+ψ− for the fermions.

Consider the solitonφ(x, t) = f (x) for the bosonic part of the theory. Fermionic extensions of this

solution are functions of finite energyψ(x) =

(
ψ+(x)
ψ−(x)

)
satisfying the Euler-Lagrange equations

[
∂xψ +

(
0 −gf(x)

−gf(x) 0

)]
ψ = 0. (8.2)

Thus,

ψ =

(
ε

ε

)
eg

∫ x
0 f (y)dy +

(
ε′

−ε′
)
e−g

∫ x
0 f (y)dy, (8.3)

whereε, ε′ are odd variables. It is easy to see that only the solutions withε′ = 0 are inL2, so the space
of solutions of finite energy is 1-dimensional.
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Thus, each pair of fermionsψ+, ψ− interacting withφ via (8.1) creates a fermionic degree of
freedom in the space of configurations of minimal energy in the connected component off (x). Namely,
if the number of such pairs isn then the space of minimal energy configurations is notT∗O+

m, but the
supermanifoldT∗O+

m× R0|n.
Therefore, ifn is even, in quantum theory the space of lowest energy states in the corresponding

component of the Hilbert space isL2(O+
m)⊗S, whereS= S+ + S− is the spin representation ofSpin(n).

8.5. Solitons in 2+1 and 3+1 dimensions.
In spite of the difference between instantons and solitons, there is a connection between them.

Namely, often an instanton in a Euclidean field theory ind−1 dimensions gives rise to a soliton in the
Minkowski version of the same theory ind dimensions. Consider for example the 2+1-dimensional
U(1) gauge theory with a complex scalar:

L =

∫
d3x(

F2
A

e2
+

1
λ

(|dAφ|2 + (|φ|2 − a2)2)). (8.4)

In Lecture II-6 we saw that the 2-dimensional version of this theory has instantons with Chern classes
1 and−1. In the 2+1-dimensional theory, these instantons become solitons, and govern the lowest
energy modes in the corresponding components of the Hilbert space as described above.

Now consider nonabelian gauge theory in 3+1 dimensions. Namely, consider anSO(3) gauge
theory with a boson in the 3-dimensional representation, and the Lagrangian

L =

∫
d4x(

F2
A

4e2
+

1
2λ

(|dAφ|2 + (|φ|2 − a2)2)). (8.5)

We considered in Lecture II-7 the 3-dimensional version of this theory. For convenience, we identified
the spacetimeR3 with the Lie algebra of the gauge group and with the space of values ofφ (the bracket
in the Lie algebra is the cross-product). This allows to write the scalar fieldφ and infinitesimal gauge
transformations as vector fields onR3.

We found that in 3 dimensions this theory has an instanton in whichφ is of the formφ = x
r f (r),

r = |x| (as we have explained, we identify the spacetime and the space of values ofφ). In 4 dimensions
this instanton will become a soliton. Such solitons are called magnetic monopoles.

In fact, we have not one soliton, but infinitely many, since the center of the soliton can be any
point inR3. So the space of time-independent solitons is at leastR3. In fact, this space is notR3 but
R3 × S1. The reason is that there are some gauge symmetries compatible with spherical symmetry,
which allow to produce new solitons out of old ones. Let us see how it happens.

First of all, recall that any field configuration (A, φ) of finite energy defines an integer topological
invariant – “the first Chern class at infinity”c1. Indeed, in order for the energy to be finite, we must
have|φ| = a at infinity, soφ defines a map from a sphere at infinity inR3 to the sphere of radiusa, and
c1 is the degree of this map. Another definition ofc1: the sectionφ defines at infinity a splitting of our
3-dimensional vector bundle into a direct sumφ ⊕ φ⊥ of a 1-dimensional and a 2-dimensional vector
bundle. Thus,φ defines a reduction of the structure group toSO(2) = U(1) at infinity. The numberc1

is the first Chern class of this bundle restricted to the infinite 2-sphere inR3.
For example, the soliton configuration discussed above hasc1 = 1.
In physical language, this topological phenomenon means that at spacial infinity theSO(3) gauge

symmetry is broken toU(1). However, the remaining groupU(1) of transformations at infinity acts
nontrivially on the space of classical solutions. In particular, it produces new solitons. To understand
this action, let us consider the solitons (A, φ) with c1 = 1, discussed above. Let us represent the
infinitesimal operator of the groupU(1) by a spherically symmetric gauge symmetry:ε = x

r g(r),
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whereg is some function. If the functiong(r) satisfiesg(r) ∼ c0r at r → 0 andg(+∞) = c, then
this formula defines a smooth gauge transformation which is “constant” at infinity (with respect to the
reduction of structure group defined by the soliton). Then the action ofε is

A→ A− dAε, φ→ φ. (8.6)

It is clear thatdAε cannot be identically zero, since the soliton connectionA is not flat. On the other
hand, ifc ∈ 2πZ, the connectionA − dAε is equivalent toA by the gauge transformationeiε which
vanishes at infinity, so the solutions (A, φ) and (A− dAε, φ) are the same in this case.

This shows that the space of time-dependent solitons with Chern class 1 at infinity is at least
R3 × S1 (with no canonical zero on eitherR3 or S1). One can show that in fact it is exactly that. We
will denote the circle coordinate on this space byα.

By using the Poincare group transformations, we can generate solutions which are time-dependent
and propagate at a constant speed. We can also perform a time dependent gauge transformation, which
will make theα-coordinate time dependent, i.e.α = α0 + st, s ∈ R. As a result, the space of time
dependent solitons is the productT∗O × T∗S1.
8.6. The 3+1-dimensional theory with theθ-angle

Consider the 3+1-dimensional theory of the previous section with theθ-angle, i.e. let us add to
the (Minkowski) Lagrangian a term

− θ

16π2

∫
Tr(F ∧ F). (8.7)

To give this term a topological interpretation, let us compactify the time and consider the theory
on the spacetimeR3 × S1. In this case, for any field configuration of finite energy, besides the first
Chern classc1 at infinity (which is also called the monopole number, or the hedgehog number), we
can define another integer topological invariant – the second Chern classc2, which is given by the
integral 1

8π

∫
Tr(F ∧F). Thus, classically, term (8.7) just counts the second Chern class of the bundle.

Therefore, quantum mechanically, it weights the contribution from bundles withc2 = k to the path
integral witheikθ.

It is clear that this theory has the same time-independent solitons as the theory withoutθ, since the
added term is topological. However, since time has been compactified, the time dependent solitons
which were discussed in the previous section have to satisfy the equalityα = α0 + n

T t, wheren is an
integer, which we will call the winding number, andT is the circumference of the compactified time
axis. In other words, the parametersdefined in the previous section has to have the forms = n/T.

Claim If the monopele number of a soliton configuration isk and the winding number isn then
c2 = kn.

The proof is by a direct calculation.
Now consider 3 operators in our theory:
1. ∂

∂α . (This operator is the generator of the Lie algebra of the unbrokenU(1)).
2. The electric charge

Qel =
1

ae2

∫

R3
Tr(dAφ ∧ ∗FA). (8.8)

3. The magnetic charge

Qmag =
1

4πa

∫

R3
Tr(dAφ ∧ FA). (8.9)
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In perturbation theory,Qmag = 0 (as nonzeroc2 requires big action), andQel = −i ∂∂α . Thus, in
perturbation theoryQel has integer eigenvalues.

Let us see, however, what happens nonperturbatively, i.e. when we take into account field config-
urations with nonzeroc2.

We compute in the gauge whereA0 = 0. It is easy to compute that classically we have∂∂α =∫
Tr(dAφ

δ
δA). Therefore, the operator−i ∂∂α is the charge for the currentJ = Tr(dAφ ∧ πA), whereπA

is the conjugate (momentum) variable forA.
Now computeπA:

πA =
δL
δAt

=
At ∧ dt

e2
− θ

8π2
FA. (8.10)

Thus, we get

−i
∂

∂α
= Qel − θ

2π
Qmag. (8.11)

Since the spectrum of−i ∂∂α is integer, we getQel = θ
2πQmag modZ. But Qmag is also an integer,

since it is a topological invariant classically. Thus,Qel need not be an integer beyond perturbation
theory. In other words, there exist states (of very high energy∼ 1/~) on whichQel is not an integer.
So the electric charge is discretized, but in presence of magnetic monopoles we do not expect an
integral electric charge.

It is not hard to show that operatorsQel,Qmag commute. (Classically, it is obvious, asQmag is
a locally constant function). Thus, the joint spectrum of them is a lattice inR2. If we consider the
family of theories parametrized byθ ∈ S1, the monodromy transformation of this lattice around the

circle is given by the matrix

(
1 1
0 1

)
in the basisQmag,Qel.

In the second part of this lecture we will explain (in the free theory) how to extend this mon-
odromy representation to an action ofSL2(Z). I.e. how to construct a family of theories parametrized
by a complex parameterτ = θ

2π + ir modulo modular transformations, such that the monodromy
representation is the standard action ofSL2(Z) on a 2-dimensional lattice.
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Lecture II-8, part II: Abelian Duality in Four Dimensions and Sl(2,Z)

Edward Witten ∗1

1 Duality and Sl(2,Z)

In this second part of lecture II-8, we discuss abelian duality in four dimensions, and give an applica-
tion to an Sl(2,Z) symmetry of the freeU(1) theory in four dimensions. We postpone discussion of
Sl(2,Z) symmetries of non-free theories to a later lecture, since all known examples of that involve
supersymmetry.

We work with aU(1) bundleL on a 4-manifoldM, and a connectionA onL, whose curvature is
F=FA. The gauge theory Lagrangian (in Euclidean signature) including the topological term is

L(A) =
1

4e2

∫
d4x
√

gFmnF
mn +

iθ

16π2

∫
d4x
√

gεmnpqF
mnFpq

=
1

2e2

∫
FA ∧ ∗FA +

iθ

4π2

∫
FA ∧FA.

(1.1)

We have used the standard normalization on the kinetic term, and have normalized the topological
term so that replacingθ by θ + 2π does not change the physics. (This property of the topological term
derives from the fact thatc1(L)2 =

∫
(FA/2π)∧(FA/2π) is always an integer. Notice that on a spin

manifold,c1(L)2 is always aneveninteger, and we gain an additional equivalence under replacement
of θ by θ + π.)

Let τ = θ
π + 2πi

e2 ∈ h. As we have just observed,τ 7→ τ + 2 is a symmetry of this theory, and
τ 7→ τ+ 1 is a symmetry when working on a spin manifold. To extend this to an Sl(2,Z) action (in the
spin manifold case) we also need a symmetry which mapsτ to −1/τ; this will be given by aduality
transformationFA↔ ∗FC (with C being a new “dual” connection).

The computations for this duality transformation are similar to those in lecture II-7. We begin by
definingF± = 1

2(FA ± ∗FA), and rewriting our Lagrangian (1.1) as

L(A) =
iτ
4π

∫
F+ ∧F+ +

iτ
4π

∫
F− ∧F−

=
iτ
4π

∫
‖F+‖2 − iτ

4π

∫
‖F−‖2.

(1.2)

LettingG denote the gauge group associated toA, the partition function for this theory can be written
as

Z(τ) =
1

vol(G)

∑

L

∫
DA e−

iτ
4π

∫
‖F+‖2+ iτ

4π

∫
‖F−‖2. (1.3)

Our earlier examples of duality began with a theory of a scalar fieldφ which entered into the
Lagrangian only through its derivativedφ so that the theory had a symmetry underφ 7→ φ + c (with c
constant); the first step in the duality transformation was to gauge this symmetry, introducing also an
appropriate Lagrange multiplier field.

The present theory is already a gauge theory, being a theory of a connectionA which enters into
the Lagrangian only through its curvatureFA, so that there is a symmetry underA 7→ A + B (with
B a flat connection). We want to do the analogue of gauging this symmetry, by allowingB to be an

1∗Notes by David R. Morrison
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arbitary connection on an arbitrary bundle, introducing a kind of “exotic gauge field”G which is a
2-form field, and extending the symmetry to

A→ A + B

G→ G + FB.
(1.4)

ThenF := FA −G plays the role of the “gauge-invariant” quantity, analogous to the covariant deriva-
tive of a scalar field. It is to be stressed that twoG fields will be considered gauge-equivalent if they
differ byG→ G + FB for FB the curvature of any connection on any line bundle. In our analysis, we
will assume for simplicity that there is no torsion inH2(M).

We need a “gauge-invariant” extension of our Lagrangian. We might try

L(A,G) =
iτ
4π

∫
‖F+‖2 − iτ

4π

∫
‖F−‖2, (1.5)

but this is too simple (because, for example, we could gaugeF to zero). To improve this, we introduce
a new connectionC on a line bundleN, with curvatureFC, and consider the Lagrangian

L(A,G,C) =
iτ
4π

∫
‖F+‖2 − iτ

4π

∫
‖F−‖2 − i

2π

∫
FC ∧G. (1.6)

The partition function for this new theory can be represented as a path integral, which includes sectors
associated to all choices of bundlesL andN:

1

vol(G̃)

1
vol(G)

1
vol(GC)

∑

L,N

∫
DADGDC e−

iτ
4π

∫
‖F+‖2+ iτ

4π

∫
‖F−‖2+ i

2π

∫
FC∧G, (1.7)

whereG andGC denote the gauge groups associated toA and C, respectively, and̃G denotes the
“exotic” gauge group.

To see that this new theory is equivalent to the original one, we first do theC-integral in (1.7):
write C = C0 + C′, for C0 a fixed connection on the line bundleN. Then theC′ integral is

1
volGC

∫
DC′ e

i
2π

∫
C′∧dG = δ(dG). (1.8)

Thus, when we sum overN we find

1
volGC

∑

N

∫
DCe−

i
2π

∫
FC∧G =

∑

x∈H2(M)

ei(x,G)δ(dG) = δ(

[
G
2π

]
∈ Z)δ(dG). (1.9)

The conditions thatdG = 0 and that [G/2π] is an integral class precisely mean thatG is of the form
FB for some connection on some line bundle and hence thatG can be gauged to zero. After doing this,
it follows that the partition function (1.7) coincides withZ(τ), and we recover the original theory.

Alternatively, we can evaluate the partition function (1.7) by gaugingA to 0, using the “exotic”
gauge invariance (which has an ordinary gauge invariance as an ambiguity). This leaves the path
integral

1
volGC

∑

N

∫
DG

∫
DC e−

iτ
4π

∫
‖G+‖2+ iτ

4π

∫
‖G−‖2+ i

2π

∫
FC∧G. (1.10)

To evaluate theG integral, we complete the square, bearing in mind that
∫

FC ∧G =

∫
(FC+ ∧ ∗G+ − FC− ∧ ∗G−). (1.11)
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In fact, if we defineG′ = G− 1
τFC+ + 1

τFC−, then we can write the exponent from eq. (1.10) as

− iτ
4π

∫
‖G′+‖2 +

iτ
4π

∫
‖G′−‖2 +

i
4πτ

∫
‖FC+‖2 − i

4πτ

∫
‖FC−‖2. (1.12)

When we carry out theG′ integral, the first two terms give a Gaussian integral which contributes to
the overall normalization; integrating outG′ leaves the path integral

1
volGC

∑

N

∫
DC e

i
4πτ

∫
‖FC+‖2− i

4πτ

∫
‖FC−‖2. (1.13)

This is the same as the original path integral, but withτ replaced by−1/τ, precisely what we wanted
to show.

As we did in the case of two dimensions, it is possible to analyze theτ-dependence of the normal-
ization of the path-integral, and obtain further interesting results. Some hint of the flavor of the results
to be obtained this way is seen if we evaluate the Gaussian integral indicated above, which yields

(
2π√

iτ

)n2+
(

2π√−iτ

)n2−
, (1.14)

wheren2± denote the numbers of self-dual and anti-self-dual 2-forms. Of course, these numbers are
infinite, so there must be some cancellation against other normalization factors. When this is worked
out in detail,2 the result is found to be

Z(τ) = τ−
χ+σ

4 τ−
χ−σ

4 Z(−1/τ), (1.15)

whereχ andσ are the Euler number and signature ofM, respectively. Thus, the partition functionZ(τ)
is actually a modular form for Sl(2,Z) (or for a subgroup, when the manifold is not spin) of weight
(χ+σ

4 ,
χ−σ

4 ).
We can also follow certain operator insertions through the duality transformation, as we did in

lower dimensions. An insertion ofF± in the original theory can be realized by insertingF± = F± −G
in the extended theory, which can be written

F+ = F+ −G′+ −
1
τ

FC+, orF− = F− −G′− +
1
τ

FC−, (1.16)

respectively, after making the change of variables toG′. Thus, when we gaugeA to zero, and integrate
outG′, we are left with operator insertions proportional toFC±, namely:

F+ 7→ (−1/τ)FC+, andF− 7→ (1/τ)FC−. (1.17)

Notice that as a consequence of theτ-dependence of these mappings, a correlation function involving
insertions ofF+ andF− will have a different modular weight than that of the partition function.

2 The Hamiltonian formalism

Returning to the case that the gauge group isU(1), let us briefly discuss abelian four-dimensional
duality in a Hamiltonian framework. Take a 4-manifold of the formM3 × R, whereR is a timelike
direction. Note that this is a spin manifold, so we expect fullSl(2,Z) symmetry. For simplicity we

2E. Witten,On S-duality in abelian gauge theory, Selecta Math (N.S.)1 (1995), 383–410.
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suppose that there is no torsion inH1(M3). Each classx ∈ H2(M3) determines a complex line bundle
Lx on the 3-manifoldM3 (satisfyingc1(Lx) = x). The Hilbert space for our theory on the 3-manifold
M3 can be written in the form

Hτ(M3) =
⊕

x∈H2(M3,Z)

Hx, (2.1)

whereHx is the Hilbert space which comes from quantizing connections onLx. (On the left, we have
explicitly indicated the dependence on the coupling constantτ.) To constructHx, write an arbitrary
connection in the formA = A0 + β, whereA0 is a harmonic connection (a connection whose curvature
is a harmonic two-form) andβ is a 1-form which is co-closed. LetTx be the space of harmonic
connections on the line bundleLx. Then the quantization yields

Hx = Hβ ⊗ L2(Tx). (2.2)

HereHβ is a Hilbert space obtained by quantizing the space ofβ’s, andL2(Tx) is just the space ofL2

functions onTx.
Note that the factorHβ is independent ofx, since the space of co-closed one-forms is defined with

no reference tox. Duality mapsHβ to itself while acting separately onH ′ = ⊕xL2(Tx). The duality
action onHβ follows from the operator mapping in (1.17).

The action of duality onH ′ can be described as follows. Note that theTx’s are all principal
homogeneous spaces acted on by the torusH1(M3,R/Z), which parametrizes flat line bundles on
M3; the action is defined by tensoring any given line bundle with connection by a flat line bundle
determined by a point inH1(M3,R/Z). Let y denote a character of the abelian groupH1(M3,R/Z).
There is a decompositionL2(Tx) = ⊕yTx,y, whereTx,y is the subspace ofL2(Tx) transforming in the
charactery. EachTx,y is one-dimensional. Hence

H ′ = ⊕x,yTx,y (2.3)

Note that, by Poincaré and Pontryagin duality, the character group ofH1(M3,R/Z) is H2(M3,Z).
Thus,x andy take values in the same space. It is hence possible to exchange them, and this is what the
τ → −1/τ transformation does (more precisely, it acts by (x, y) → (−y, x)). Thus duality exchanges a
classical notion – the decomposition with respect tox – with a quantum notion – the decomposition
with respect toy. The claim about how the duality acts will be justified below where we introduce the
operatorsQE andQM.

Upon quantization—and suppressingθ for a moment—one writes the four-dimensional curva-
ture asF′A + e2πAdt, whereF′A is a two-form onM3 andπA—a one-form onM3—is the momentum
conjugate to the connectionA. The Hamiltonian becomes

H =
1

2e2

∫
F2

A0
+

e2

2
∇A0 + H(β). (2.4)

Here H(β) is the part of the Hamiltonian that acts onHβ. The other terms act onH ′. The first
term is the magnetic energy of the harmonic connectionA0; it comes from the part of the Lagrangian
quadratic inF′A and is a multiple of

∫
M3

x∧ ∗ x. The second term, which comes from the part of the

Lagrangian quadratic inπA, is the electric energy, the Laplacian onTx; it is a multiple of
∫
M3

y∧ ∗ y.
Including theθ term shifts the quantization. In fact, the canonical momentumF∨A = ∗ πA as

determined from the original Lagrangian (1.1) is

F∨A = 2πi
δS
δFA

=
2πi

e2
∗FA − θ

π
FA (2.5)
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At non-zeroθ, one has notH ′ = ⊕xL2(Tx) butH ′ = ⊕xΓL2(Tx,Sθ), whereSθ is a certain flat line
bundle overTx andΓL2 is the space ofL2 sections. I leave it as an exercise to the reader to identify
Sθ. Of course,Sθ is trivial at θ = 0 and only depends onθ modulo 2π.

Rewriting the formula forF∨A in terms ofτ, we can determine how this operator transforms under
τ→ −1/τ. Indeed, under the operator mapping (1.17) one gets

F∨A = −τF+ + τF− 7→ FC+ + FC− = FC. (2.6)

We will also need the “dual” version of this computation:

FA = F+ + F− 7→ (−1/τ)FC+ − (−1/τ)FC− = −F∨C. (2.7)

In the Hamiltonian formalism, for any 2-cycleΣ ⊂ M3 we can define associated “electric” and
“magnetic” operators on the Hilbert spaceHτ(M3) for any 2-cycleΣ ⊂ M3, by

QE(Σ) =

∫

Σ

F∨A
2π

=

∫

Σ

FC

2π

QM(Σ) =

∫

Σ

FA

2π
= −

∫

Σ

F∨C
2π
.

(2.8)

(These operators only depend on the class ofΣ in H2(M3,Z).) Clearly, underτ→ −1/τ, that is under
A→ C, one hasQE → QM, QM → −QE. Sincex andy are the eigenvalues ofQM andQE, this means
thatτ → −1/τ acts by (x, y) → (−y, x). Moreover, from the explicit formula (2.5) forF∨A, one sees
that whenθ is increased by 2π (an operation which leaves the Hilbert space unchanged), the operator
QM is unaltered, but the operatorQE maps toQE + QM.

The statements made in the last paragraph can be combined to the following:Sl(2,Z) acts onH ′
via the natural action ofSl(2,Z) on the pair (x, y).
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Lecture II-9: Wilson loops,’t Hooft’s loops, and ’t Hooft’s model of confinement

Edward Witten
Notes by Pavel Etingof and David Kazhdan

9.1. ’t Hooft loop operator Let us recall abelian duality in 4 dimensions, which we discussed two
lectures ago. Consider a freeU(1) gauge theory with aθ-angle. Thus we have two dimensionless
couplingse, θ which combine into a single complex couplingτ = 2πi

e2 + θ
π , and the Lagrangian is

L =

∫

M

( iτ̄
4π

F2
+ −

iτ
4π

F2
−
)
, (9.1)

whereF is the curvature of aU(1) connectionA andF+,F− are the selfdual and antiselfdual parts of
the curvature. We have seen that if the spacetimeM is a spin manifold then this theory is “modular
invariant” as a function ofτ. One modular symmetryτ → τ + 1 is obvious, as it corresponds to
shifting theθ-angle byπ, which does nothing becausec2

1 for a spin manifold is even. (On a manifold
that is not a spin manifold, the symmetry would be onlyτ→ τ + 2.) The symmetry under the second
generator of the modular group,τ → −1/τ, is more interesting and corresponds to electromagnetic
duality discovered by Maxwell. More precisely, this means that the theory of a connectionA with
coupling constantτ is identical both classically and quantum mechanically to the same theory with
coupling−1/τ and the connectionB such thatdA = const∗ dB. Now, like two lectures ago, we want
to see what happens to operators under this duality. In particular, we want to know what happens to
the Wilson loop operator.

Recall that the Wilson loop operator has the formWγ(C) = eiγHolC(A), whereHolC(A) denotes the
integral of the connectionA along a closed oriented curveC in the spacetimeM. This operator is
gauge-invariant and well-defined ifγ is an integer, or for any realγ if the curveC is homotopically
trivial in M. (More generally, there could be several componentsCi with real numbersγi , and the
condition is that

∑
i γiCi should be an integral class inH1(M).) Matrix elements of this operator are

computed, as usual, by inserting the above exponential into the path integral. Similarly to what we
found in similar problems in two and three dimensions, we should get that the dual description of the
Wilson loop is a recipe which says that rather than insert in the path integral an object living onC, we
should integrate over connections having a singularity alongC.

The precise answer is the following. For any curveC the expectation value〈Wγ(C)O1...On〉 equals
to

∫
e−L(B)O1...OnDB, where the integral is taken over connections onM \ C such that the integral of

the curvature ofB over a small 2-sphereS in a normal 3-space toC at any point equals 2πγ.
Let us prove this. We assume thatC is a boundary. LetD be a 2-chain whose boundary isC.

Recall the calculation from the lecture on Abelian duality: our fields areA – the original connection,
G- the 2-form, andB – the dual connection. We have

∫
e−L(A)Wγ(C)DA =

∫
DA DG DBe

−iτ̄
4π

∫
F 2

+ + iτ
4π

∫
F 2−e

i
2π

∫
G∧FBeiγ

∫
D(FA−G), (9.1)

whereF = FA − G, and the last factor corresponds to the insertion of the Wilson loop (recall from
the abelian duality discussion that the Wilson loop classically iseiγ

∫
D FA, andFA is to be replaced with

FA −G in the extended theory). GaugingA to 0, we get
∫

e−L(A)Wγ(C)DA =

∫
DG DBe

−iτ̄
4π

∫
G2

++ iτ
4π

∫
G2−e

i
2π

∫
G∧FBe−iγ

∫
D G =

∫
DG DBe

−iτ̄
4π

∫
G2

++ iτ
4π

∫
G2−ei

∫
G∧( 1

2πFB−γ[D]) ,

(9.2)
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where [D] is the delta-function ofD. Now we defineF̃B := FB − 2πγ[D]. Then after integrating out
G, (9.2) can be written as

∫
e−L(A)Wγ(C)DA =

∫
DBe

i
4πτ̄

∫
(F̃B)2

++ −i
4πτ

∫
(F̃B)2− , (9.3)

Thus, the effect of the insertionWγ(C) is thatFB is replaced in the final answer bỹFB. SoB is now a
connection on a line bundle with singularity alongC, as discussed above.

Note that ifC is not a boundary then〈Wγ(C)〉 = 0 (even with insertion of any number of local
operators). Indeed, we have symmetryA→ A+dφ, andφ does not have to be globally defined as a map
to a circle; in fact,dφ can be any closed one-form. So ifC is not a boundary then we can choosedφ
in such a way that the operatorWγ(C) will multiply by eiα for some nonzeroα. Hence its expectation
value (even with inclusion of local operators, which are invariant under this transformation) vanishes.
More generally, the correlator〈Wγ1(C1)...Wγn(Cn)〉 (with any local operators) is zero if

∑
γiCi , 0

in H1(M), whereM is the spacetime. As noted before, for the product of operators in question to be
well-defined, we only need

∑
γiCi to be an integral class.

From our construction so far, for any curveC we have two operators:
1) Wγ(C) = eiγ

∫
C A

2) Tγ(C) = eiγ
∫
C B.

The second operator, which is dual to the Wilson loop, is called the ’t Hooft loop operator.

9.2. Hilbert space interpretation of the ’t Hooft loop operator Now let us consider this picture
from the Hamiltonian point of view. Then the spacetimeM has the formM = M3×R with Minkowski
metric. LetC,C′ be two nonintersecting closed simple curves inM3. They define operatorsWγ(C)
andTγ′(C′) on the Hilbert spaceH . The following commutation relation for these operators is due to
’t Hooft:

Wγ(C)Tγ′(C
′) = e2πiγγ′l(C,C′)Tγ′(C

′)Wγ(C). (9.4)

Let us prove this formula. Let us work in terms of the original connectionA. Then the Hilbert
space consists of wave functionsΨ(A). In this realization, the Wilson loop operatorWγ(A) is simply

the operator of multiplication byeiγ
∫

A.
However, the ’t Hooft loop operator is a bit harder to define. To do this, consider the homo-

morphismπ1(M3 \ C′, x0) → Z given by the linking number withC′. Let π0
1 be the kernel of this

homomorphism andX be theZ-cover ofM3 \ C′ corresponding toπ0
1. Let φ be a functionX→ U(1)

such that the monodromy corresponding to the generator ofZ is eiγ. Any two such functions differ by
a gauge transformation, butφ itself is not an honest gauge transformation. Then it is not difficult to
check that the ’t Hooft loop operatorTγ′(C′) is just the “illegal” gauge transformation byφ:

(Tγ′(C
′)Ψ)(A) = Ψ(Aφ). (9.5)

Note that this is well-defined since any two suchφ’s differ by an honest gauge transformation.
Now formula (9.4) is clear sinceTWT−1 = eiγC

∫
dφW, because of the way thatT transforms the

connection in the definition ofW.

9.3. The 2+1-dimensional analogue of the 3+1-dimensional picture Consider the 2+1-dimensional
analogue of this picture. As we saw before, in 2+1 dimensions the theory of a scalar fieldφ is dual
to a gauge theory of the dual fieldA. The path integral inφ with insertion ofeiφ(x) is the same as path
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integral inA whereA is a connection onM \ x which has
∫

F = 2π, where the integral is over a small
sphere aroundx. Thus, the operatoreiφ corresponds to a magnetic monopole in gauge theory.

Now consider the 3-dimensional cosine theory, defined by the path integral
∫

Dφe−
∫

(|dφ|2+ε(eiφ+e−iφ)). (9.6)

Decomposing this path integral in a power series, and passing to the dual variableA, we get the sum

∑

m,n

εm+n
∫

dx1...dxm

m!

∫
dy1...dyn

n!

∫

Ax,y

e−
∫

F2
A, (9.7)

whereAx,y is the space of connections with monopoles atxi and antimonopoles atyj . Thus the cosine
theory maps to the theory with monopoles. We saw this more computationally when we discussed the
Polyakov model two lectures ago.

9.4. The model of confinement Now we discuss a picture of confinement developed by ’t Hooft.
In general we don’t assume that the gauge group is abelian. Recall the definition of confinement. We
have a gauge groupG and with universal cover̂G. We assume thatG is the quotient of̂G which acts
faithfully on all fields in the Lagrangian. We letR be a representation of̂G. As we discussed before,
if there is a mass gap, there are two usual patterns of decay of the expectation value〈WR(C)〉 of the
Wilson line operator corresponding to the representationRasC gets big:

Pattern 1:
〈WR(C)〉 ∼ e−λLength(C) (9.8)

Pattern 2:
〈WR(C)〉 ∼ e−λArea(C) (9.9)

(here the parameterγ is a fixed nonzero number and the area ofC means the minimal area of the
spanning surface). The first regime is called the Higgs regime (the length law) and the second one is
called the confinement regime (the area law).

As we discussed in the previous lecture on confinement, the first regime is the case whenR is a
representation ofG itself, and to see confinement one needs to consider the case whenR is a repre-
sentation of̂G but not ofG. Thus interestingWR(C) correspond to elements ofπ1(G)∗.

Now let us consider the ’t Hooft loop operatorTγ(C). It is defined for anyG by analogy with the
definition in the abelian case. We fix an elementγ ∈ π1(G). Recall thatG-bundles on a two-sphere
S2 are classified by a characteristic class that takes values inH2(S2, π1(G)), which is canonically
isomorphic toπ1(G). The choice ofγ therefore canonically determines an isomorphism class ofG-
bundles onS2. We can now define the ’t Hooft operator: a path integral with insertion ofTγ(C) is
computed by integrating over connections onM \C which have the property that when restricted to a
small sphereS that linksC, the bundle has characteristic classγ.

’t Hooft’s idea was to considerTγ(C) instead ofWR(C) and find conditions under which there is
an area law for its expectation value. This occurs, as he showed, for certain Higgs theories. Then, ’t
Hooft proposed (following earlier ideas of Nambu, Mandelstam, and others) that confinement would
be related to the Higgs mechanism by a duality that maps ’t Hooft loop operators into Wilson loop
operators. This does not explain confinement, but it reformulates the problem: to reduce the myste-
rious phenomenon of confinement to the much more easily understood Higgs phenomenon, one must
understand the nonlinear duality that exchanges ’t Hooft and Wilson loop operators.
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To illustrate the area law for the ’t Hooft loop in Higgs theories, we consider a familiar example:
theU(1) gauge theory with a charged complex scalarφ (of charge 1). The Lagrangian is

∫
(
|F|2
4e2

+ |DAφ|2 + V(φφ̄)), (9.10)

whereV is a (quartic) potential. We will study the ’t Hooft loopTγ(C), whereγ ∈ Z. ThusA is a
connection andφ is a section for a hermitian line bundle overM \ C such that it has first Chern class
γ when restricted to a small sphere linkingC. We will compute〈Tγ(C)〉 for two classes ofV:

1) V = λ(φφ̄ + a2)2;
2) V = λ(φφ̄ − a2)2.
This theory was considered in Lecture 2. Recall the results of this consideration.
Case 1. In the infrared the theory behaves like the product of the theory of a free massive field

with a free gauge theory. In particular, there is no mass gap. Thus, we can calculate〈Tγ(C)〉 for large
C using the free theory. But in the free theory this expectation value is the same as〈Wγ(C)〉 in the
dual theory. It is easy to see that the expectation values of bothWγ andTγ behave according to the
length law, because of Coulomb law of charge interaction. A theory behaving in this way is said to be
in the “Coloumb phase.”

Case 2. In the infrared this theory has breaking of gauge symmetry and a Higgs mechanism. In
particular, speaking classically, we have a circle of vacua, and at each of these vacua the low energy
part of the Hamiltonian spectrum contains a massive vector and a real massive scalar. So there is a
mass gap. This theory is not believed to exhibit confinement, i.e. it is believed that it exhibits the
length law for the Wilson loop. This is certainly what one computes in perturbation theory.

In case 2, we will show that there is an area law for the ’t Hooft loop operator, because of the
Higgs mechanism. This happens for topological reasons, as explained below.

As a warmup consider a closed spacetimeM and a line bundleL with a nontrivialc1. Let us
consider the path integral for our theory over sections of this bundle. It turns out that the action of all
field configurations in this integral has to be very large: it is bounded below by a constant (which is
independent ofM) times the area of the minimal 2-surface which represents a cycle Poincare dual to
c1(L).

Indeed, ifφ is a section ofL thenφ has to vanish on a 2-cycleΣ which is dual toc1(L). If we fix
Σ, we can look at the configuration of minimal action with such a zero. For this, we can (if the metric
of M is scaled up) reduce to the case thatM = R4 = R2 × R2, with Σ equal to the first factor. We can
assume thatφ andA are invariant under translations of the first factor inM. In the second factor, we
wantφ to vanish at the origin and to approach the vacuum at infinity (up to gauge transformation),
such that the first Chern class of the bundle, relative to the trivialization at infinity given byφ, equals
1. The same problem appeared in lecture 2 (in the guise of finding an instanton solution of the
two-dimensional version of the same model), and we discussed qualitative properties of the solution.
Anyway, letI be the action of this solution in the two-dimensional sense (that is, integrated over just
the second factor inM). Going back to a globalΣ ⊂ M of smallest area representing the first Chern
class, the minimum action field looks in the normal directions toΣ like the instanton just described;
its action is approximatelyI · Area(Σ).

Now let us come back to the ’t Hooft loop inR4. In this case the bundle is overM \ C, whereM
is the spacetime. IfD is a 2-chain inM whose boundary isC thenD plays the role of theΣ of the
previous discussion. Indeed, ifL is a line bundle overM \ C with Chern class 1, andφ its section
thenφ must vanish on a 2-surface whose boundary isC. Thus, the same argument as above shows
that〈T1(C)〉 ∼ e−λ area(D), where area(D) is the smallest area of a disk spanningC. This is the area law
which we wanted to demonstrate.

91



This behavior is characteristic of what is called the Higgs regime, or phase.
Now let us discuss in more detail the relation of the established behavior of the ’t Hooft loop

operator with confinement. It is believed that ifπ1(G) , 0 there are at least three possible phases:
1) Coulomb: no mass gap, gauge bosons in the infrared,W andT behave like in the free theory

and exhibit the length law.
2) Higgs: mass gap, length law forW, area law forT.
3) Confinement: mass gap, area law forW, length law forT.
As already suggested, ’t Hooft’s idea was that there should be a nonabelian analogue of duality

which interchangesW with T, the Higgs and the confinement regimes, and maps the Coloumb phase
to itself. Thus, the area law forT in a theory implies confinement in the dual theory. This is what
happens for some supersymmetric theories, e.g. the theory relevant to Donaldson theory.

In fact, ’t Hooft showed that ifR andγ are such thatγ|R , 1 then eitherWR on Tγ exhibit the
area law. More specifically, he proved an even stronger statement, namely that the setH of all (c, γ) ∈
π1(G)∗ × π1(G) such that for some representationRwith central characterc the operatorWR(C)Tγ(C)
(suitably renormalized) does not exhibit the area law, is an isotropic subgroup ofπ1(G)∗ × π1(G)
with respect to the natural symplectic form. The reason for this, very roughly, is the following. If
A(C) = WR1Tγ1(C) andB(C) = WR2Tγ2(C) exhibit the length law then, when acting on the vacuum,
they produce only effects that are localized alongC (or there would be an area law instead of a length
law). So

〈A(C)B(C′)〉 = 〈A(C)〉〈B(C′)〉(1 + o(1)),d→ ∞ (9.11)

whered is the distance betweenC andC′. This shows that ifAB = qBAwhereq is a constant thenq
must be equal to 1. By ’t Hooft’s formula (9.4) (which is clearly valid in the nonabelian case as well),
this implies thatH is isotropic. By further physical arguments, one shows that if there is a mass gap,
thenH is maximal isotropic. This leads to a more refined classification of massive phases than was
stated above: associated to each massive phase is a maximal isotropic subgroup ofπ1(G)∗ × π1(G).
All possibilities can arise, in general.
Remark. The argument showing that loop operatorsA andB must commute fails if one of the oper-
ators, sayA, exhibits the area law. In this case, acting on the vacuum with this operator produces an
effect that is not in any way localized nearC; it rather has an effect which is localized near a minimal
area diskD whose boundary isC; such a disk will always intersectC′ when the linking number is not
zero. Formula (9.11) is now valid only ifd is the distance fromC′ to D, which is always 0, so the
formula does not tell us anything.
Remark. The area law for the ’t Hooft operator in a Higgs phase has many physical and mathemat-
ical applications. For example, with some small adjustments, what we said above in analyzing the
behavior of the Higgs phase with a bundle of nonzero first Chern class could serve as an explanation
of the Meissner effect, the fact that a superconductor (which is described approximately by the abelian
Higgs model that we examined) expels magnetic flux. Perhaps the reader has, at a science fair, seen
a demonstration of a magnet floating above a superconductor; this effect has the same origin. Math-
ematically, C. Taubes’s analysis of the Seiberg-Witten invariants of symplectic four-manifolds made
use of the same facts: the localization (in a closely analogous system of equations) of the zeroes ofφ

on a surface of smallest area.
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Lecture II-10: Quantum gauge theories in two dimensions and intersection theory on
moduli spaces

Edward Witten
Notes by Lisa Jeffrey

10.1. The partition function in two dimensional Yang-Mills theory.
We consider gauge theories in two dimensions with a simple gauge groupG. The spacetime is

a compact Riemann surfaceΣ of genusg with no boundary. To apply our methods to intersection
theory on moduli spaces, we shall need to consider the caseG = SU(n)/Zn and consider bundles onΣ
for which the transition functions do not lift toSU(n): in mathematical terms we are considering the
moduli space of holomorphic vector bundles onΣ with rankn and degreed.

The theory we consider isphysical Yang-Mills theory.The fields are aG connectionA on aG
bundleP onΣ, with curvatureFA; the Lagrangian is

L =
1

4e2

∫
d2x

(
| ∗ FA|2

)
. (1)

The partition function is thus

Z =
1

Vol(G)

∫
DAe−L. (2)

We introduce a scalar fieldφwith values in ad(P) and rewrite the path integral for the partition function
as

Z =
1

Vol(G)

∫
DADφexp{i

∫
TrφF − e2

2

∫
dµTrφ2}. (3)

This theory is invariant under area preserving diffeomorphisms since it has no explicit dependence on
a Riemannian metric onΣ but only on themeasuredµ = ∗(1). It is clear that the theory depends only
on the coupling constanteand the areaa of Σ only through the combinatione2a. The path integral (3)
is well behaved under taking the limit ase→ 0.

We make a further modification to the path integral for the partition function by introducing a
fermionic variableψ which is a one-form in the adjoint representation (in other wordsψ is an element
of of Ω1(Σ)⊗ Γ(adP). The fieldψ should be thought of as lying in the tangent space to the spaceA of
connections onΣ. The path integral becomes

Z =
1

VolG

∫
DADφDψexp{i

∫

Σ

Tr(φF) +
1
2

∫
Tr(ψ ∧ ψ) − e2

2

∫
dµTr(φ2)}. (4)

Since the Lagrangian in (4) contains no terms which involve bothψ and the other fieldsφ andA, we
can integrate outψ and recover the earlier expression (3).

We can now define a supersymmetry operationδ on the space of fields:

δA = iψ, (5)

δψ = −dAφ (6)

δφ = 0 (7)

It follows thatδ2A = −idAφ, in other wordsδ2 = 0 up to the action of a gauge transformation. (Here,
dA refers to the de Rham differentiald twisted by a connectionA onΣ.) We may check the invariance
of the action underδ: we have

δ

∫
Tr(φF) = −i

∫
Tr(φDAψ), (8)
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while

δ

∫
Tr(ψ ∧ ψ) = −

∫
Tr(DAφ ∧ ψ). (9)

After integrating by parts, we find that the action appearing in (4) is invariant.
10.2. A finite dimensional analogue: the Cartan model.

Our path integral is a path integral over the infinite dimensional spaceA of connections which is
acted on by the gauge groupG with Lie algebra Lie(G). TheCartan modelis used to treat a finite
dimensional analogue of this situation: for a more detailed description see Chapter 7 of[BGV] . The
analogue ofA is a finite dimensional manifoldM equipped with the action of a compact Lie group
H (which is the analogue ofG). Functions ofA andψ correspond to differential forms onM, while
the analogue of functions ofA, ψ andφ are elements ofΩ∗(M) ⊗ Fun(h). In fact we restrict to the

H-invariant subspace
(
Ω∗(M) ⊗ Fun(h)

)H
whereH acts in the obvious way onΩ∗(M) and acts onh

(and hence on Fun(h)) via the adjoint action. Here Fun(h) denotes an appropriate class of functions on
h: in the literature one most usually restricts to polynomial functions Pol(h) = S(h∗) (the symmetric
algebra onh∗).

The set
Ω∗H(M) =

(
Ω∗(M) ⊗ S(h∗)

)H

has a natural grading: it is the differential form grading plus two times the polynomial grading (in
other words a linear function onh is assigned grading 2). With this grading one sees that both terms
in the operator3

D = d − iιV(φ) (10)

increase the grading by 1. (Hered is the de Rham differential andιV(φ) is the interior product with the
vector fieldV(φ) induced onM by the action ofφ ∈ h.) We may write

ιV(φ) =
∑

a

φaιVa,

introducing a basis{φa} for h. It is easy to check (since we have restricted toH-invariant elements of
Ω∗(M) ⊗ S(h∗)) that D2 = 0, so one may take the cohomology with respect toD: this cohomology
is identified with theH-equivariant cohomologyH∗H(M) of M.4 If H acts freely onM the topological
quotientM/H is a manifold (andM is a principalH-bundle overM/H), and the equivariant cohomol-
ogy is identified with the ordinary cohomologyH∗(M/H) of the quotient.

We shall start with classes in theD-cohomology ofΩ∗H(M). One type of classes come from
(S(h)∗)H (in other words, the polynomials on the Lie algebrah which are invariant under the adjoint
action): this is identified with theH-equivariant cohomology of a point, or in other words with the
cohomologyH∗(BH) of the classifying spaceBH. If M is a principalH-bundle overM/H (or equiva-
lently if the action ofH onM is free) then each invariant polynomial onh corresponds to a character-
istic class of principal bundles with structure groupH. Under the isomorphismH∗H(M) � H∗(M/H),
the invariant polynomialSon h is identified with the corresponding characteristic class of the princi-
pal H-bundleM. (This is given in Chern-Weil theory asS(FA) whereA is a connection on the bundle
M → M/H andFA is its curvature, which is a 2-form onM with values inh).
10.3 Infinite dimensional Cartan: the descent equations

We shall now outline the analogue of the Cartan model in our infinite dimensional situation: this
material is covered in Section 3.3 of[W2] . The spaceM is the infinite dimensional vector spaceA

3Mathematicians normally use a convention in which thei in (10) is omitted.
4Throughout this lecture all cohomology groups will be assumed to have complex coefficients.
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of connections on aG bundleP over a Riemann surfaceΣ. We start with an Ad-invariant polynomial
Son the Lie algebrag; from this we shall construct an operatorO(0)

S in two dimensional Yang-Mills
theory, which corresponds to a cohomology class in the moduli spaceM. Recall that the field theory
contained a fieldφ with values ing. We define

O(0)
S = S(φ). (11)

The objectO(0)
S is thus a function onΣ: we shall see that up to the supersymmetry differentialδ, the

operatorO(0)
S (p) = S(φ(p)) is independent of the choice of a pointp ∈ Σ. We decompose the fieldφ

into components{φb} (whereb indexes a basis forg). Then

dO(0)
S =

∑

b

∂S

∂φb
dAφ

a (12)

= iδ(
∑

b

∂S
∂φaψ

b), (13)

in terms of the supersymmetry operatorδ. Thus if we define

O(1)
S = −

∑

b

∂S

∂φb
ψb,

we have proved
dO(0)

S = −iδO(1)
S . (14)

HereO(1)
S should be viewed as a 1-form onΣ.

We can iterate this procedure: we find that

dO(1)
S =

∑

a,b

∂2S

∂φa∂φb
DAψ

a ∧ ψb +
∑

a

∂S
∂φaDAψ

a. (15)

Observing thatDAψ = δFA, we can convert (15) intodO(1)
S = −iδO(2)

S , where we have defined

O(2)
S =

1
2

∑

a,b

∂2S

∂φa∂φb
ψa ∧ ψb + i

∑

a

∂S
∂φaFa. (16)

These equations may be summarized as follows:

(d + iδ)(O(0)
S + O(1)

S + O(2)
S ) = 0. (17)

(The point is that in an appropriate double complex the total differential isd+ iδ andO(0)
S +O(1)

S +O(2)
S

is closed.)
We shall now use this to construct cohomology classes on the moduli space

M = Aflat/G. (18)

If we choose aq-cycleC in Σ, we find (using Stokes’ theorem) that

Q(q)
S (C)

def
=

∫

C
O(q)

S
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satisfies
δQ(q)

S (C) = 0, (19)

and ifC = δB is a boundary, then

Q(q)
S (C) = δT for some T. (20)

Provided that the groupG of gauge transformations acts freely onA, theQ(q)
S (C) correspond to the

generators of the cohomology ofM: they are cohomology classes onA/G which we will restrict
to the moduli spaceAflat/G. These generators are given in Section 2 of[AB] : they are produced by
taking the slant product of the characteristic classes of theuniversal bundleoverM× Σ with classes
in the homology ofΣ. The quantum field theory will compute a generating functional

∫

M
exp

{
αQ(0)

S (p) +

2g∑

j=1

βjQ
(1)
S′j

(Cj) + γQ(2)
S′′ (Σ)

}
(21)

which will encode all intersection numbers in the cohomology ofM. A mathematical proof of these
formulas for intersection numbers is given in[T] for the caseG = SU(2) and in[JK2] in the case
G = SU(n) (in those cases where the moduli spaceM is smooth). Here,p is a point inΣ, the Cj

are 2g cycles inΣ corresponding to the homologyH1(Σ), and theS, S′j andS′′ are arbitrary invariant
polynomials ong (which are in general distinct). For simplicity we shall mostly treat the caseG =

SU(2), for which the ring of invariant polynomials ong is a polynomial ring on one generatorSgiven
by

S(φ) = Tr(φ2).

10.4 Equivariant integration and localization
We now return to the finite-dimensional situation of Section 10.2. We would like to define a

mapI : Z∗H(M) → C (whereZ∗H(M) are theD-closed elements inΩ∗H(M)) by integrating overM ×
h. In order to define a convergent integral, we introduce a convergence factore−εTr(φ2). (In fact
in the mathematical treatment of this convergence factor one may replace the Gaussiane−εTr(φ2) by
any collection of rapidly decreasing functions{fε} on h which (asε → 0) represent the Dirac delta
distribution: see[JK1] for a mathematical treatment of equivariant integration in the Cartan model.)
Forα ∈ Z∗H(M) we define

I(α) =

∫

φ∈h

∫

M
dφ1 . . .dφse

−εTr(φ2)α(φ). (22)

In fact in order to ensure convergence of the integral (22) we must place some hypotheses onα.
A useful class of equivariantly closed forms are obtained in the special case whenM is a symplectic
manifold with symplectic formω, and the action ofH on M is Hamiltonian with moment mapµ :
M → h∗: We see readily that

ω̃ = −iTr(φµ) + ω (23)

satisfies
Dω̃ = 0

(whereD is the Cartan model differential defined by (10)).
The computation of the integral (22) will be governed by a localization principle similar to that

which leads to the Duistermaat-Heckman formula for an oscillatory integral over a symplectic mani-
fold with a Hamiltonian torus action. We choose anH-invariant 1-formλ for which

Dλ = dλ + −i(V(φ), λ); (24)
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whereV(φ) is the vector field given by the action ofφ (which of course depends linearly onφ). The
integral (22) is not changed by replacing exp(−εTr(φ2)) by exp(−εTr(φ2) + itDλ) since exp(itDλ)
expands as 1+ itDλ + . . . Because−tDλ = it(V(φ), λ) − t(dλ), ast → ∞ the integral localizes around
points where (V(φ), λ) = 0. We may see this by alternatively computing the partition function by
completing the square and performing the integral overφ: to leading order int this gives a factor

exp− t2

4ε

∑

a

|(Va, λ)|2,

so by considering the behaviour forε → 0 we see that the integral localizes around points where
(Va, λ) = 0 for all a.

We now specialize to the case whereM is a symplectic manifold equipped with the Hamiltonian
action of a compact groupH: the moment map will be denotedµ. We defineI = |µ|2 : M → R,
the norm squared of the moment map. We may choose an almost complex structureJ ∈ End(TM)
compatible with the symplectic structure, and letλ = J(dI) be the invariant one-form defined above.
The points where (Va, λ) = 0 are readily identified with the critical points ofI . We see this because

dI = 2
∑

a

µadµa,

so sinceVa = ω−1dµa (regarding the symplectic formω as an isomorphismTxM → T∗xM for each
x ∈ M, with inverseω−1 : T∗xM → TxM) we have

ω−1dI = 2
∑

a

µaVa.

HeredI ∈ Ω1(M), soω−1dI should be regarded as an element ofΓ(TM). Thus (Va, λ) = 0 implies
(ω−1dI, λ) = 0, in other words

(ω−1dI, J(dI)) = 0

(where both sides of this equation are inΓ(TM)). This impliesdI = 0 sinceω andJ combine to give
a nondegenerate symmetric bilinear formg on the cotangent space, defined by

g(X,Y) = ω−1(X, JY)

(for X,Y ∈ Γ(T∗M)). Thus our integral formally localizes on the critical points ofI . One obvious
source of such critical points isµ−1(0), but there are other critical points whereI , 0.

We now give a derivation of (one version of) the Duistermaat-Heckman formula. As noted above,
the form (23)ω̃ = −iTr(φµ) + ω is equivariantly closed. We may thus compute

1
VolH

∫

φ∈h
dφ1 . . .dφn

∫

M
exp

(
−iTr(φµ) + ω

)
. (25)

(Note that if we did not include the integration overφ in the formula (25), the oscillatory integral
overM would correspond to a sum over the components of the fixed point set ofT: see for instance
Chapter 7 of[BGV] .) If however we first integrate overφ we obtain a delta functionδ(µ), so the
formula becomes

1
VolH

∫

M
expωδ(µ) =

∫

µ−1(0)/H
eω

in other words the symplectic (Liouville) volume of the symplectic quotientµ−1(0)/H.
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We wish, however, also to include a factor exp(−εTr(φ2)) in the integrand. Thus we wish to
compute

Z(ε)
def
=

1
VolH

∫

φ∈h
dφ1 . . .dφn

∫

M
αexp

(
−iTr(φµ) + ω − εTr(φ2)

)
, (26)

whereα = α(φ) is an equivariantly closed form onM which haspolynomialdependence onφ. We
assumeH acts freely onµ−1(0); nearµ−1(0), the equivariantly closed class Tr(φ2) (which comes from
the H-equivariant cohomology of a point in the Cartan model) is the pullback of a classΘ on the
symplectic quotientµ−1(0)/H, which is the class which would be evaluated in Chern-Weil theory as
Tr(F2

B) if B is a connection on the principalH-bundleµ−1(0) → µ−1(0)/H andFB is its curvature.
Similarly, nearµ−1(0),α restricts to the pullback of a classα̂ onµ−1(0)/H.

We find that

Z(ε) =

∫

µ−1(0)/H
α̂ exp(ω − εΘ) + O(e−b/ε),

whereb is the smallest nonzero critical value ofI . To see heuristically why the nonzero critical value
b of I should give a contribution to the integral (26) which is of ordere−b/ε, we compute (26) by first
integrating outφ (assuming for simplicity thatα = 1). We compute the integral overφ by completing
the square inφ, which gives

Z(ε) =

∫

M
exp

(
ω − 1

ε
Tr(µ2)

)
.

10.5 Equivariant integration: the infinite dimensional case
We now pass to the infinite dimensional case and study the path integrals corresponding to equiv-

ariant integration. Recall that we had defined the generating functional (21). We restrict toG = SU(2)
or SO(3); we will pick the invariant polynomialsS,S′j andS′′ to all be equal to the generating polyno-

mial (denotedS), namelyS(φ) = Tr(φ2). (We have picked an Ad-invariant inner product ong, which
is denoted Tr; a corresponding measure is defined onG.) We assumeγ = 1 andα = −e2/2 in (21),
and observe that forS= Tr(φ2) we have

Q(1)
S (Cj) =

∫

Cj

Tr(φψ).

Thus the path integral that gives rise to (21) becomes (wherep is a point inΣ)

Z(e, {βj}) =
1

VolG

∫
DADψDφe

{− e2
2 Tr(φ2)(p)+

∑2g
j=1 βj

∫
Cj

Tr(φψ)+
∫
Σ

Q(2)
S }. (27)

(Note that whenS(φ) = Tr(φ2), the object
∫
Σ

Q(2)
S corresponds to the symplectic form onA, and

becomes identified with the standard symplectic form on the moduli spaceM.)
We can now see how the integral (27) can be rewritten in such a way that the generating functional

(21) involving theQ(q)
S for q = 0, 1, 2 is equated with a corresponding generating functional involving

only Q(q)
S for q = 0, 2. This is accomplished by performing the integral overψ, which is Gaussian:

completing the square to perform this integral we see that we pick up a term

1
VolG

∫
DADφexp

{
i
∫

Σ

Tr(φFA) − εTr(φ2)(p),
}

(28)

whereε = e2/2−∑
i<j βiβj#(Ci ∩Cj). In other words we can eliminate the odd-dimensional generators

of the cohomology ring of the moduli space corresponding toQ(1)
S (the non-algebraic cycles in the

moduli space). A mathematical version of this argument is given in the work of Thaddeus[T] .
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10.6 The partition function of Yang-Mills theory
The following material is covered in Section 4 of[W2] . We have now reduced the formula we

need to compute to the partition function (2) of Yang-Mills theory without the fermionic variableψ

included. To compute the partition function we quantize the theory. This is accomplished by replacing
the Riemann surface by a cylinderC × [0,T] of lengthT (whereC � S1 should be regarded as space
and is assumed to have lengthL, while [0,T] is a time interval of lengthT). The space of fields is
equal to the space of connectionsAC on the circleC, so the Hilbert space is

H = C∞(AC)G,

the gauge invariant functions onAC. Since up to gauge equivalence all connections are classified by
their holonomy around the curveC, we find that the Hilbert space is identified with

H = C∞(G)G,

the ring of functions onG which are invariant under the adjoint action (or equivalently the functions
on the maximal torusT which are invariant under the action of the Weyl group). The Hilbert space
is thus identified with the irreducible (complex) representationsR of G (or equivalently with their
characters which are denotedχR or TrR): we take the charactersχR to form a basis ofH , or

H = ⊕RC(R).

For every irreducible representationR the basis elementχR is identified with a functionΨR onAC,
namely

ΨR(A) = χR(HolCA).

The Hamiltonian of the theory is

H = −e2

2

∫

C
Tr|F01|2

(whereF01 is the curvature of the connection), which becomes (identifying the Hamiltonian as an
operator onH in terms of the position variablesAb(θ)dθ onAC and the corresponding momentum
variables (∂Ab(θ)/∂t)dθ which are identified with−i∂/∂Ab(θ) under canonical quantization)

H =
e2

2

∫

C
Tr(

δ

δA
)2.

The action of the operatorδ/δAa(θ) onΨR gives

δ

δAa(θ)
TrRHolC(A) = TrRTaHolC(A)

in terms of a basisTa for the Lie algebrag of G. We thus see that

∑

a

δ

δAa(θ)
δ

δAa(θ)
TrRHolC(A) = TrR(

∑

a

TaTaHolC(A)). (29)

The element
∑

a TaTa is the quadratic Casimirof G, whose evaluation in the representationR is
denoted

TrR

∑

a

TaTa def
= c2(R).
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Thus we see that

HΨR =
e2c2(R)L

2
ΨR. (30)

We thus see that

< ΨR|e−HT |ΨR >= exp(−e2c2(R)LT/2) = exp(−e2ac2(R)/2), (31)

in terms of the areaa = LT of the cylinder. The answer depends only on the combinatione2a.
In fact the effect of renormalization in this quantum field theory is to introduce a factor of the form

exp(α
∫

Σ

dµR + (e2/2)β
∫

Σ

dµ) (32)

into the integrand (whereR is the Riemann curvature andα andβ are appropriately chosen real-
valued constants). The effect of the term involvingβ is to change the quadratic CasimircR to a
renormalized value ˜cR which differs fromcR by addition of a constant. The factorα multiplies the
Euler characteristic ofΣ: it will eventually be adjusted to ensure that the overall normalization of the
partition function and its dependence on the genusg agrees with that found by other methods (for
instance by computing the partition function whenε = 0 using Reidemeister-Ray-Singer torsion, as
in Section 4 of[QYM] ).

We must also consider the field theory on the Riemann surfacePwhich is a sphere with three disks

removed (the trinion or pair of pants: see Figure 1). If we insert the operatorQ̂(0)
S (p) corresponding to

the observableQ(0)
S (p) (wherep is some point inP) we see using (30) and its generalizations that the

stateΨR is an eigenstate ofQ̂(0)
S (p) with some eigenvalueC(S,R):

Q̂(0)
S (p)ΨR = C(S,R)ΨR. (33)

Here, ifS is an invariant polynomial of degreel on g, C(S,R) is the correspondingl-th order Casimir
of the representationR. By considering the one point function determined by the Riemann surface

P with the operatorQ̂(0)
S (p) inserted near thej-th boundary component (see Figure 3), we find that

this one point function is equal toC(S,Rj)WR1R2R3 (for j = 1,2,3) if WR1R2R3 is the partition function
for P with statesΨR1, ΨR2, ΨR3 along the three boundary components. This does not depend on the
boundary componentj (since this field theory is invariant under area preserving diffeomorphisms): it
follows that the CasimirsC(S,Rj) are all equal, and since this is true for all invariant polynomialsS,
we must haveR1 = R2 = R3 if W(R1,R2,R3) , 0.
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We are thus reduced to computing the partition function ofPwith boundary conditions determined
by the external stateΨR along all three boundary components. Denote the value of this partition
function in the limit of zero area bywR: more generally for a pair of pantsP of areaa one obtains

ZR = wR exp(−c̃2(R)
ae2

2
). (34)

We now consider the problem of computing the partition function for a Riemann surface of genus
g with no boundary. Such a surface may be formed by gluing together 2g − 2 copiesPj of P along
3g−3 boundary circlesCγ. We may factor the path integral for the partition function according to the
values of the fields restricted to the boundary circlesCγ. If A′ denotes the value of a connection on
the boundary circles

∐
γ Cγ of thePj , andAA′ = {A ∈ A : A|∐

γ Cγ
= A′} is the set of all connections

which restrict to a given boundary valueA′, we have
∫
DAe−L =

∫
DA′

∫

AA′
e−L (35)

(cf. [QYM] , Section 4.5). Once we have fixed the boundary valuesA′, the spaceAA′ is the product
of 2g− 2 copies of the space of connections onP (with prescribed boundary values). In quantization
the partition function ofP is

Z(P,A|∂P) =
∑

R

wR

3∏

γ=1

ΨR(A|Cγ). (36)

To recover the partition function for the closed Riemann surfaceΣ of genusg, we multiply 2g − 2
copies ofZ(P) and integrate over the boundary valuesA′. Using the orthogonality relations for the
group characters which correspond to the statesΨR, we find

Z(Σ) =
∑

R

w2g−2
R exp(−e2ac̃2(R)

2
). (37)
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We now explain how to compute thewR. We observe that the partition function for a diskD of
areaa with an external stateΨR on the boundary is

Z(D) = vR exp(−e2ac̃2(R)
2

). (38)

The partition function corresponding to a cylinder with boundary conditions determined by wave-
functionsΨR (resp. ΨR′) on the two boundary components is equal to 0 ifR , R′, sinceΨR is an
eigenfunction of the HamiltonianH. (See Figure 2.) The partition function of a cylinderS1× I of area
a with external statesΨR on both boundary components is

Z(S1 × I ) = 1 · exp(−e2ac̃2(R)
2

) (39)

(since theΨR are eigenstates of the HamiltonianH). We may decompose the cylinder as in Figure 4:
this yields the partition function of the cylinder with external statesΨR on both boundary components
as the product of the partition function ofP (with external statesΨR on all boundary components) and
that ofD, so that

wR · vR = 1. (40)

To determinevR, it suffices to consider a diskD of very small area. If we fix the holonomy of a
connection around the boundary ofD to take the valueU ∈ G, the partition function for the disk
(restricting to connections onD with boundary holonomyU) is (via quantization)

Z(U) =
∑

R

vRχR(U) (41)

(where as aboveχR denotes the character of the representationR). If we instead compute the partition
function via the path integral, we write the action as

I (U) =

∫

A
Tr(|F|2), (42)

and

Z(U) =

∫
DAexp(− 1

e2

∫
Tr(|F|2)), (43)

(where we have restricted to connections for which the boundary holonomy isU). This gives

Z(U) = expαδ(U − 1), (44)
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Figure 4

(since the Euler-Lagrange equation implies that the dominant contribution comes from flat connec-
tions, which necessarily have trivial holonomy around the boundary ofD). Here,α is the (as yet
undetermined) constant which appeared in (32) multiplying the Euler characteristic of the Riemann
surface. Hence we see that

exp(α)δ(U − 1) =
∑

R

vRχR(U). (45)

If we multiply both sides of this equation byχR′(U) and integrate overU, using the orthogonality
relations for group characters we find

vR = exp(α) dimR, (46)

and hence

wR =
exp(−α)
dimR

. (47)

Thus the partition function is

Z(Σg,e2a) =
∑

R

w2g−2
R exp(− c̃2(R)e2a

2
) (48)

=
∑

R

e−α(2g−2) exp(−c̃2(R)ε/2)

(dimR)2g−2
(49)

where we have introducedε = e2a.
The computation we have just performed gives the sum of partition functions corresponding to

bundles of all possible topological types (recall that ifG is not simply connected there will in general
be several topological types of bundles overΣ). To study the contribution of one particular topological
type, we takeG to be simply connected and pick an elementζ ∈ Z(G). Choosing a pointp ∈ Σ we
restrict to connections onΣ − {p} such that the holonomy aroundp is equal toζ. (Such a connection
will descend to a flat connection on a quotient bundle with structure groupG/Z(G), whose topology
is determined byζ.) In this setting we repeat the analysis above: we find that the path integral over
connections with holonomyζ aroundp is given (via quantization) by

∑

R

uRχR(U) (50)

and (via the path integral) by
exp(α)δ(U − ζ). (51)
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If we multiply by χ′R(U) and integrate overU we find

uR = exp(α)χR(ζ) = exp(α)(dimR)χ̂R(ζ) (52)

whereχ̂R(ζ) ∈ U(1) is the normalized character evaluated atζ. Thus the partition function becomes
(since the Riemann surface is now decomposed into 2g− 1 copies ofP and one copy of the diskD)

Z(ε,g, ζ) =
∑

R

w2g−1
R e−c̃2(R)e2a/2uR (53)

=
∑

R

e−α(2g−2)e−εc̃2(R)/2

(dimR)2g−2
χ̂R(ζ). (54)

This is the partition function for a particular class ofG bundles corresponding to flat connections
on a Riemann surface of genusg with one boundary component and with holonomyζ around this
boundary component. The partition function for the corresponding class ofG/Z(G) bundles on a
Riemann surface of genusg with no boundary is obtained by dividing (54) by a factor (#Z(G))2g−2,
since this component of the moduli space of flatG/Z(G) connections is an unbranched cover (of order
(#Z(G))2g−2) of the moduli space of flatG connections on a Riemann surface of genusg with one
boundary component around which the holonomy is constrained to take the central valueζ.

We conclude this section by studying the exampleG = SU(2), ζ = −1. For each integern ≥ 1
there is a unique representationRn of dimensionn with χ̂n(ζ) = (−1)n+1. The quadratic Casimir of the
representationRn is

c2(Rn) = (n2 − 1)/2;

this is renormalized to
c̃2(Rn) = n2/2.

The partition function corresponding to anSO(3) bundle ofw2 , 0 is given (up to an overall multi-
plicative normalization constant independent of the genusg ) by

Z(ε) = e−α(2g−2)
∑

n≥1

(−1)n+1

n2g−2
e−εn

2/4. (55)

Let us now verify that this is the sum of a term which is a polynomial inε (the polynomial dependence
being expected from (21)) and a second term which is exponentially decaying of ordere−b/ε for some
positive constantb. We do this by differentiating the series to find that

(
eα(2g−2)4g−1 ∂

∂ε

)g−1

Z(ε) = F(ε), (56)

where we have defined
F(ε) =

∑

n≥1

(−1)n+1e−εn
2/4.

We have that
2F(ε) − 1 = −

∑

n∈Z
(−1)ne−εn

2/4,

and using the Poisson summation formula this is given by

2F(ε) = 1−
√

4π/ε
∑

m∈Z
e−(2π)2(m+1/2)2/ε. (57)
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(The terms in the sum indexed bym correspond to the contribution of the critical points of the Yang-
Mills functional arising from unstable bundles of the formLm ⊕ L−m+1, whereLm is a line bundle
over Σ of degreem.) We may now apply (56) to integrate (57), showing thatZ(ε) is the sum of a
polynomial inε (of degreeg − 1) plus a term exponentially decaying likeG(ε)e−b/ε for a positive
constantb (whereG(ε) is a polynomial in

√
ε and 1/

√
ε).
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Lecture II-11: Supersymmetric field theories

Edward Witten
Notes by Pavel Etingof and David Kazhdan

11.1. General remarks on supersymmetry
Starting from today we study field theories with supersymmetry, i.e. theories whose symmetry

group has a nontrivial extension to a supergroup. As usual, by even and odd (infinitesimal) symmetries
we mean even, respectively odd, elements of the Lie superalgebra of this supergroup.

It often happens that a solution to the classical field equations has nontrivial odd symmetries.
Examples:

gradient flowlines in Morse theory
holomorphic curves
instantons
monopoles
Seiberg-Witten solutions
hyperKahler structures
Calabi-Yau metrics
Metrics ofG2 andSpin7 holonomy
In the next sections we will consider some of these examples.

11.2. Supersymmetric solitons (BPS states).
First consider a case in which the gradient flowlines of Morse theory will appear. Leth : Rn→ R

be a Morse function (i.e. its critical points are nondegenerate and|∇h| grows at infinity). A Morse
function always has finitely many critical points.

Consider (in Minkowski signature) the theory of mapsΦ : R2|2→ Rn with the Lagrangian

L =

∫
d2xd2θ(

1
2

D+ΦD−Φ − h(Φ)), (11.1)

whereD± = ∂
∂θ± − θ±∂±, ∂± = ∂

∂x± , x± = 1
2(t ± x). This model has an obvious supersymmetry under

Q± = ∂
∂θ± +θ±∂±. These supersymmetry operators satisfy the obvious commutation relationsQ2± = ∂±,

{Q+,Q−} = 0.
We have (Q+ ±Q−)2 = 2 ∂

∂t . So if we look for classical solutions with time translational symmetry
(i.e. for solitons), we may in particular look for those of them which are invariant under one of the
supersymmetry, sayQ+ ±Q−.

We have

Q+ ±Q− = (
∂

∂θ+

± ∂

∂θ−
) + (θ+ ± θ−) ∂

∂t
+ (θ+ ∓ θ−) ∂

∂x
. (11.2)

Thus, the supersymmetry condition for time-independent solutions is

[(
∂

∂θ+

± ∂

∂θ−
) + (θ+ ∓ θ−) d

dx
]Φ = 0. (11.3)

Let us look for even solutions. It is easy to show that such solutions are of the formΦ = φ+θ+θ−∇h(φ).
For them, the supersymmetry condition is

dφ
dx
∓ ∇h(φ) = 0, (11.4)

which is the condition for the gradient flowline. Thus, supersymmetric solitons are the flowlines of
the gradient flow.
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Notice that these 1-st order equations imply the 2-nd order equations of motion. Indeed, it is easy
to show that the equations of motion are

∂+∂−φ + ∇(∇h)2(φ) = 0, (11.5)

or for time-independent solutions
d2φ

dx2
= ∇(∇h)2(φ), (11.6)

which can be obtained by differentiation of (11.4) with respect tox.
Another way to see this: the Lagrangian for time-independent fields (i.e the Hamiltonian) is

H(φ) =

∫
dx(

1
2

(
dφ
dx

)2 +
1
2

(∇h(φ))2). (11.7)

RewritingH, we get

H(φ) =
1
2

∫
dx(

dφ
dx
∓ ∇(φ))2 ±

∫ ∞

−∞
dh(s). (11.8)

Since the last term is locally constant on the space of fields of finite energy, a supersymmetric solution
provides the global minimum for the energy in each connected component of the space of fields. The
value of energy at this minimum isS= |

∫
dh|.

Definition Supersymmetric solitons, that is classical solutions invariant under some supersymme-
tries, are called classical BPS states.
11.3. The role of BPS states in quantum theory.

We have mentioned above and used the fact that the vector fieldsQ+,Q− commute. Since the
space of solutions of the classical field equations is a symplectic supermanifold, these vector fields
must be (at least locally) generated by some Hamiltonian functionsQ̃+, Q̃− (defined up to adding a
locally constant function). But these functions need not Poisson commute: their Poisson bracket has
to be a locally constant function, not necessarily equal to zero.

In our case, the functions̃Q+, Q̃− are easy to write down: ifΦ = φ + θ+ψ+ + θ−ψ− + θ+θ−F, then

Q̃+ =

∫
dx(ψ+∂+φ + ψ−∇h(φ)), Q̃− =

∫
dx(ψ−∂−φ − ψ+∇h(φ)). (11.9)

The computation of the Poisson bracket gives{Q̃+, Q̃−} = −2S, S=
∫

dh = h(φ(∞)) − h(φ(−∞)).
From this picture it is clear what will happen with operatorsQ+,Q− in quantum theory. We will

haveQ2
+ = P+,Q2− = P− (whereP+,P− are the corresponding momentum operators), and (Q+±Q−)2 =

2(H ∓ Ŝ), whereH = (P+ + P−)/2 is the Hamiltonian, and̂Scommutes with local operators.
In quantum theory, to every connected componentXa of the spaceX of fields of finite energy

there corresponds a summandHa of the Hilbert space. We expect that, if there is no breaking of
supersymmetry, to every supersymmetric solitonΦ ∈ Xa there corresponds a stateΨ in Ha which is
also supersymmetric: (Q+ ±Q−)Ψ = 0. Then (H ∓ Sa)Ψ = 0, whereSa = Ŝ|Ha is a scalar. Therefore,
sinceH ≥ 0, we haveHΨ = |Sa|Ψ. In particular, for every connected component ofX there is only
one supersymmetry (out of the two), for which there can be supersymmetric states in this component.

In general, onHa we haveH ≥ |Sa|.
Now we want to determine whether there is a supersymmetric quantum state, that is a quantum

state annihilated byQ+ ±Q−, corresponding to the supersymmetric classical state. In the lowest order
of perturbation theory one finds no bosonic zero mode except the translations and no fermionic zero
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mode. Hence, in that approximation the lowest energy state of given momentum is unique and non-
degenerate. Also, the theory in the vacuum sector has a mass gap (classically and therefore for weak
enough coupling) so the unique ground state that is found in the leading approximation is isolated
from any continuum. Hence the quantum theory for weak enough coupling has an isolated and unique
ground state in this sector of the Hilbert space, and it follows from the supersymmetry algebra that
this state must be annihilated byQ+ ±Q−. This massive state is called a quantum BPS state.

However, if (in a family of theories) two critical points ofh collide and become a degenerate crit-
ical point, the mass of BPS paths between them goes to zero, so we can expect that the corresponding
sector of Hilbert space loses its mass gap, and massless particles appear. At such a point, supersym-
metric states can appear or disappear in the quantum theory. We will make this more explicit later in
the context ofN = 2 supersymmetry.
11.4. N=2 supersymmety in 2 dimensions.

Consider the spaceR2|4 with coordinatesx+, x−, θ+, θ−, θ̄+, θ̄−. This space admits an action of the
N=2 supersymmetry algebra, with supersymmetry generators

Q+ =
∂

∂θ+

+ θ̄+

∂

∂x+

, Q̄+ =
∂

∂θ̄+

+ θ+

∂

∂x+

,

Q− =
∂

∂θ−
+ θ̄−

∂

∂x−
, Q̄− =

∂

∂θ̄−
+ θ−

∂

∂x−
,

(11.10)

Let us also introduce vector fields

D+ =
∂

∂θ+

− θ̄+

∂

∂x+

, D̄+ =
∂

∂θ̄+

− θ+

∂

∂x+

,

D− =
∂

∂θ−
− θ̄− ∂

∂x−
, D̄− =

∂

∂θ̄−
− θ− ∂

∂x−
,

(11.11)

which commute with the supersymmetry generators. Therefore, any Lagrangian which is written in
terms of theD’s is supersymmetric.

Recall that a chiral function (or superfield) onR2|4 is a function satisfying the equations̄D+Φ =

D̄−Φ = 0. A general solution to these equations has the form

Φ = φ − θ+θ̄+∂+φ − −θ−θ̄−∂−φ + θ+θ̄+θ−θ̄−∂+∂−φ + θ+θ−F+

θ+ψ+ + θ−ψ− − θ+θ̄+θ−∂+ψ− − θ−θ̄−θ+∂−ψ+.
(11.12)

You can read more about chiral functions in the superhomework.
Consider the theory of chiral mapsΦ of R2|4 intoCn, with the Lagrangian

1
2

∫
d2xd4θΦΦ̄ +

∫
d2xdθ+dθ−W(Φ) +

∫
d2xdθ̄+dθ̄−W̄(Φ), (11.13)

whereW is a holomorphic function onCn, called the superpotential. This Lagrangian is N=2 super-
symmetric. In components (forx+ = z, x− = z̄), it looks like

1
2

∫
d2x(|dφ|2 − |F|2 + W′(φ)F + W̄′(φ)F̄ + terms with fermions). (11.14)

Setting all fermions to zero and the “dummy” fieldF to the stationary pointF = W̄′(φ), we get the
bosonic energy functional

H =
1
2

∫
d2x(|dφ|2 + |W′(φ)|2). (11.15)
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It is easy to see that this functional coincides with (11.7), for the functionh = Re(e−iαW), whereα
is any real number. Thus, at the classical level we are doing a special case of the previous problem.
However, now we have more supersymmetry and therefore a more interesting theory.
11.5. N=2 BPS states

In the theory we are considering, there is an important symmetry called the R-symmetry. It acts
according toθ+ → eiβθ+, θ− → e−iβθ−. If we require thatΦ is unchanged under this symmetry (i.e.
Bose fields are unchanged andψ+ → e−iβψ+, ψ− → eiβψ−), then Lagrangian (11.13) is obviously
invariant under the symmetry.

The commutation relations for the supersymmetry Hamiltonians are

{Q±, Q̄±} = 2P±,
{Q+, Q̄−} = {Q̄+,Q−} = 0 (by R-symmetry),

{Q+,Q−} = T, {Q̄+, Q̄−} = T̄,

(11.16)

whereT is analogous toS in Section 11.2 – it is a locally constant function on the space of classical
solutions (which is, unlikeS, not necessarily real), and for brevity we drop twiddles overQ’s. Also,
the squares of all theQ’s are zero.

In fact, the functionT is easy to compute, like the functionS in the previous problem. Namely,

T = W(φ(∞)) −W(φ(−∞)). (11.17)

Now we will look at supersymmetric states. Choose a real numberα and look for states which are
invariant under two supersymmetriesQ1(α) == Q+ + eiαQ̄−, Q2(α) = Q̄+ − e−iαQ−.

We have
{Q1,Q2} = 2i(H − Re(e−iαT)), (11.18)

which implies that supersymmetric classical states have to be time-independent.
The equationQ1Φ = 0 for an even functionΦ gives (in the time-independent case):

∂φ

∂x
= e−iαW′(φ), (11.19)

and the second equation gives the same result. This implies, in particular, that

T̄ = W̄(φ(∞)) − W̄(φ(−∞)) =

∫
W̄′(φ)

dφ
dx

dx = e−iα
∫ ∞

∞
|W′(φ)|2dx, (11.20)

which implies thatα = argT. Thus, from equation (11.28) we get that for a supersymmetric solution
of the classical equations we have

H = Re(e−iαT) = |T|. (11.21)

For other states in the connected component of this solution we haveH ≥ |T|.
Now, what are the supersymmetric solutions (of finite energy) geometrically? It is clear from

equation (11.19) that they are separatrices between critical points ofW for the gradient flow ofh =

Re(e−iαW).
Now let us turn to quantum theory. From classical considerations we saw that in our theory

H ≥ |T|, and in a nondegenerate caseH = |T| only for BPS states. Therefore, we should hope that in
quantum theory the same situation takes place, apriori with a corrected value ofT.

Consider the generic situation when all zero-modes of the Hamiltonian near a classical BPS state
arise from the superPoincare group. This is the case if for any 3 critical pointsa, b, c of the potential
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we have|Tac| < |Tab| + |Tbc|, whereTab is the value ofT on the component of the space of solutions
which go froma to b. In other words, this is the case when the gradient flowline betweena, b never
passes throughc.

In this case, in quantum theory, for small values of the coupling, we expect that the point|T| in
the spectrum ofH occurs discretely. From our classical computations, we expect that the eigenspace
corresponding to this eigenvalue is finite-dimensional, and is an irreducible representation of the odd
part of the superPoincare algebra, in whichQ1,Q2 act by zero. This representation is nothing but
the space of sections of the equivariant vector bundle on the upper part of the hyperboloid, where the
fiber is the standard 2-dimensional irreducible representation of the 4-dimensional Clifford algebra
generated by the two remaining supersymmetries.

Notice that all other superPoincare representations occuring in this theory have to be not 2-
dimensional but rather 4-dimensional over the ring of functions on the hyperboloid, since for levels
of energy aboveT the Clifford algebra satisfied by the supersymmetry operators corresponds to a
nondegenerate quadratic form, and the only irreducible represenation of this algebra is 4-dimensional.
11.6. N=1 Supersymmetry in 4 dimensions.

Now consider supersymmetry in 4 dimensions. We start withN = 1 supersymmetry. In this
case the odd part of the supersymmetry algebra is similar to theN = 2 case in two dimensions. It is
generated byQ±, Q̄±, with relations

{Qα, Q̄β} = 2Pαβ,

{Qα,Qβ} = 0,

{Q̄α, Q̄β} = 0.

(11.22)

whereα, β ∈ {+,−}, andPαβ is a basis of the space of complex linear functions on the spacetime
(These relations exhibit the isomorphism of Poincare representationsS+ ⊗S− → VC, whereS± are the
spinor representations.) A central extension like in (11.16) cannot arise here because it is prohibited
by the Poincare symmetry (this central extension would have to be in the representationS2C2 of
SU(2) (whereC2 is the standard representation), which is the spin 1 representation and contains no
invariants).

The determinant of the quadratic form corresponding to the Clifford algebra (11.22) is (P2)2. The
rank of this form ifP2 = 0 is 2. Therefore, massless representations of the superPoincare correspond
to 2-dimensional representations of the Clifford algebra, and massive representations correspond to
4-dimensional representations of the Clifford algebra.

More precisely, consider a representationW of the superPoincare and the subspaceWp on which
P = p, wherep ∈ R1,3. Let Gp be the stabilizer ofp in the group of rotations,Hp the maximal torus
in Gp (always isomorphic toU(1)). With respect toHp, W has a decomposition in a direct sum of
representations of integer and half-integer spins. These spins are called helicities ofW, and each
helicity has a multiplicity.

It is easy to see that the supersymmetry operatorsQα, Q̄α raise helicity by 1/2 (since they live in
the spinor representation of the Poincare). Thus, the massless representations have helicitiesj, j + 1/2
with multiplicity 1, and the massive representations have helicitiesj, j + 1/2, j + 1 with multiplicities
1,2,1.

Now let us consider massless particle multiplets which are allowed byN = 1 supersymmetry.
There are two such basic multiplets.

1. Vector multiplet: a gauge fieldA and a chiral spinorλ in the adjoint representation. This is the
N=1 analogue of the gauge field. In particular, in theU(1) case the theory is free. In the infrared, it
generates a massless vector and a massless spinor, so the helicities are−1,1 (for vector) and−1/2,1/2
(for spinor). In particular, the massless representation of the SuperPoincare arising in this theory is
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reducible, and splits into two: the one with helicities−1,−1/2 and the one with helicities 1/2, 1.
However, overR this splitting does not exist and our representation is irreducible. A more physical
version of this statement is to say that the helicity−1,−1/2 states are related to helicity 1/2,1 states
by CPT conjugation, so that one pair must be present if the other is. Thus, this field configuration is
the minimal supersymmetric one which contains a gauge boson.

2. Chiral multiplet: A massless complex scalarφ and a massless chiral spinorχ. In this case
the story is analogous. The obtained massless representation has a spinor and a scalar, so it has
helicities 0,0 (for scalar) and−1/2, 1/2 (for spinor). Thus this representation is again a sum of two,
with helicities−1/2,0 and 0, 1/2. This decomposition is only valid overC and not overR; overR,
the representation is irreducible, so this combination is the smallest supersymmetric one containing a
scalar.

The massive versions of these multiplets are as follows.
1. Massive vector multiplet (or hypermultiplet). The minimal real supersymmetric representa-

tion containing a massive vector has helicities−1,−1/2,0, 1/2, 1 with multiplicities 1,2, 2, 2,1. This
involves a massive vector, two massive spinors (chiral and antichiral), and a real massive scalar.
The corresponding 8-dimensional representation of the Clifford algebra is (overC) a sum of two
4-dimensional representations.

2. Massive chiral multiplet. Same as massless chiral multiplet (we could consider the same fields
with masses, such that the mass of bosons equals the mass of fermions).
11.7. N=2 Supersymmetry in 4 dimensions.

In the N=2 case, we have two copies of operatorsQ: Q(1) andQ(2), and they commute in the same
way as before if the indices are equal, and give zero commutator if they are not equal (as vector fields).
However, now there is a possibility for a central extension: it is no longer prohibited by the Poincare
symmetry.

Consider first the case when the central term is zero. In this case the quadratic form of the Clif-
ford algebra is nondegenerate (in 8 dimensions) in the massive case, and has rank 4 in the mass-
less case. Thus, an irreducible massive representation should be 16-dimensional, and an irreducible
massless representation should be 4-dimensional. The helicities for representations are obained like
in N = 1 case. In particular, in a massive representation the helicities are in groups of the form
(j,j+1/2,j+1,j+3/2,j+2) with multiplicities (1,4,6,4,1), and in a massless representation they are in
groups (j,j+1/2,j+1) with multiplicities (1,2,1).

Now let us consider the simplestN = 2 supersymmetric theory. It is obtained by combining fields
from a (classically) massless vector multiplet and a massless chiral multiplet in adjoint representation.
Thus the fields are: from vector multiplet – (A, λ), from chiral multiplet – (φ, χ). The Lagrangian is the
minimal N = 2 supersymmetric Lagrangian on these fields. Such a Lagrangian exists and is uniquely
determined by the minimality condition. In theU(1) case the theory is free, but in the nonabelian case
there are nontrivial interactions.

What does this theory do in the infrared? In theU(1) case, the answer is simple: we should add
together the representations for the vector and chiral multiplets. We get helicities (-1,-1/2,0,1/2,1)
with multiplicities (1,2,2,2,1). This is the sum of two complex conjugate massless representations of
the N=2 Clifford algebra: the one with helicities (0,1/2,1) and multiplicities (1,2,1) and the one with
helicities (-1,-1/2,0) and multiplicities (1,2,1).

But now let us consider the nonabelian case (say the gauge groupG is simple). Then the bosonic
fields are the gauge fieldA and a scalarφ in the complexified adjoint representationgC. The bosonic
part of the Lagrangian is

Lbosonic=

∫
(

1

4e2
F2 + |dAφ|2 + |[φ, φ̄]|2). (11.23)
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Thus the bosonic part of the space of classical vacua is the set of solutions of the equations [φ, φ̄] = 0
modulo the action ofG. This space can be identified withtC/W, wheret is the maximal commutative
subalgebra ing andW the Weyl group. In the caseG = SU(2), this quotient is identified withC by
introducing the global coordinateu = Tr(φ2) (the u-plane).

Recall from Lecture 2 that in this situation we have gauge symmetry breaking fromG to the
centralizerH of φ. In particular, forSU(2) nearu , 0 the gauge symmetry is broken classically from
SU(2) toU(1) (Higgs mechanism). The components of the gauge field which are charged nontrivially
with respect to the survivingU(1) will become massive. By N=2 supersymmetry, the same will
happen for the corresponding components ofλ, φ, ψ. Thus, in the charge 2 and−2 sectors of the
Hilbert space the lowest energy states will be in a massive representation with helicities as before:
(-1,-1/2,0,1/2,1) with multiplicities (1,2,2,2,1). However, we know that there is no such representation
without central extension. Thus, without central extension we get a contradiction, and hence the
central extension must appear.

The central extension will show up in the commutation relations betweenQ(1)
α andQ(2)

β
:

{Q(1)
α ,Q(2)

β
} = εαβY, (11.24)

whereY is an operator which commutes with all local operators (central charge). Before the central
charge, the algebra had aU(2) R-symmetry (action on indices 1 and 2), but the central charge breaks
this symmetry down toSU(2) (the chiralU(1) symmetry is anomalous in our theory, because of the
index problems, and it is broken toZ/2Z).

It is easy to see that in this case the massive particles considered above must have mass exactly|Y|
(this is where the quadratic form of the Clifford algebra becomes degenerate).

It turns out that classically there are BPS states which correspond to these massive particles.
Namely if we are at the vacuumu ∈ C, we have

φ ∼ 1√
2

(
a 0
0 −a

)
. (11.25)

wherea = ±u1/2. Let a = ρeiα. We should look for BPS states (i.e. states which are time-independent
and invariant under half of the supersymmetry) which satisfy the condition (11.25) at infinity. If
Y = |Y|eiβ then the equation of being invariant under half of the supersymmetry is

F = e−iβ ∗ dAφ, (11.26)

where∗ is inR3. (the BPS monopole equations). SinceF is real, we must haveα = β moduloπ.
It can be shown that such BPS states exist in sectors with charges 2 and−2 (charges are the eigen-

values of the infinitesimal operator corresponding to the unbrokenU(1)-gauge symmetry). When
these solutions are quantized, we will get the same result as in 2 dimensions. Namely, in quantum
theory, we will get a representation of the superPoincare with helicities coming in groups (j,j+1/2,j+1)
with multiplicities (1,2,1). Adding two copies of such groups withj = −1 and 0, we will get the mas-
sive hypermultiplet (=massive vector multiplet); this multiplet has the right helicities, which we found
by considering the Higgs mechanism. Thus, in presence of central charge we get no contradiction.
Remark. Computing the commutators of theQ-s using currents, one can show that classically

Y =

∫

Σ

(φ ∗ F +
1

e2
φF), (11.27)

whereΣ is a distant sphere in the space cycle. So it is a combination of the electric and magnetic
charge for the effectiveU(1) theory.
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Lecture II-12: N = 2 SUSY theories in Dimension Two: Part I

Edward Witten 1

1 Introduction

In this lecture and the next two we considerN = 2 supersymmetric field theories in dimension two.
Today, after some general introductory remarks about such theories, we consider two-dimensional
U(1)-gauge theories with complex-valued chiral superfields charged under the gauge group. These
theories depend on two functions – a superpotentialW and a twisted superpotential̃W. The superpo-
tentialW is a complex polynomial in the superfields. This polynomial must satisfy a certain ‘weight’
conditions, but is otherwise free. For gauge groupU(1), the twisted superpotential̃W of the sort of
model we will look at is determined by a single complex parametert = −ir + θ

2π , or more precisely
by exp(−2πit). Today we will keep the superpotential is fixed and we allow the twisted superpotential
to vary. Thus, for each (generic) complex polynomialW satisfying the weight conditions, we get a
family of theories parameterized by the point exp(2πit) in the cylinderC/Z. We are interested in what
happens at the ends of the cylinder Im(t) 7→ +∞ and Im(t) 7→ −∞. In the cases we consider, the
limit as Im(t) 7→ −∞ is described in terms of aσ-model on the projective varietyX defined by the
polynomialW giving the superpotential. In this region,−Im(t) is the Kahler class ofX, and the fact
that there is only one parameter in the superpotential is related to the fact thatH1,1(X) (or at least the
part of it that is pulled back from a certain ambient weighted projective space) is one-dimensional.
The limit as Im(t) 7→ +∞ is described in terms of an orbifold version of a Landau-Ginzburg model.

Whenc1(X) = 0, we will find that the beta function vanishes for allt, and we get a family of
conformally invariant theories. Forc1(X) 6= 0, we get instead a non-trivial renormalization group flow
in t. The flow increases Imt whenc1(X) > 0 and decreases Imt whenc1(X) < 0. (Furthermore,
in these latter two cases there are “extra” vacua at the end of the cylinder to which one flows in the
infrared.) This allows us to see various Landau-Ginzburg models as infra-red limits ofσ-models
and otherσ-models as infra-red limits of Landau-Ginzburg models. This is interesting because the
descriptions of these types of models are very different at the classical level. Most of today’s lecture
will deal with special cases (the cases thatc1(X) = 0, and some of the cases withc1(X) > 0 with flow
to a massive infrared theory) that have been extensively studied, but the general picture that will be
presented at the end of the lecture is actually new, as far as I know.

2 Generalities onN = 2 SUSY Theories in Two Dimensions

2.1 Theβ-function of N = 2 SUSYσ-models

The first remark concernsN = 2 supersymmetricσ-models with target a compact Kähler manifoldX,
which we assume has a Kähler-Einstein metric. In Gawedski’s lectures we have seen that the one-loop
β-function is determined by the sign of the Ricci curvature of the metric and in fact when the Ricci
tensor is positive or negative-definite, the sign of the one-loopβ-function is opposite that of the Ricci
curvature. Thus, ifc1(X) > 0 then the one-loopβ-function is negative. Thus, at small coupling the
β-function is negative so that theσ-model under consideration is a ‘good’ fundamental theory which
is asymptotically free. Such a theory is well-defined at the quantum level. The question arises of what
it flows to in the infrared. Today we shall see examples of suchX for which the infra-red theory is

1Notes by John Morgan and David R. Morrison
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massive and trivial, and also examples with flow to a non-trivial infra-red fixed point. In the latter case,
the limiting superconformal theories that we will get can be described in terms of what are known as
supersymmetric Landau-Ginzburg theories. The Landau-Ginzburg models are sometimes explicitly
soluble by algebraic methods.

On the other hand, ifc1(X) < 0, then the one-loopβ-function is positive and henceβ is positive
at weak coupling. Thus, we have no reason to expectσ-models for suchX to be ‘good’ fundamental
theories. Rather in this case theσ-model is an effective theory, free in the infra-red, and one should ask
whether one can describe a concrete, well-defined ultraviolet theory that flows to these sigma models
in the infrared. We will solve this problem for this class of sigma models by taking Imt → ∞, where
we will find a Landau-Ginzburg theory (which is superconformal), which after a relevant perturbation
(to Im t large and positive but not∞) flows to the sigma model with target spaceX (plus some extra
massive vacua).

The case whenc1(X) = 0, i.e., the case whenX is Calabi-Yau, is different. Here, the one loop
β-function vanishes and one-loop contributions do not change the Kähler metric. It turns out that there
are higher loop corrections to theβ-function so that it is not identically zero and hence theσ-model
on X (with its Ricci-flat metric) is not conformal. Nevertheless, standard invariant theory arguments
show that there is no higher loop correction to the Kähler class of the metric. Using Yau’s theorem
about existence of K̈ahler metrics onX with prescribed Ricci curvature (∂∂-exact) we can modify
(at least order-by-order in perturbation theory) the original Ricci-flat Kähler metric without changing
the complex structure or the Kähler class until theσ-model for the new K̈ahler structure onX has
vanishingβ-function. This process will converge if the Kähler class is sufficiently ample and far from
the boundaries of the K̈ahler cone; for today’s models these conditions simply mean that−Im t should
be large enough. What we will be exploring today is really the question of what happens when−Im t
is not large.

Today we shall see examples ofX with c1(X) = 0 for which there is a family of theories,
parametrized by a punctured cylinder that approaches theσ-model onX as Imt 7→ −∞ and approaches
a Landau-Ginzburg model as Imt 7→ +∞. To get such a family, the cylinder must be punctured at one
point, where the theory has a sort of pole. It is believed that the punctured cylinder parametrizes a
smooth family of theories, which flow in the infrared to a punctured cylinder of superconformal field
theories. As one check of this belief, we argue that the central charge of the Landau-Ginzburg theory
at +∞ and the central charge of theσ-model at−∞ are equal. We will present more evidence for the
scenario described today in a later lecture.

2.2 Reasons for consideringN = 2 SUSY theories

One advantage of studyingN = 2 supersymmetric theories is that they are much more rigid than
theories with less (or no) supersymmetry. For example if we are considering two-dimensionalσ-
models into a compact Riemannian manifoldX, then without supersymmetry we can add terms to the
Lagrangian of the form ∫

d2yϕ∗(h)

for a potential functionh: X → R. (Here,ϕ : Σ → X is the basic field in the Lagrangian.) InN = 1
supersymmetricσ-models, such a term is not possible, but there can still be a term∫

d2y d2θΦ∗(h)

where againh is a real-valued function onX (called the superpotential) andΦ is the basic superfield in
the Lagrangian. In both cases this is a relevant perturbation. When we requireN = 2 supersymmetry,
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the Riemannian manifold must be Kähler and the possible potential term can still exist but must be of
the formh = Re(f ) for f a holomorphic function. Since our Riemannian manifold is assumed to be
compact, this means thatf is constant and hence, after performing theθ integrals, this term vanishes.
Simple power counting shows that at the classical level this is the only possible relevant perturbation
over a 2|4-superspace.

2.3 Revelant and Marginal Perturbations of the conformal two-dimensionalσ-model

Let us study the marginal perturbations of these conformalσ-models. Part of the data of theσ-model
is the complex structure onX. Varying this is a marginal perturbation of the theory. Let us examine
this perturbation in local coordinates. The metric tensor onX is a (1,1)-tensor of the formhijdzi ⊗ dzj .
A change in the complex structure corresponds to a perturbation of the metric by a term of the form

δhij + δhij

of type (2,0) + (0, 2). Of course, this form must be real in order that the new form be a metric tensor,
andδhij must be∂-closed in order that the new almost complex structure is integrable. Let us compute
the change in the Lagrangian that goes with this perturbation of the Kähler metric. We write things
in local coordinates using bosonic coordinatesyα, α = 1,2 on the Riemann surface and fermionic
coordinatesθ±, θ

±
. We write superfields asX = X(y, θ, θ), chiral superfields asΦ(y, θ) and anti-chiral

superfields asΦ(y, θ). The change in the Lagrangian is given by

∆L =

(∫
d2y d2θδhijD+X

i
D−X

j
)

+ c. c..

It is a nice exercise to verify that the argument of theθ integral in∆L is anti-chiral. (This uses the
fact thatδhij is ∂-closed.) This is one of the two possible types of marginal perturbations.

The other type of marginal perturbation is to fix the complex structureX and vary the complexified

Kähler class of the K̈ahler metric. One piece of this deformation is an ordinary variationδhherm
ij

dzi∧dzj

by a hermitian symmetric closed two-form. This ordinary metric perturbation is the real part of a
complex perturbation whose imaginary part is called the “B-field” perturbation (which, as we shall see,
is analogous to theθ-angle which appears in gauge theories). Thus, we consider a perturbationδh =

δhij dzi ∧dzj whereδh is a closed complex two-form. This leads to a perturbation of the Lagrangian of
the form

∆L =

(∫
d2ydθ

+
dθ−(δhij D+X

i
D−Xu

)
+ c. c..

Other than the marginal deformations of the theory described above, there can only be deforma-
tions of the form ∫

d2yd4θ(something).

For these theθ-integration has weight 2, and hence all such terms are marginal (of dimension two)
classically. (Notice this count requires fourθ’s and hence uses the fact that we haveN = 2 SUSY).
But at the quantum level, they have anomalous dimensions (proportional to nonzero eigenvalues of
the Laplacian and so strictly positive) and are irrelevant. These types of deformations can affect the
Kähler metric without changing the complex structure or Kähler class.

These computations show that for theσ-model withc1(X) = 0, the theory has no relevant pertur-
bations and the marginal perturbations are obtained by deforming the complex structure and complex-
ified Kähler metric.
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Let us begin with such aσ-model with a Kahler metric that is smooth and has a large radius of
curvature close to, but not equal to, the metric that actually gives zero beta function. The renormaliza-
tion group flow will bring us to a metric that gives conformal invariance, as all other deformations are
irrelevant. Were there relevant perturbations these would dominate in the infrared limit and the limit
would be in general impossible to control.

2.4 Central Charge

Let us review some material on central charges in conformal and super-conformal field theories in
dimension two. There are two basic types ofN = 0, i.e., of ordinary, conformal field theories –
those with central chargec < 1, and those with central chargec ≥ 1. The former are called minimal
models, exist only for a discrete set of values ofc, and are explicitly algebraically described in terms
of representation theory of the Virasoro algebra. The theories withc = 1 can also be explicitly
described, in terms of a free boson. Whenc ≤ 1, the Virasoro algebras of left- and right- movers
act almost irreducibly in the quantum Hilbert space, which is why these theories are known rather
explicitly. For c > 1, the Virasoro action is very far from being irreducible (the number of highest
weight vectors grows exponentially as one goes to higher energies), and conformal field theory has a
completely different flavor.

When we go to theN = 1 super-conformal algebra in dimension two, the central charge again lies
either in a discrete set or in a continuous part. The lowest value of the central charge in the continuous
part is realized by the free scalar super-field. Being the sum of a free scalar boson and a free scalar
fermion, considered as a representation of the ordinary conformal algebra this field has central charge
c = 3/2. For this reason one usually definesc̃ = 2c/3 so that the continuous values forc̃ begin at
c̃ = 1.

The story is similar for theN = 2 super-conformal algebra in dimension two. Here the lowest
value in the continuous part is realized by the free chiral super-field. Since this field consists of a
complex scalar boson and a complex fermion, itsN = 0 central charge is 3. Hence, we setĉ = c/3
so that once again the lowest value in the continuous part isĉ = 1. The discrete set ofN = 2 theories
with ĉ < 1 are the “N = 2 minimal models” which we will consider in detail later on. Their central
charges take the form̂c = 1− 2

n for n = 3, 4, 5, . . . , and they can be described algebraically and studied
in a variety of attractive ways.

A conformalN = 2 supersymmetricσ-model with target space ak-dimensional complex manifold
X of c1(X) = 0 has central chargêc = k. This is proved by using the fact thatĉ is constant in a family
of conformal field theories, and expanding the metric untilX can be approximated, in a local region,
to any desired accuracy, toCk with a flat metric. Thus, this sigma model has the sameĉ as a sigma
model with target a flatCk. That is a free theory withk chiral superfields, and so hasĉ = k, as claimed.

3 TheU(1) Theories

Let us turn now to the study ofU(1)-gauge theory with complex-valued chiral superfieldsA1, . . . ,An.
These superfields are charged under theU(1) with chargesq1, . . . ,qn ∈ Z. Recall from the super-
homework that connections we use on 2|4-space are constrained to be flat in all pairs on odd directions
except the pair{θ+

, θ−} (and its complex conjugate). The basic invariant of such a connection is

Σ = {D+,D−}
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which is a section of the complexification of the adjoint bundle over 2|4-space. The minimal pure
gauge theory Lagrangian that we can write down is

∫
d2yd4θ

1

2e2
ΣΣ.

Adding in a kinetic term for then chiral superfields, the minimal Lagrangian becomes

L0 =

∫
d2yd4θ


1

2e2
ΣΣ +

n∑

i=1

AiAi

 . (3.1)

Eventually, we will add a superpotential and a twisted superpotential term to this Lagrangian.

3.1 R-symmetries

The aboveN = 2 supersymmetric gauge theory in two dimensions (or 2|4 supertheory) comes by
dimensionally reducing fromN = 1 gauge theory in four-dimensions (or 4|4 supertheory). As such,
there is anR-symmetry for theN = 2 two-dimensional theory induced by spatial rotation in the
remaining two dimensions in four-space. But, in addition, theN = 1 supersymmetric version ofU(1)-
gauge theory in four-dimensions itself has anR-symmetry and that symmetry continues to exist even
if we add a superpotential. ThisR-symmetry from dimension four dimensionally reduces to give a
secondR-symmetry for our 2-dimensional theory.

Independent of their sources, it is easy to see directly in the 2|4-theory what theU(1)×U(1)-group
of R-symmetries is. We haveJR, the circle action

θ+ 7→ eiαθ+

θ
+ 7→ e−iαθ

+

with θ− left fixed, and we haveJL, the circle action onθ− with θ+ left fixed. TheR-symmetry that
comes from theR-symmetry of four-dimensional gauge theory is the product of these two (i.e., it acts
by the standard representation on bothθ±). Spatial rotation in the omitted two dimensions induces the
circle action which is the product of the first times the inverse of the second of these. Potentially there
is an anomaly in one of theseR-symmetries. To have a super-conformal theory this anomaly must
vanish (or be cancelled) since these symmetries are part of the super conformal algebra.

Let us make more explicit the earlier remark that the anomaly of theσ-model is proportional to
the first Chern classc1(X). The point is that when we write the Lagrangian out in coordinates we have
an expression of the form

L =

∫
d2y

(
gij∂Xi∂X

j
+ ψ

(0,1)
− /∂+ψ

(1,0)
− + ψ(0,1)

+ /∂−ψ
(1,0)
+

)

(plus a four-fermion term that will not affect the present discussion). One of the basicR-symmetries
JL rotates theψ(0,1)

− andψ(1,0)
− and the otherJR rotates in the same mannerψ(0,1)

+ andψ(1,0)
+ . Thus, under

a chiral rotation generated byaRJR + aLJL, the measure of integration in the path integralDψ+Dψ−
changes by an amount proportional to

aRindex(/∂+) + aLindex/∂−.

The operators/∂± are Dirac operators of positive or negative chirality acting on the pullback to the
Riemann surface of the holomorphic tangent bundleT(1,0)(X). By the index theorem both of these
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operators have index given byc1(X) evaluated on the fundamental class of the Riemann surface. Thus,
we see that theR-symmetry induced from theR-symmetry in four-dimensions is not anomalous, since
index/∂+ − index/∂− = 0, but that theR-symmetry coming from the spatial rotation has an anomaly:
index/∂+ + index/∂− = 2index/∂+.

We have just given a computation for the anomaly for theσ-model. Let us make an analogous
computation inU(1)-gauge theories with chiral superfieldsAi , 1 ≤ i ≤ n. The superfieldAi is a section
of the qi-power of the line bundle associated to the connection on 2|4-space. It can be expanded in
terms of ordinary fields, both bosons and fermions. TheR-symmetries act as chiral symmetries on the
fermions. So the same type of anomaly-index computation as above shows that the anomaly ofJR is
given by ∑

i

qi

∫
d2y

FA

2π

whereFA is the curvature of the ordinary connection on the Riemann surface. (The anomaly forJL is
the negative of this number.) Thus, in order to get a superconformal field theory we need

∑
i qi = 0.

4 One Example

To make things as simple and concrete as possible let us focus on one special case of ourU(1)-gauge
theory:n + 1 chiral superfields

A1, . . . ,An of weight q = 1

An+1 = P of weight q = −n.

This choice of weights assures us that ourR-symmetries are anomaly-free. Now it is time to supple-
ment the minimal LagrangianL0 of Equation 3.1 by a superpotential and a twisted superpotential.
That is to say we consider Lagrangians of the form

L = L0 +

(∫
d2ydθ+dθ−W(A,P) + c. c.

)
+

(∫
d2ydθ

+
dθ−W̃(Σ) + c. c.

)
. (4.1)

Here,W is called the superpotential; it must be a holomorphic function onCn+1. The functionW̃(Σ)
is called the twisted chiral superpotential term.

Let us examine the consequence of assuming that each of these two terms in the Lagrangian is
invariant under theR-symmetries. We consider the twisted chiral superpotential termW̃ first. Here, it
is important to use the fact that our theory is obtained by dimensionally reducing a gauge theory on
4|4-space. Starting with a connectionA =

∑3
µ=0 Aµdxµ on 4|4-space we form

1∑

α=0

dyα + σ(dx2 + idx3) + c. c..

This shows us howΣ transforms under theR-symmetries. For the extra term in Equation 4.1 coming
from the twisted superpotential to be invariant, it must have the same transformation law under the
R-symmetries asΣ does. That is to saỹW(Σ) must be a linear function ofΣ, i.e.,W̃(Σ) = tΣ for some
t ∈ C. Writing

t =
θ

2π
− ir ,

we have (∫
d2ydθ

+
dθ−tΣ

)
+ c. c. = θ

∫
F
2π

+ r
∫

D.
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Thus, we see that adding such a linear twisted superpotential produces a Fayet-Iliopulous termr
∫

D
plus aθ-angle term which isθ times an integral topological quantity. In this case the Fayet-Iliopulous
term corresponds to adding a constant to the moment map for theU(1)-action onCn+1.

Now let us turn to the superpotentialW(A,P). For the term
∫

d2ydθ+dθ−W(A,P)

to be invariant, we needW(A,P) to transform with weight two under theR-symmetry induced from
theR-symmetry in four dimensions and be invariant under theR-symmetry induced by spatial rotation
in four-space. In order to arrange this, we choose the action of theR-symmetry groups on the line
bundles of which theAi andP are sections as follows: the line bundlesLi with sectionsAi are invariant
under theR-symmetries and the line bundleLn+1 with sectionP is invariant under theR-symmetry
induced by spatial rotation and has weight two under theR-symmetry coming from theR-symmetry
of four-space. With this choice ofR-symmetry actions any superpotential of the form

W = P · F(Ai)

for F an arbitrary polynomial ofA1, . . . ,An, is invariant under theR-symmetries. There is of course,
one extra condition, namely thatW must be gauge invariant. This implies thatF must be homogeneous
of degreen. Thus, anyW of this form will produce a gauge invariant term in the Lagrangian which is
invariant under theR-symmetries. This is the most general interaction with these symmetries.

4.1 Classical analysis

Now that we have specified our theory in detail, we want to determine what this theory is, particularly
in the limits r → ±∞. We begin with a classical analysis. Write each of the superfields appearing in
our Lagrangian in components

A = a + θ(· · · ) + · · ·
P = p + θ(· · · ) + · · ·
Σ = σ + θ(· · · ) + · · ·

The superfieldΣ includes auxiliary fieldsD andF which can be eliminated by means of their equations
of motion.

The bosonic potential is a functionV(a, p, σ) of the bosonic components of these fields. For the
Lagrangian we have described, the potential takes the form

V(a,p, σ) =
1

2e2
D2 + |dW|2 + |σ|2

(∑
|ai |2 + n2|p|2

)
. (4.2)

The last term in eq. (4.2) arises as follows: in four dimensions, a chiral fieldΦ = φ+ θ(· · · )+ · · · leads
to a term in the potential of the form

3∑

µ=0

∣∣∣∣∣
Dφ
Dxµ

∣∣∣∣∣
2

which upon reduction to two dimensions becomes

1∑

α=0

∣∣∣∣∣
Dφ
Dxα

∣∣∣∣∣
2

+ n2|σ|2|φ|2
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if φ has chargen.
In general, the “D-term” (the auxiliary field inΣ), is equal by its equations of motion to

∑
qi |φi |2−r.

This is actually a familiar function mathematically; it is the “moment function” generating theU(1)
gauge action on the flat Kahler manifold (a copy ofCs, with s the number of chiral superfields) in
which the chiral superfields take their values. In our example, this becomes

D =
∑
|ai |2 − n|p|2 − r. (4.3)

SinceW = P · F(A), we also have
|dW|2 = |F|2 + |p|2|dF|2. (4.4)

We will focus on the case in whichF is transverse, i.e.,F = dF = 0 only at the origin.
We want to find all classical zero-energy solutions, in other words, to solveV = 0. Thanks

to the form of the potential, this requires that (i)D = 0, (ii) |dW|2 = 0 and (iii) eitherσ = 0 or∑ |ai |2 + n2|p|2 = 0. We will also need to take the gauge equivalence underU(1) into account.
First, note that thanks to eq. (4.4), setting|dW|2 = 0 whenp , 0 impliesF = dF = 0 so by our

transversality condition, allai = 0. Thus, there are two cases:p = 0 or ai = 0 for all i. On the other
hand, ifr , 0, then by eq. (4.3) sinceD = 0 we cannot have bothp = 0 andai = 0 for all i. (In fact
the sign ofr will determine which one of these holds.) Thus, whenr , 0 we have

∑ |ai |2 + n2|p|2 , 0
and soσ must be 0.

Consider now the caser > 0. Our equations for classical vacua becomep = 0,
∑ |ai |2 = r, and

F = 0, and we must divide by the action of the gauge groupU(1). This gives the hypersurfaceX
defined by the equationF = 0 in CPn−1, with Kähler classr. Thus, classically our theory can be
described as a nonlinearσ-model whose target space is this hypersurfaceX, using a metric whose
Kähler class has volume proportional torn−2. As we noted above, such a theory has central charge
ĉ = n− 2.

This classical description will be a good approximation to the quantum theory whenr g̃0, since
the nonlinearσ-model is weakly coupled there. In fact, since the nonlinearσ-model is stable (in the
sense of having no relevant perturbations), and marginal perturbations merely vary the complexified
Kähler and complex structures, we should expect our quantum theory to coincide with one member
of this family ofσ-models.

On the other hand, whenr < 0, the space of classical vacua satisfiesai = 0 andn|p|2 = −r. We
can use a gauge transformation to fixp =

√−r/n, leaving a residual gauge invariance ofZn, i.e., the
original U(1) gauge group is broken toZn. This will therefore be what is known as an “orbifold”
theory, in which theZn shows up in a global analysis of the theory (in a manner which we shall
describe later). The local description of the theory (for which we can ignore the orbifolding issue) is
this: for r � 0, the fieldP has a large mass and can be integrated out, leaving an effective theory ofn
massless chiral superfieldsA1, . . . ,An with an effective interaction

Weff = constant· F(A1, . . . ,An),

whereF is a homogenous polynomial of degreen.
Such a theory ofn massless fields with a polynomial interaction, is called aLandau–Ginzburg

theory. It should apparently flow in the IR to a conformal field theory withĉ = n − 2. (We expect
this since that is what happened forr g̃0, and neither the conformality nor the central charge of the IR
theory should change when we varyr.)

Let’s check this prediction, following work of Greene, Vafa, Warner, and Martinec among others.
Consider a specialF of “Fermat type:”

F(A1, . . . ,An) =
∑

An
i .
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The Landau–Ginzburg theory with this interaction will (at least locally) factor as a product ofn identi-
cal theories, each with a simpleAn interaction. Our prediction implies that each of these theories must
haveĉ = n−2

n . But that is exactly the central charge of a minimal model! So if we can identify the
minimal model with this Landau–Ginzburg theory, we will have established the result. Note that we
would have been in difficulties if we had obtained a value ofĉ less than one and not of the form 1−2/k
for some integerk! Greene, Vafa, Warner and Martinec presented evidence that the Landau–Ginzburg
theory with superpotentialAn does flow in the infrared to anN = 2 minimal model. More arguments
have been found subsequently. We will see some of the evidence for this claim in Lecture II-14.

4.2 Orbifolding

As we pointed out above, the original gauge symmetry group ofU(1) of our theory was broken toZn

in the effective theory whenr � 0. Thus, if we consider the path integral for the low energy effective
theory on a Riemann surfaceΣ, theU(1) gauge group is reduced toZn, and we need only sum over
flat Zn bundles. On any surfaceΣ, a flatZn bundle can be specified by its holonomiesγ1, . . . ,γk ∈ Zn

around various loops inΣ. The process of summing over all flatZn bundles in a theory with aZn

symmetry is known asorbifolding the theory.
In a Hamiltonian approach, formulated on a circleS1, we need to specify the holonomyγ ∈ Zn

around the circle as part of the data determining a state. LetHγ be the Hilbert space of states whose
holonomy isγ. (Then Riemann surfaces with boundary on which flatZn bundles have been specified
will determine operators mapping among these various Hilbert spaces, depending on the holonomies
on the boundary circles.)Zn acts on eachHγ, since as the groupZn is abelian, twisting as one goes
around the circle by an element ofZn is an operation that commutes withZn.

We claim that the Hilbert space for the orbifolded theory is

H =
⊕

γ

(Hγ)
Zn.

To see this, consider a cylinder with holonomyγ on the ends:

γγ

There is still as we have noted an action ofZn on each sectorHγ; letγ′ ∈ Zn determine an operator
γ′ : Hγ → Hγ. The trace of this operator can be evaluated as a partition functionZγ′γ on a torus

γ

γ γ

’

constructed by usingγ′ to twist the identification of bundles on the boundary circles of the cylinder,
i.e.,

Zγ′γ = TrHγ
γ′qH .
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If we sum the operatorsγ′, the result isnπwhereπ is the projection onto theZn-invariant subspace:

1
n

∑

γ′
Zγ′γ = TrHγ

πqH = Tr(Hγ)ZnqH .

Now the partition function for theZn gauge theory2 is obtained by summing further onγ:

1
n

∑

γ,γ′
Zγ′γ = Tr⊕(Hγ)ZnqH ,

from which we conclude that the Hilbert space for our problem is indeedH =
⊕

γ(Hγ)Zn.

4.3 Interpolation from positive to negativer

Our classical analysis can be summarized as follows: we needed to setD = dW = 0 and divide
by U(1). The step of settingD = 0 and dividing byU(1) is the familiar mathematical operation of
symplectic reduction, in whichD = 0 defines a level set for the moment map of theU(1) action (with
the choice ofr specifying the level). There is another mathematical interpretation of this process, as a
quotient in the sense of Geometric Invariant Theory (GIT): we complexify the groupU(1) to C∗, and
consider the action ofC∗ on Cn+1 with the same weights as before (theAi ’s have weight 1 andP has
weight−n). There are two possible quotients (topologically): forr > 0 the quotient can be interpreted
as the total space of the bundleOPn−1(−n) (in whichp serves as a fiber coordinate), while forr < 0 the
quotient isCn/Zn.

In either case we must still imposedW = 0: in ther > 0 case,W = PF(A1, . . . ,An) is a nonde-
generate function (in a generalized sense introduced by Bott) and the the space of critical points in
OPn−1(−n) is the variety inPn−1 defined by the equationF = 0; in ther < 0 case we have a homogenous
polynomialF(A1, . . . ,An) with a highly degenerate critical point at the origin ofCn/Zn.

The natural parameter in our Lagrangian ist = −ir + θ
2π . It is the possibility of going toθ 6= 0

that will enable us to interpolate from positiver to negativer without meeting the singularity that one
would find in classical geometry.

r

θ

σ

LG orbifold

-model

Classically, there is a singularity atr = 0 with arbitraryθ, and interpolation is not possible.
Quantum mechanically, we claim that the singularity will be isolated, located atr = r0 (for somer0)

2 In performing the path integral in a gauge theory, one is supposed to divide by the volume of the gauge group. When
the gauge group is a Lie group of positive dimension, the group of gauge transformations is infinite-dimensional and making
sense of “dividing by the volume of the gauge group” requires the Faddeev–Popov construction and introduction of ghosts.
In the present case, we are considering a low energy effective theory with gauge groupZn. The only gauge transformations
on Σ are constant transformations by elements ofZn; the volume of the gauge group is thereforen, the number of elements
of Zn. The only gauge connections are the flat connections. So in the formula below, the sum overγ andγ′ is the path
integral over theZn connections, and the factor of 1/n results from dividing by the volume of the gauge group.
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andθ = 0. (Classically, the singularity is atr = 0, but quantum mechanically, it is shifted away from
r = 0 by a one-loop correction.) It is believed that there are no other singularities; we will not prove
this claim rigorously, but only explain some of the reasons physicists believe it to be true. The more
rigorous part of our analysis will be the demonstration that thereis a singularity at this location; the
less rigorous part will be the argument that this is the only singularity.

To make this argument, we again work on a circular spaceS1 of finite radius. The compactness
means that the story is rather similar to ordinary quantum mechanics in zero space dimensions, so
let us first recall what happens in ordinary quantum mechanics of a point particle. We suppose that
the particle is moving on a manifoldX with a potential functionV. If X is compact, or ifV grows
at the “ends” ofX, then one can vary the parameters upon whichX andV depend without meeting a
singularity in the ground state of the quantum mechanics. However, one will get a singularity if one
varies in the parameters to a point at whichV no longer grows at infinity. For instance, ifX = R, and
V = 1

2kx2 (with x a linear function onR), then the ground state wave is a smooth function ofk as long
ask > 0, but develops a singularity atk = 0. Thek = 0 problem has no normalizable ground state
wave function.

Something like that will happen in our problem on a circle. Recall that the form of our potential is

V = |P|2|F|2 + |dF|2 +
e2

2

(∑
|Ai |2 − n|P|2 − r

)2
+ |σ|2

(∑
|Ai |2 + n2|P|2

)
.

For genericr, this theory has the property that the potential grows at infinity. This ensures that
the theory has a discrete spectrum, and a ground state wave function that varies smoothly with the
parameters. However, atr = 0, we see that one can go to infinity inσ, at no cost in energy, as long as
Ai andP vanish. This suggests that atr = 0 there might be a continuous spectrum and a singularity of
the ground state wave function.

To explore this question in more detail, we need to understand how the theory behaves in the
dangerous region, that is, very largeσ with other fields small. WhenA andP are very close to zero,
andσ is large,A andP have large masses (on the order of|σ|2) and they can be integrated out, leaving
us with a pure gauge theory with an effective bosonic potential which at the classical level is merely a
constant

Veff =
e2

2
r2. (4.5)

If this is the correct answer, quantum states decay exponentially in the largeσ region if their energy
is less thane2r2/2. If so, this region could be dangerous for a supersymmetric ground state of zero
energy – and could lead to a singularity in the wave function of such a state – only ifr = 0.

To understand the situation better, we must make the analogous argument quantum mechanically.
For this, we consider the superfield to whichσ belongs, i.e., we write

Σ = σ + θλ + θθ(F + iD).

The action for the supersymmetric gauge theory is

1

2e2

∫
d4θ ΣΣ +

(∫
dθ

+
dθ− tΣ + c.c.

)
. (4.6)

If we perform theθ-integrals in the effective Lagrangian (4.6), we get

1

e2

∫
d2x

(
F2

2
+ |dσ|2 + λ/∂λ

)
+

∫
d2x

(
e2r2

2

)
+ iθ

∫

Σ

F
2π
,
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which includes a curvature term (multiplied by a “θ-angle”) as well as the bosonic potential previously
discussed.

Luckily, we know theθ-dependence of energy inU(1) gauge theories in two dimensions as com-
puted in lecture II-4:

e2

2
min
n∈Z

(
n− θ

2π

)2

.

So asσ→ ∞, we haveV(σ) ∼ e2

2 |̃t|2 wherẽt ≡ −ir + θ
2π (mod Z). In other words, while the classical

energy at largeσ is e2r2/2, quantum mechanicallyr2 is replaced by|̃t|2. Thus, while classically the
singularity is atr = 0 andθ is invisible, quantum mechanically the singularity is att̃ = 0. For any other
value of̃t, there is a positive energy forσ → 0, and this region is not dangerous for supersymmetric
ground states.

Their is actually one more quantum effect of relevance: a one loop correction gives a finite renor-
malization ofr, and shifts the position of the singularity from̃t = 0 to t̃ = −ir0 for a certain constant
r0. This correction is important for comparing to certain predictions of classical geometry, but not
important for what we will say today.

5 Another example: flops

As a second example, we consider a model with gauge groupG = U(1), chiral fieldsA1 andA2 of
charge 1, chiral fieldsB1 andB2 of charge−1, with no superpotential, and no “P.” The Lagrangian
takes the form

∫
d2x d4θ

(
1

2e2
ΣΣ +

∑
(|Ai |2 + |Bi |2)

)
+

(
t
∫

dθ
+

dθ− Σ + c.c.

)
.

TheD term is
D =

∑
(|Ai |2 − |Bi |2) − r,

and the bosonic potential also contains a term

|σ|2
∑

(|Ai |2 + |Bi |2).

As before, we must setD = 0 and divide byU(1). Whenr > 0 this yields the total space of
the bundleO(−1) ⊕ O(−1) overP1

A, whereas whenr < 0 this yields the total space of the bundle
O(−1)⊕O(−1) overP1

B. HereP1
A is a copy ofP1 obtained by requiringA1,A2 to be not both zero, and

dividing the pair (A1,A2) by C∗. LikewiseP1
B is a copy ofP1 obtained by projectivizing (B1,B2).

The transformation from the bundle overP1
A to the bundle overP1

B is a simple model of a birational
transformation known as a “flop.” As in the previous example, the singularity only occurs atr = θ = 0
and one can interpolate between these two models. This contrasts with classical geometry, where one
passes through a singularity in going from one model of the quotientC4/C∗ to the other.

θ
P1

B

P1
Ar >> 0

r = 0

r << 0
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More generally, consider two Calabi–Yau manifoldsX andX′ which are birationally equivalent,
in such a way that their ample cones meet.

’X
X

For simplicity assumeh2,0 = 0, and note that birational transformations won’t affect the value ofhp,0.
Classically, to pass fromX to X′, one goes through a singularity on the wall of the Kahler cone. The
singularity is rather similar to the singularity just found in our “flop” example atr = 0. In quantum
field theory, one can go around the singularity by takingθ 6= 0; thus one can smoothly continue from
X to X′ by varying the parameters of the conformal field theory.

For example, we might construct such a pair of Calabi–Yau manifolds withh1,1 = 2 by starting
with a gauge groupG = U(1)×U(1), and a superpotential of the formW = PF(Ai). If one sets things
up correctly, one of theU(1)’s puts us in the world of projective varietiesX andX′, and by varying the
moment map for the otherU(1), we can make a “flop” betweenX andX′ that is quite like our above
discussion with the four chiral superfields fieldsAi andBj .

6 Cases in whichc1 , 0

We now wish to consider linear sigma models in which theR-symmetry is anomolous, so that we
expect a nontrivial renormalization group flow.

6.1 Negativeβ-function

We begin with the case of negativeβ-function, which for nonlinear sigma models corresponds to target
spacesX for which c1(TX) > 0. We can build examples of these exactly as before, withU(1) acting
on n + 1 fieldsAi , P, but this time we giveP charge−k and take a superpotentialW = P · F with
F homogeneous of degreek. The beta function of the sigma model is negative, zero, or positive for
k < n, k = n, or k > n. For k 6= n, even though there is still classically a singularity atr = 0, the
quantum theory has no singularity on thet-cylinder. (This is shown by analyzing the behavior at large
σ, as we do presently.) Fork 6= n, there is a nontrivial renormalization group flow on the cylinder.
The flow is holomorphic and singularity-free, so it is a constant flow “downward” or “upward” on the
cylinder, depending on the sign ofn− k.

θ

r >> 0

r << 0

125



When we repeat the previous analysis, we find that theR-symmetry which comes from the four-
dimensionalR-symmetry is anomalous, although the one which comes from rotations in the missing
directions is anomaly-free.

The classical analysis can also be repeated: forr g̃0 we find a space of classical vacua desribed
by {F = 0} in Pn−1, and we expect the nonlinear sigma model on this hypersurface to be a good
approximation to our theory. This hypersurface has positive first Chern class ifk < n, so we expect
a well-defined quantum field theory from looking at the nonlinear sigma model. On the other hand,
sincek < n, the sigma model is infrared-unstable. The infrared flow will take us away from the sigma
model in the infrared and toward the theory we will find at ther → −∞ limit. Note that the sigma
model has ann− 2 dimensional target space, so fork < n the effective central charge in the ultraviolet
limit is ĉ = n− 2.

On the other hand, ifr � 0 then on the space of classical vacuaP , 0 butAi = σ = 0. Giving
a nonzero expectation value toP breaksU(1) to Zk, and (in ther → −∞ limit) we get a Landau-
Ginzburg orbifold with an effective interaction

Weff(Ai) = F(Ai).

The central charge of this model is

ĉ = n(1− 2
k

).

This is less thann− 2 if k < n. We will argue shortly that, fork < n, the Landau-Ginzburg theory is
the infrared limit of the renormalization group flow from the sigma model; and the fact that its central
charge is smaller than that of the sigma model illustrates a general theorem by Zamolodchikov, which
asserts that the central charge always diminishes along a renormalization group flow: This infrared
theory is behaving as if it had fewer degrees of freedom

cIR ≤ cUV .

The intuition behind this theorem is that the central charge measures the total number of degrees of
freedom of the theory. As one flows toward the infrared, massive degrees of freedom are “integrated
out,” and no longer contribute to the central charge, which therefore can only diminish.

As we will see, the Landau-Ginzburg model is only one possibility for what the infrared flow can
lead to fork < n. There are in factn− k other vacuum states atr = −∞, with a mass gap, which can’t
be seen classically but will require a 1-loop calculation. Being massive, they haveĉ = 0, which is
certainly less thann− 2.

6.2 The CPn−1 model

An extreme case of the situation we are considering is the casek = 0, i.e., the case of noP field and no
superpotential. This is aU(1) gauge theory withn free charged superfieldsA1, . . . , An (all of charge
1). TheD-term takes the form

D =
∑
|Ai |2 − r,

and we find the supersymmetricCPn−1 model which we studied earlier. It will be very instructive to
re-examine this case in detail before going back to the general case.

At first glance, there would appear to be no supersymmetric vacua at all in ther → −∞ limit of
this CPn−1 model, since the moment map is strictly positive. However, it cannot be so that there are
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no supersymmetric vacua at all in this limit. An obstruction is provided by the supersymmetric index
Tr (−1)F. This, when computed for large positiver, is seen to coincide with the Euler characteristic
of CPn−1, which isn. The supersymmetric index must be invariant under deformations ofr, so there
must ben supersymmetric vacua even ifr is large and negative. We must find them somewhere!

To see what is happening, we must consider the quantum mechanics more carefully. The classical
treatment of ther → −∞ limit is valid in any compact region of field space, so if there are quantum
mechanical vacua for arbitrarily negativer that cannot be seen classically, they must disappear from
the classical field of view by going off to infinity in field space forr → −∞. So again we must
consider the quantum-mechanical behavior at largeσ. For our CPn−1 model, the bosonic potential
takes the form

V =
e2

2
D2 + |σ|2

∑
|Ai |2.

The theory is weakly coupled forr � 0.
What happens if|σ| → ∞? As earlier, the fieldsAi will then be massive and can be integrated out

to yield an effective theory which is an abelian gauge theory with Lagrangian

Leff =

∫
d2x d4θ

1

2e2
ΣΣ +

(∫
d2x dθ

+
dθ− W̃eff(Σ) + c.c.

)
.

The effective twisted superpotential depends on the renormalization mass scaleµ, and we claim that
it takes the unusual (R-symmetry violating) form

W̃eff(Σ) = tΣ +
in
2π

(Σ − Σ ln(Σ/µ)) (6.1)

which we shall verify by making a 1-loop calculation below. Notice that a change in the choice of
logarithm in eq. (6.1) can be compensated for by changing the value oft by an integer; such a change
has no effect on the physics. Of course, we must keepΣ away from zero in order to define this term,
but that is consistent with our assumption thatσ is large.

With this new term in the twisted superpotential, the equation for a critical point ofW̃eff is

0 = t − in
2π

ln(Σ/µ),

or in components,

0 = −ir +
θ

2π
− in

2π
ln(σ/µ) (mod 1).

This hasn solutions

σ = µ exp

(
−2πr

n
− iθ

n
+

2πik
n

)
, (6.2)

k = 0, . . . ,n− 1, corresponding ton different vacua in ther → −∞ limit. n is of course, the expected
number, the Euler characteristic ofCPn−1. Notice that|σ| is indeed large whenr → −∞, so the
assumptions made in deriving these vacua hold. The fact that then vacua go off to infinity for r → −∞,
along with the fact that their existence depends on the one-loop quantum correction, explains why one
cannot see them classically.

Another very important consequence of the logarithm is that it means that forσ→ ∞, the energy
in the quantum theory grows like| lnσ|2. Hence, in particular, low energy states are limited to a
bounded region of field space, and there is no singularity in the vacuum behavior for any value oft on
the cylinder. As we will see, the models withn 6= k all have such a logarithm, and hence they are all
nonsingular throughout thet cylinder.
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6.3 The1-loop calculation

To understand the origin of the termin2π (Σ − Σ ln(Σ/µ)) in the effective twisted superpotential, note
that its presence is equivalent to the effective Lagrangian having a term

∫
d2x reff D,

where
reff = r +

n
2π

ln(|σ|/µ).

In this theory, we haveD =
∑

AiAi − r. Classically,Ai = 0 = AiAi for largeσ, but quantum
mechanicallyAiAi has an expectation value at largeσ; this expectation value can be interpreted in
an effective classical description as a shift in−r. So we need to calculate the expectation value ofAA
by means of a 1-loop diagram

which contributes ∫
d2k

(2π)2

1

k2 + m2
A

=

∫
d2k

(2π)2

1

k2 + |σ|2

where we got the massmA from the term|σ|2|A|2 in the potentialV. Cutting off the divergent integral,
we find ∫ Λ d2k

(2π)2

1

k2 + |σ|2 = − 1
2π

ln
|σ|
µ
.

This is the shift in−r, and accounts for the claimed formula forref f. There are, by the way, no
higher loop corrections to this formula. This can be proved using holomorphy, or by noting that, in
this superrenormalizable theory, higher loop diagrams would involve negative powers ofσ and would
vanish for largeσ.

Let us now repeat this for a general case with chiral superfieldsBi of chargesqi . (The Bi are
to include all of the chiral superfields, including theP field of the sigma model discussion, if it is
present.) TheD-term is

∑
qi |Bi |2 and for its expectation value at largeσ we get the 1-loop correction

∑
qi

∫ Λ d2k

(2π)2

1

k2 + q2
i |σ|2

= − 1
2π

∑
qi ln |qi | − 1

2π
(
∑

qi) ln
|σ|
µ
,

leading to an effective twisted superpotential

W̃eff(Σ) =

(
t − i

2π

∑
qi ln |qi |

)
Σ +

i
∑

qi

2π
(Σ − Σ ln(Σ/µ)).

In the Calabi-Yau case,
∑

i qi = 0 and the coefficient of the logarithm vanishes. HencẽWeff is linear
in Σ, as a result of which its contribution to the potential energy is independent ofσ. As a result of
this, it is possible forσ to go to infinity at no cost in energy ift has the correct value. At this value
of t, one gets a singularity. The correct value is the value at which the coefficient ofΣ in the twisted
chiral superpotential vanishes; the condition is not Imt = 0, as one would expect classically, nor even
t = 0, but rathert − (i/2π)

∑
i qi ln |qi | = 0. This is the shift in the position of the singularity that
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was mentioned in our discussion of the Calabi-Yau case. In order to compare the present discussion
to, for instance, the counting of rational curves on the Calabi-Yau manifold, it is important to know
about this shift. When

∑
i qi 6= 0, the logarithm preventsσ from going to infinity, and hence prevents

a singularity on thet cylinder, as we have already asserted.
On the other hand, if

∑
qi , 0, then there are|∑ qi | extra vacua (as in theCPn model) with

σ-values

σ = µexp

(
− 2πr∑

qi
− iθ∑

qi
−

∑
qi ln qi∑

qi
+

2πik∑
qi

)
, (6.3)

However, the prediction of these vacua is only valid if they occur at largeσ. Hence, these vacua are
only trustworthy forr → −∞ if

∑
i qi > 0, or for r → +∞ if

∑
i qi < 0.

6.4 Hypersurfaces

Let us now return to the situation of a hypersurface defined by a homogeneous polynomialF of degree
k in n variables. Thus

∑
i qi = n − k. Hence, vacua at largeσ are present forr → −∞ if n > k, or

at r → +∞ if n < k. The vacua at largeσ are the ones that one cannot see classically. In addition to
those, one has vacua that one can see classically – a sigma model forr >> 0 and a Landau-Ginzburg
orbifold for r << 0.

θ

r >> 0

r << 0

Let us now consider the two cases in detail. Fork < n, the sigma model has for its target space a
Fano variety, a hypersurface inCPn−1 of degreek < n. This is a good description in the ultraviolet,
and gives a well-posed quantum field theory whose infrared behavior we would like to determine. The
infrared flow brings us tor � 0, where we find two types of vacua: (1) vacua which are conformal
field theories of central chargêc = n(1− 2

k), and (2)n− k new vacua at largeσ. The corresponding
effective twisted superpotential for largeσ is

W̃eff = tΣ +
i

2π
(n− k)(Σ − Σ ln Σ).

Both of these types of vacua have central charge less than the valueĉ = n− 2 of the UV theory. Thus,
in this example, a single quantum field theory in the ultraviolet can flow to quite different possibilities
in the infrared. Renormalization group flow forN = 2 sigma models in two dimensions has many
invariants (such as Tr (−1)F, the elliptic genus, and some of their cousins). To reproduce the invariants
of the UV sigma model with Fano target, one must sum over the infrared vacua of types (1) and (2).

6.5 The casec1 < 0

Consider now the opposite casek > n. A hypersurface of degreek > n in CPn−1 is an algebraic
variety of general type. In this caseβ > 0, and there is not a well-defined quantum field theory of
maps from spacetime to this hypersurface. However, the sigma model with this hypersurface as target
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makes sense as an effective infrared theory. One can ask what well-defined ultraviolet theory can flow
to this effective theory in the infrared.

For this question, we will now give an answer. Fork > n, the ultraviolet stable end of the cylinder
is the Landau-Ginzburg end. The Landau-Ginzburg model has central chargeĉ = n(1 − 2/k), which
for k > n is greater than the valuêc = n − 2 of the sigma model. Thus the Zamolodchikov theorem
permits a renormalization group flow from the LG model to the sigma model. That is precisely what
happens, since forn < k the renormalization group flow on the cylinder is “upwards,” away from the
LG model and towards the sigma model.

If k > n, there are no largeσ vacua at the LG end of the cylinder. Instead,k−n such vacua accom-
pany the sigma model. Thus, a well-defined ultraviolet fixed point, given by the Landau-Ginzburg
model, can flow in the infrared either to the sigma model of the hypersurface, or to a nonclassical
massive vacuum at largeσ. Just as fork < n, to equate renormalization group invariants such as
Tr (−1)F between the ultraviolet and infrared theories, one must sum over both types of vacua in the
infrared limit.

θ

r >> 0

r << 0

Note that, regardless of the sign ofn− k, the nonclassical vacua always appear in the infrared, not
the ultraviolet. There is a good intuitive reason for this. In the ultraviolet, where we are defining our
theory, we can select what theory we wish to study (from all of the possible UV fixed points), so the
UV theory has a vacuum of just one type. Going to the infrared means solving the equations, and at
this stage things are out of our hands: a definite quantum field theory may have more than one solution
for its infrared behavior. That is what we have found today. In fact, we have seen that a definite UV
field theory (based on a Fano variety ifk < n or a Landau-Ginzburg model ifk > n) can flow to quite
different possibilities in the infrared.

Both of thek 6= n cases that we have studied today are of considerable methodological interest.
Fork < n, we have seen how the quantum theory with a Fano target gives, in general, an answer which
is a sort of mixture of the behavior of a Calabi-Yau manifold and the behavior of complex projective
space. Fork > n, we have found, in a concrete situation, a well-defined UV fixed point with flow to
the effective theory based on an algebraic variety of general type.
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Lecture II-13: N = 2 SUSY theories in Dimension Two, Part II: Chiral Rings and
Twisted Theories

Edward Witten 1

This lecture is again concerned withN = 2 supersymmetric theories in dimension 2. Using one
of the supersymmetriesQ, we shall define the chiral ring of local operators and theQ-cohomology of
states for theories defined in flat Minkowski or Euclidean space. We then discuss how to twist theories
so that the supersymmetryQ has global meaning at least over a large class of 2|4 supermanifolds. Once
Q has been globalized in a theory overΣ we have the notions of the ring of chiral local operators for
that theory. We can define what are called descendants ofQ-invariant operators, and we show that the
integrals of these descendants over cycles in the manifolds lead to correlation functions which have
topological meaning. To compute these functions one does integrals over theQ-invariant fields.

We then consider in detail two examples of twisted theories with a global supersymmetryQ. The
first is pureN = 2 gauge theory in dimension 2 with a simple Lie groupG. Here, we see that the ring of
chiral functions is identified with the invariant polynomials on the Lie algebra. Classically, the space
of Q-invariant states is the usual space of flat connections (plus an extra parallel section of the adjoint
bundle in the case of reducible connections). The correlation functions of theQ-invariant operators
are identified with the integrals over the moduli space of flat connections of the usual classes derived
from the invariant polynomials in the Lie algebra. (There are extra complications from reducible
connections.)

The second example isN = 2 supersymmetric two-dimensionalσ-models into a K̈ahler manifold.
It turns out that there is one way of twisting that leads to a chiral ring which is the topological co-
homology of the K̈ahler manifold. The space ofQ-invariant states is the space of holomorphic maps
from the riemann surface intoX. In this twisted theory the path integrals which commute the topo-
logical correlation functions are the integrals in quantum cohomology. When the Kähler manifold
is Calabi-Yau, there is a second, inequivalent way of twisting which leads to a different theory. In
this theory the chiral ring isH∗(X,∧∗T1,0(X)) and theQ-invariant fields are constant maps from the
riemann surface toX. Thus, the path integrals which compute the topological correlation functions
are integrals of these objects overX – these integrals are related to variation of Hodge structures onX.

1 R-symmetry revisited

Most of theN = 2 supersymmetric examples we shall consider will have (at least classically) both
left- and right-movingR-symmetries – theR-symmetries denoted byJL andJR in the last lecture. It is
possible to carry out today’s discussion with only one of theseR-symmetries, but we must have at least
one. But we will suppose that the group ofR-symmetries isU(1)× U(1) so that we have bothJR and
JL. The supermanifold on which the theory is defined inR2|4. We shall also eventually allow a certain
class of split 2|4 super-riemann surfaces with a Euclidean metric (and 2|4-supermanifolds with a flat
Minkowski metric). The space of odd directions is a copy of the two-dimensional representation for
JL and the two dimensional representation forJR. We expect a symmetry betweenJL andJR obtained
by reversing the orientation of the worldsheet.

One operation we can attempt to do to a symmetry of a Lagrangian is to gauge it. If the symmetry
group to be gauged isH, then the new Lagrangian will involve gauge fields with gauge groupH times
the gauge group (if any) of the original theory. Intuitively, the process of gauging involves replacing
fields with values in a constant space by fields with values in anH-bundle and adding a new field – the

1Lecture notes by John Morgan

131



H-connection. In order to carry out this program the original Lagrangian must be a local expression in
the fields and the symmetry must be also be local in the sense that it maps local fields to local fields at
the same point. With these reasonable assumptions on the Lagrangian and its symmetry, it is always
possible to form a new, gauged, Lagrangian. We replace ordinary derivatives in the Lagrangian by
covariant derivatives. Quite often there is a natural way to carry out this process, but in any case
different choices for gauging the symmetry lead to Lagrangians which differ by gauge invariant terms
up to a total derivative. There is however the issue of whether the gauged theory makes sense as a
quantum theory. If the original theory has this property then the necessary and sufficient condition
that the gauged theory does as well is that the symmetry being gauged be anomaly-free.

In our case it is never possible to gauge the entireU(1)× U(1) group ofR-symmetries to produce
a theory that makes sense as a quantum theory. In fact the only combinations ofJL andJR that can be
gauged in this way areJL ± JR. These are referred to as the vector and axial currents

JV = JL + JR

JA = JL − JR.

If one of these is gauged, then the other develops anomalies and stops being a symmetry of the
quantum theory. To explain this, we need some general observations about anomalies. The statement
that a theory has a symmetry, generated by a currentJL, means that correlation funcions obey the
identity

dx〈JL(x)O(y1) . . . 〉 = 0 (∗)
as long asx is distinct from theyi . Heredx is the exterior derivative in thex variable. If one extends
the correlation functions (as distributions) across the diagonal, this identity will pick up extra terms
supported on the diagonal. A very important special case is the two point function of the current itself
(or, in 2k spacetime dimensions, thek + 1 point function). For this the general structure is

dx〈JL(x)JL(y)〉 =
k

2π
dyδ(x− y) (∗∗)

with some constantk, which may or may not be zero. The condition that the global symmetry gen-
erated byJL can be gauged is precisely thatk = 0. To see this, let us try to gauge the symmetry by
adding to the theory aU(1) gauge fieldA. The Lagrangian obtains an extra term

∫
A∧ JL. (There may

be more terms, higher order inA, if JL itself contains derivatives of charged fields.) Now, let us try
to determine whether the theory with this coupling actually has the symmetry generated byJL, that is
whether the identity of equation (∗) holds for this theory. For this we must look, in the original theory,
at

dx〈JL(x)O(y1) . . .exp(
∫

A∧ JL)〉

The exponential is included to express correlation functions of the new theory in terms of the old
theory. If we expand this in powers ofA, the term linear inA will contribute, upon using (∗∗):

〈O(y1) · · · · kF(x)〉

with F the curvature. This can be expressed as an operator relation

dJL =
k

2π
F,

asserting that after gaugingJL no longer generates a symmetry.
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More generally, if there are several currentsJ1, . . . , Js, generating a Lie groupG of dimensions,
with Lie algebraG, then the two point functions obey

dx〈Ja(x)Jb(y)〉 =
kab

2π
dyδ(x− y)

with kab some invariant quadratic form onG. The quadratic formk has no positivity (since for in-
stance left and right moving massless fermions make contributions of opposite signs) but does obey
an integrality condition. If we gauge a subgroupH of G, with Lie algebraH , then by a reasoning
along the lines of the above, the quantum theory only makes sense if the quadratic formk vanishes
when restricted toH . If this is so, then the “global symmetries” are generated by currents inG, not in
H , that are orthogonal toH with respect tok.

In our problem, with the two currentsJL, JR, the structure ofk is typically thatkLL = −kRR 6= 0,
kLR = 0. This quadratic form has two null vectors,JL ± JR, so either of those two linear combinations
of theR-symmetries can be gauged. If one is gauged, the second becomes “anomalous” – it ceases to
be conserved – since the two null vectors are, of course, not orthogonal to each other. “Luckily,” these
options agree with the choices that we will need below for other reasons.

What we are really interested in is not just gauging but twisting theories byR-symmetries. This
process requires first gauging theR-symmetry and then twisting it using a homomorphism from the
orthogonal group determined by the metric to the symmetry group. It turns out that there will be two
equivalent ways of going about this process. But before we embark on twisting, we must understand
the local story. That is the subject of the next section.

2 Q-cohomology of operators

We considerR2|4 with its standard Euclidean or Minkowski metric. Suppose that ourN = 2 super-
symmetry theory in dimension two has the following supersymmetries:

characters ofU(1)L characters ofU(1)R
Q− Q+

Q− Q+.

These supersymmetries obey the relations

Q2
+ = Q

2
+ = 0

{Q+,Q+} = P+

with symmetric relations with+ replaced by−. Also,

{Q+,Q−} = {Q+,Q−} = {Q+,Q−} = {Q+,Q−} = 0.

We will consider at the same time four closely related possibilities. We letQ be one of the following:

Q+ + Q−, Q+ + Q−, Q+ + Q−, Q+ + Q−.

(The first two possibilities are inequivalent and the last two are hermitian conjugate to the first two
and would give equivalent theories.) To fix notation let us choose the generators so thatQ = Q+ + Q−.
Lettingµ = ± we see thatPµ can be written as a commutator

Pµ = {Q,Tµ} (2.1)
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whereTµ is a linear combination ofQ±,Q±. We are interested in the cohomology ofQ acting as a
differential (by superbracketing) on the space of local operators (and more generally on products of
such operators). Thus, a local operatorφ(x) will define aQ-cohomology class ifφ(x) is Q-closed, i.e.,
if {Q, φ(x)} = 0. A simple computation using Equation 2.1 shows that for aQ-closed operatorφ(x) we
have

dµφ = {Q, [Tµ, φ]}.
(This derivative is interpreted to be the covariant derivative if the super-riemann surface is not flat.)
This equation means that the operatordφ is Q-exact, and hence that the class ofdφ in the space
of Q-cohomology classes of operators is trivial. This means that as we vary the pointx in the rie-
mann surface theQ-cohomology class of the local operatorφ(x) is unchanged. It then follows that in
Q-cohomology suchQ-closed local operators commute – simply move the points to be space-like sep-
arated. That is to say, the spaceQ-cohomology of operators is aZ/2Z-graded commutative ring. We
can always represent these operators by 0-form operators. This is an easy consequence of the indepen-
dence of theQ-cohomology class on the metric and diffeomorphism invariance of theQ-cohomology
class. These facts will be established later.

Let us recall a construction that we have seen before. Given aQ-invariant 0-form local operatorCross reference?

φ = φ(0) we define a 1-form local operator by

φ(1)
µ = [Tµ, φ

(0)]

and
φ(1) = φ(1)

µ dxµ.

The same computation as we did in the previous paragraph shows that

dφ(0) = {Q, φ(1)}.

This means that ifΣ1 is a one-cycle in the super-riemann surface then
∫

Σ1

φ(1)

is Q-invariant. Letφ(2) = [T, φ(1)]. Then

dφ(1) = {Q, φ(2)}.

So in this way, beginning with aQ-invariant 0-form local operatorφ(0), we can build a tower ofk-
form local operatorsφ(k), called the descendants ofφ(0), and hence produce more generalQ-invariant
operators of the form ∫

Σk

φ(k).

Our computations show that for anyQ-invariant local operatorφ(0) the operatorφ(0) + φ(1) + φ(2) is
closed for the total differentiald −Q.

3 Twisting the theory to give it global meaning

So far we have been working onR2|4 with fixed coordinates. If we rotate space, thenQ = Q+ + Q− is
not invariant. Our goal is to modify things untilQ is invariant under rotations and hence can be defined
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on more general Euclidean 2|4-manifolds. Let us denote bySO(2)E the Euclidean rotation group. The
entire group of symmetries at our disposal for the Euclidean theory isSO(2)E × U(1)L × U(1)R. This
group has the obvious projection ontoSO(2)E with a splitting back into the first factor. We wish
to find another splitting of this projection map, i.e., a groupSO(2)′E inside the product projecting
isomorphically ontoSO(2)E but which has the extra property that it commutes withQ. It is easy to
see that there exists a unique such splitting and it is given on the Lie algebra level by

K′ = K ± 1
2

JL ± 1
2

JR

whereK is the generator forSO(2)E and the signs depend on which of the four possibilities we have
chosen forQ. In the case that we are concentrating on whenQ = Q+ + Q− we have

K′ = K +
1
2

JL − 1
2

JR.

The fact that 1/2 appears in these formulas means that the twisting actually involves the spin form of
SO(2)E.

Notice that in order to make such twisting in dimensionn there must be non-trivial homomor-
phisms fromSpin(n) to theR-symmetry group. In dimension two it is possible to do this when the
R-symmetry group isU(1), e.g., forN = 1 supersymmetry. But forn = 4 it is necessary to haveN = 2
supersymmetry so that theR-symmetry group isSU(2)×U(1) which has a non-trivial homomorphism
from Spin(4).

With this preliminary discussion in place, we are now ready to globalize our theory ofQ-cohomology
classes of local operators. Suppose that we have a 2|4 super-riemann surface locally modeled onR2|4.
The hypothesis we have in mind for the super-riemann surface is that it be a split 2|4-manifold complex
with the odd directions being

(
ΠK1/2 ⊕ ΠK

1/2
)
⊕

(
ΠK

1/2 ⊕ ΠK1/2
)
.

Hereθ+, θ
+

are sections of the first two line bundles andθ−, θ
−

are sections of the last two. The process
of twisting changes the odd part of the underlying supermanifold of the theory. We twist the spinor
bundles containingθ± by the square root of the canonical bundle to the power±1/2. The result of
twisting replaces the above line bundles by

(ΠO ⊕ ΠK) ⊕
(
ΠO ⊕ ΠK

)
.

and makes the supersymmetry

Q =
∂

∂θ+
+

∂

∂θ−

which is a global symmetry. Locally, this symmetry agrees with the symmetryQ onR2|4 that we have
been discussing.

Once we have globalized the supersymmetryQ, all the previous discussion globalizes. In partic-
ular, for aQ-closed local operatorO(p) theQ-cohomology class ofO(p) is independent of the point
p. Thus, theQ-cohomology classes of local operators on this global super-riemann surface generate a
Z/2Z-graded commutative ring called thechiral ringof the theory.
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3.1 Certain Correlation Functions and Their Basic Properties

We will consider path integrals of the following types of path integrals:

Z(Oα) =

∫
DΦe−L

n∏

α=1

∫

Σα

O(kα)
α

where for eachα the operatorOα is aQ-closed local operator,kα = 0,1,2 andΣα is akα-cycle in the
super-riemann surfaceΣ.

Here are the basic properties ofZ(Oα):
1). It is independent of the metric on the super-riemann surface.

The reason is that as you vary the metric byδg you get an insertion of
∫
Σ
δg · T, whereT is the

stress-energy tensor. But as we have seen beforeT is Q-exact in the sense that there is a fieldSµν cross ref?

with Tµν = {Q,Sµν}. We then see that this insertion produces a term of the form{Q, ·}. The path
integral of such a term is zero since since the fields areQ-invariant. (Notice also that it is necessary
to assume thatQ preserves the measure in the path integral. This will be so if the original theory
was supersymmetric and the current1

2JL − 1
2JR was gaugeable. An important corollary of the fact

that the correlation function is metric-independent is that the zero-form operatorsO(0)
α must be scalar

operators, of spin zero; objects of higher spin would not be invariant under local rotations, and their
insertion in a correlation could not be metric-independent.)

2). It is independent of most of the parameters inL.
First, the correlation function is independent of any term

∫
d2yd4θ(· · · ). The reason is that to

evaluate such a term we differentiate by all four of theQ’s. For the same reason, only one of the terms
∫

d2ydθ+dθ−W + c. c.

and ∫
d2ydθ

+
dθ−W̃ + c.c.

can be non-trivial depending on which combination ofQ+,Q−,Q+,Q− we are using. In fact the
correlation function is independent of one of these terms and varies holomorphically with the other.

3). We can calculateZ(Oα) by using a fixed point theorem applied to the action ofQ. We considerQ as
acting (infinitessimally) on the function space of all the fields in the theory. If this action has no fixed
points, then the value of the path integral would be zero. In general, we can reduce the computation
to an integral over the fixed point set ofQ. These of course are the field configurations which are
invariant under the supersymmetryQ.

3.2 Q-cohomology of States

Now we pass from the local operators, path integrals and correlation functions world to the Hamil-
tonian framework. Our riemann surface is now a cylinderS1 × R. We trivialize all the relevant spin
bundles over theS1. We have the Hilbert spaceH of states of the quantum theory over the circle and
the Hamiltonian operatorH onH associated with time translation. SinceQ is acting on the theory it
produces an operator, which we also callQ, onH commuting withH. Also, from the commutation
relations in the superalgebra we see that

H = {Q, Q̃}
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whereQ̃ is the adjoint ofQ. Of course, we still have the relationQ2 = 0, so that we can take the
cohomology of the action ofQ onH :

H∗(Q) = kerQ/Im Q.

If our theory is sufficiently well-behaved so thatH has a discrete spectrum, thenH∗(Q) is identified
with {ψ|Hψ = 0}. (This is not the case for the gauge theory example we discuss later today but it is
true for the sigma models.) In generalH∗(Q) is bigraded by the action of theU(1)×U(1) R-symmetry
group.

3.3 Comparison ofQ-cohomology of local operators andQ-cohomology of states

We have seen two types ofQ-cohomology – the first involving local operators and yielding the chi-
ral ring and the second involving states on the circle. Let us construct a map between theseQ-
cohomologies. We consider a hemisphere

p

LetO be a local operator atp. Doing the path integral for the hemisphere over the space of fields
with a given boundary value produces a number, and hence a function of the state on the boundary.
This function is an element in the Hilbert space of the boundary. This then gives a map from local
operators atp toH . One sees easily that it commutes with the action ofQ and hence induces a map
from theQ-cohomology of local operators to theQ-cohomology of states on the circle:

ψ : (chiral ring)→ H∗(Q).

In examples we shall see that if the spectrum ofQ onH (at least near zero) is discrete thenψ is
an isomorphism.

If JL andJR are bothR-symmetries classically, then the chiral ring and kerH are both bigraded by
these symmetries. Because of the anomaly, the mapψ shifts the bigrading

ψ : Hp,q(Q)→ kerHp±k,q±k,

wherek is a measure of the anomaly. Notice that the bigrading need not be by integers, only by
rational numbers whose denominators divide the order of the covering ofU(1) × U(1) that actually
acts.

4 A Gauge Theory Example

The first example we take is that of gauge theory of a simple Lie groupG. We begin withN = 1 su-
persymmetric gauge theory in four dimensions and dimensionally reduce to anN = 2 supersymmetric
theory in dimension two. As we saw in the last lecture, the basic field strength is the field

Σ = {D+,D−},
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which is a twisted chiral superfield with values in the adjoint bundle of the principal bundle. We use
the expansion

Σ = σ + · · · + θ
+
θ−(F + iD).

The bosonic fields are the connectionAµ andσ,σ. Remember that the connection on four-space is

A(4) =

1∑

µ=0

Aµdyµ + σ(dy2 − idy3) + σ(dy2 + idy3).

The twoR-symmetries are:
JA = JL − JR; JV = JL + JR.

The first is induced by rotation in the (y2, y3)-plane and the second comes from the chiralU(1) R-
symmetry in four dimensions. (This symmetry is anomalous in four dimensions but not in two dimen-
sions – see the superhomework.) We now twist byJV, so thatSO(2)′E is generated byK′ = K ± 1

2JV.
ThenAµ remains a connection one-form andσ,σ become 0-forms. In general, this twist eliminates
spin bundles and turns sections of the spin bundles with differential forms. Then four spinor fields
λ±, λ± get twisted into a 0-formη = ψ(0), a one formψ = ψ(1) and a two-formχ = ψ(2). (This new
theory is of course a topological theory existing on a compact surface. It is not a physical theory in
the sense that there is a Poincaré group action on the theory.)

In this exampleJA is twice the rotation of (y2, y3)-space, normalized so that [JA,Q] = Q. Let
us give theJA degrees of the various propagating fields in the Lagrangian, cf. Formulae 7.15 of the
superhomework. (The reference to propagating fields, means that we have in mind using the equations
of motion to set the auxiliary fieldF + iD equal to some expression in the other fields (F is set equal
to the curvature ofA andD is set equal to zero since there are no matter fields.)

JA-degree −2 −1 0 1 2
field σ ψ(0), ψ(2) Aµ ψ(1) σ

Actually, theJA-degree−1 and+1 terms could be reversed, but after appropriately normalizing things
the degrees will be as indicated.

Recall from Lecture II-102 that the super symmetryQ lifts to a supersymmetryδ of the space of
super connections. It is not the case thatδ2 = 0, but only thatδ2 is a gauge transformation. In fact,
δ2 = [σ, ·]. In terms of the coordinate fields it is given by:

δA = ψ(1)

δψ(1) = −DAσ

δσ = 0.

The symbolDA of course refers to covariant derivative with respect to the connectionA.
In Lecture II-10 using the analogous symmetry led us to the equivariant cohomology of the moduli

space of connections, via the standard model of forms. We letG be the Lie algebra of the gauge group
G andM the space on which this group acts. Then we have the complex

(
Ω∗(M) ⊗ Func(G)

)G

with differential
D = dM + iV(φ).

2In that lecture we had a real fieldφ instead of the complex fieldσ here, but that changes nothing.
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Here, we use another closely related model which is not as well known but should be. We replace the
Lie algebraG by its complexificationGC and we form the complex

(
Ω∗(M) ⊗Ω0,∗(GC)

)G
.

Here complex linear functionφ onGC have degree 2, the functionsφ have degree−2 and the (0,1)-
form dφ has degree−1. The differential in this complex is

D̃ = dM + iṼ(φ) + ∂GC

whereṼ is a vector field onM × GC giving the action. To see that this complex also computes the
equivariant cohomology we view̃D as a sum of (dM + iṼ(φ)) and∂GC . We apply the usual spectral

sequence for the double complex, doing∂GC first. Since this cohomology vanishes except in degree
zero, where it produces the polynomial functions onGC, we see that one recovers the same answer as
for the first complex. (Notice that this second approach leads to a Hodge theory version of equivariant
cohomology, using the operator̃D∗D̃ as a “Laplacian”; it would be interesting to understand the
resultingL2 version of equivariant cohomology.)

Let us complete the table describing the action of the supersymmetryδ on the space of propagating
fields. The above model of equivariant cohomology translates into the following formulae for the
supersymmetry:

δA = ψ(1)

δψ(1) = −DAσ

δσ = 0

δσ = ψ(0)

δψ(0) = [σ,σ]

δψ(2) = FA.

It follows from the last equation that the fixed points ofδ will be field configurations where the
connection is flat, the sectionσ is covariantly constant and commutes withσ. Next we see that the
anomaly ofJA is dimG·(−χ(Σ)) = (2g−2)·dim(G). The reason for this is that the term that contributes
to the anomaly in the measure of integration for the path integral isDψ(0)Dψ(1)Dψ(2). The symmetry
JA of the Lagrangian acts by−1 onψ(0) andψ(2) and by+1 onψ(1). Thus, the index computation
for the anomaly becomes the dimension of the adjoint representation times−χ(Σ). By invariance the
correlation function

〈
∏

α

∫

Σα

O(kα)
α 〉 = 0

unless
∑
α nα = (2g − 2)dim(G) wherenα is theJA-degree ofO(kα)

α . Let us consider a local operator
which is of the formP(σ) for some gauge invariant polynomial on the Lie algebra ofG. The ring
structure on these operators is just the usual ring structure on invariant polynomials. It is easy to
see that ifP is of degreer, then the operatorO(0)

P hasJA-degree 2r, and the descendantsO(k)
P have

JA-degree equal to 2r − k. Notice that these degrees agree with the usual dimension of the analogous
classes in Donaldson theory.)

Now let us calculate〈∏α

∫
Σα
O(kα)
α 〉 via fixed point theory. Recall that the Lagrangian is

L =
1

4e2

∫
d2yd4θTrΣΣ.
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We will recover a theoretical formula for this correlation function. (We actually calculated the answer
in Lecture II-10.) In coordinates we have

L =
1

4e2

∫
d2y

(
TrF2 + TrDσDσ + Tr([σ,σ]2) + · · ·

)
. (4.1)

By the fixed point theorem we need only calculate at points where the curvature is zero andDAσ =

[σ,σ] = 0. There are two cases. IfA is irreducible andDAσ = 0 thenσ = 0. These solutions give
smooth points in the moduli space of classical solutions to the equations of motion and this part of the
moduli space of classicalδ-invariant solutions is simply the space of of irreducible representations of
π1(Σ) → G. The other possibility is thatA is reducible andσ 6= 0. These points produce singular
points of the moduli space of classical solutions. Recall thatσ takes values in the complexified adjoint
bundle. SinceDAσ = 0,σ is covariantly constant, and it suffices to study its structure over one point
of Σ. Sinceσ andσ commute, theσ can be diagonalized (conjugated into the Cartan subalgebra of
the complexification of the Lie algebra ofG) by an element ofG.

Now let us examine how perturbation theory will compute these topological correlation functions.
We will restrict to the smooth case whereσ = 0. Of course, we are taking the coupling constante in
the Lagrangian, Equation 4.1 to be small. We are reduced to computing an integral over the moduli
space, taken in the supersense, of classical solutions. Let us consider integrating out the odd variables
at a point [ρ] of the ordinary moduli space of flat connections. The fermion space is the space of zero
modes of theψ(k). These are the spaces of harmonic forms and hence are identified with the spaces
Hk(Σ, ad(ρ)). Since we are assuming thatρ is irreducible and that the moduli space is smooth at [ρ]
we have thatH0(Σ,ad(ρ)) = H2(Σ,ad(ρ)) = 0 andH1(Σ,ad(ρ)) is the tangent space to the moduli
space at [ρ]. So in fact the space of odd directions at [ρ] is identified withΠTM[ρ] . Thus, at the
open subset of irreducible connections, the supermanifold of classical solutions isΠTM, the parity
reversed tangent bundle over the moduli space of flat connection. As we have seen, the Berezinian of
such a supermanifold is naturally trivialized so that one integrates functions over this supermanifold.
We have also seen that a function on this supermanifold is the same thing as a differential form on
M and integration of a function overΠTM is the same thing as the integral of the corresponding
differential form overM. (This requires an orientation ofM which is determined by an orientation of
Σ.)

Of course, we wish to compute correlation functions involving the operators
∫
Σα
O(kα)
α . These

operators determine functions onΠTM and the correlation function of a product of them becomes the
integral of the product of the functions. In this manner gauge invariant polynomials inσ are mapped
to functions onΠTM and hence to differential forms onM. A crucial step in the reduction from
polynomials to differential forms is the observation that with fermions present, it is no longer the case
thatσ = 0. Rather the equations of motion give

�σ = −[ψ(1), ψ(1)].

This is important because the right hand side is directly interpreted as a two-form on moduli space (as
the zero modes ofψ(1) represent one-forms on the moduli space), so the formula enables us to express
the functionσ, which is formally of degree two in the quantum field theory formalism, in terms of
an ordinary two-form on the moduli space. One evaluates the correlation functions by integrating the
differential forms obtained in this way over the moduli space. (Of course, these computations have to
be augmented by computations at the components given by reducible connections and a non-zero but
parallel fieldσ.)
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In this gauge theory example, because of the presence of reducible connections, the Hamiltonian
has a continuous spectrum beginning at zero energy. As a result the map fromQ-cohomology of
operators toQ-cohomology of states is not very useful.

5 A σ-model example

Let us consider theN = 2 supersymmetricσ-model

Φ : Σ→ X

whereX is a Kähler manifold and whereΣ is a split 2|4 manifold as in the previous gauge theory
example. With this assumption, the fermions of theσ-model lie in

K±1/2
Σ
⊗ T±X

whereKΣ is the canonical bundle ofΣ, T+X = T1,0X andT−X = T0,1X are the holomorphic and anti-
holomorphic tangent bundle ofX. We denote these fermions byχ±,±. The first sign refers to whether
the fermion is left- or right-moving (i.e., in whether it is a section ofK+

Σ
or K−

Σ
) and the second sign

refers to the type of the section (holomorphic or anti-holomorphic) onX. Once again we twist the
theory for it to exist globally onΣ replacingK by

K′ = K ± 1
2

JL ± 1
2

JR.

Depending on the choice of signs in this twisting we get two possible cases called theA-model (using
−1

2JL + 1
2JR) or theB-model (using1

2JL + 1
2JR).

5.1 TheA-model

The zero-forms areχ++ ∈ K1/2 ⊗ T1,0X andχ−− ∈ K−1/2 ⊗ T0,1. The ring of 0-form operators is

F(Φ, χ++, χ−−) = F(Φ, ∂φ, ∂φ).

This is simply the ring of functions onΠTX which is identified with the ring of differential forms on
the Kähler manifold. Furthermore, with this identification of a differential formF with a correspond-
ing operatorOF, we have

QOF = OdF,

so thatQ becomes the ordinary differential. The chiral ring is thenH∗(X), the usual topological
cohomology ofX, and the bigrading induced byJL andJR is the usual Hodge bigrading. In the space
of maps theQ-fixed points are the holomorphic curves

φ : Σ→ X.

Thus, to compute correlation functions in this model we must do integrals over the spaces of holo-
morphic curves inX. This will lead, as we shall see in the next lecture, to quantum cohomology.
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5.2 TheB-model

It is possible to construct this model only in the caseX is Calabi-Yau, for this is the only case when
the symmetry (JL + JR) by which we wish to twist is not anomalous.3 We fix a non-zero holomorphic
n-formω onX. In this case the zero-forms areχ+− ∈ K1/2 ⊗ T1,0X andχ−− ∈ K−1/2 ⊗ T0,1X. The ring
of 0-form operators is

F(Φ, χ+−, χ−−)

which is the ring
Ω0,∗(X) ⊗Ω0,∗(X) = Ω0,∗ (X,∧∗T1,0(X)

)
.

Under this identification we have
QOF = O

∂F,

so that the chiral ring is
⊕q,pHq(X;∧pT1,0X).

TheQ-fixed points in the space of fields are the constant mapsΣ→ X. Thus, the computations of
correlation functions in this model will become integrals overX

〈
s∏

i=1

OFi 〉 =

∫

X

(
∧s

i=1Fi

)
· ω⊗2.

These integrals lie squarely in classical mathematics; they have to do with variation of Hodge struc-
tures under deformation of complex structure.

3In other words, ifc1(X) is nonzero, thenJL + JR is simply not a symmetry of the quantum theory, even before gauging.
The discussion of the obstruction to gauging in the first part of this lecture assumed thatJL andJR both generated symmetries
prior to gauging, and thus does not apply to this case.
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Lecture II-14, part I: The Landau–Ginzburg Description of N = 2 Minimal Models

Edward Witten 1

1 Landau–Ginzburg models

The topic for the first part of today’s lecture is a more detailed discussion of the known evidence for
the predicted equivalence between IR limits of certain Landau–Ginzburg models, and the algebraically
constructible conformal field theories known as “minimal models.”

Consider first the simplest Landau–Ginzburg model: a two-dimensionalN=2 theory of a single
chiral superfieldΦ with Lagrangian

L =

∫
d2x d4θΦΦ +

(∫
d2x dθ+ dθ−Φk + c.c.

)
.

Our claim in lecture II-12 was that this model flows in the IR to a conformal field theory withĉ =

1 − 2
k . If true, then the theory it flows to must be an algebraically solvable theory, due to the known

classification of representations of theN=2 superconformal algebra witĥc < 1. More precisely,
fixing ĉ = 1− 2

k , there turn out to be a finite number of irreducible representationsHα of the algebra
of central chargêc (up to isomorphism); a conformal field theory must be built as a modular-invariant
combination ⊕

(Hα ⊗Hβ)
eαβ

of these representations. The simplest modular-invariant combination, and the one which will occur
here, is the unweighted diagonal sum over all of the representations:

⊕

α

Hα ⊗Hα.

More general Landau–Ginzburg models involve several chiral superfieldsΦ1, . . . ,Φn and a quasi-
homogeneous polynomialW(Φ1, . . . ,Φn) which serves as the superpotential of the theory. We should
assume that the polynomial is transverse in the sense thatW = dW = 0 holds only at the origin; the
quasi-homogeneity condition can be expressed as the existence of positive rational numbersαj such
that

W =
∑

αjΦj
∂W
∂Φj

.

The Lagrangian can be written

L =

∫
d2x d4θΦjΦj +

(∫
d2x dθ+ dθ−W(Φj) + c.c.

)
.

Intuitively, the quasi-homogenity is important because it allows the possibility of extending one
of theR-symmetries, namely

θ+ → e−iεθ+, θ− → θ−,

to act on the chiral fields asΦj → eiεαj Φj so that the superpotential transforms asW → eiεW and
hence the Lagrangian is invariant. If weassumethat these microscopicR-symmetriesbecomethe

1Notes by David R. Morrison
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R-symmetries of a limiting conformal field theory in the IR, then we can calculate the central charge
ĉ of that limiting theory via operator product expansions.

This works as follows. Recall that the coefficientk which we encountered in lecture II-13 as mea-
suring the anomaly which arises if one attempts to gauge theR-symmetryJL appears in the operator
product expansion as

JL(x) JL(x′) =
k

(x− − x′−)2
+ · · · .

The interpretation ofk as the obstruction to gauging makes it clear that it is a topological invariant
which can be reliably measured or computed at any scale. In particular, it can be calculated in the
UV, where the superpotential doesn’t matter. On the other hand, ifJL is the sameR-symmetry which
appears in the limitingN = 2 superconformal field theory, then the operator product expansion of the
superconformal algebra asserts that

JL(x) JL(x′) =
ĉ

(x− − x′−)2
+ · · · ,

wherêc is the central charge in theN = 2 algebra. Thus,k = ĉ and we can measure the IR central
charge by computing in the UV.

To computek in the ultraviolet, one treats the fields as free fields. The obstruction to gauging
comes from the fact that theR-symmetries are chiral symmetries for the fermions in the free super-
multiplets. One getsk =

∑
j(1− 2αj). Assuming the flow to anN = 2 theory in the infrared, with the

sameR-symmetry appearing in theN = 2 algebra, we havek = ĉ and hencêc =
∑

j(1− 2αj). Notice
that in the case of a single field withW(Φ) = Φk, we must haveα = 1/k and so we get the desired
result̂c = 1− 2/k for the minimal model.

We now want to consider a more sophisticated argument in favor of this equivalence, one which
reveals more of the structure of the (limiting) conformal field theory. Recall the structure of theN=2
algebra:

{Q±,Q±} = P±

{Q±,Q∓} = 0.

We haveQ
2
+ = 0 so we can consider the cohomology ofQ+, i.e., consider local operatorsO = O(x)

such that{Q+,O} = 0. Then

∂+O =
[{

Q+,Q+

}
,O

]
=

[
Q+, {Q+,O}

]
,

i.e., in Euclidean language (identifying (x+, x−) with (z, z)) we would say that the class ofO(x) in
Q+-cohomology varies holomorphically.

Taking two such operators, using holomorphic language, we write

O(z)O′(z′) =
∑

fk(z− z′)Ok(z
′) + {Q+, · · · },

with the fk’s being holomorphic functions. From this formula, we can see that theQ+-cohomology
has the general struture of a conformal field theory in which the operators are “purely left-moving,”
that is, they vary holomorphically.

An important remark is that theQ+-cohomology is invariant under Weyl rescaling, and hence it
depends only on the complex structure of the Riemann surface (not the metric). To see this invariance,
we must show thatTzz is Q+-exact. A natural way to prove this is to modify the usual definition of
scale invariance, employing the quasi-homogeneity of our polynomial, so that the superpotential term
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is preserved under the modified scaling. Then the kinetic term in the action fails to be scale-invariant,
but the change in the kinetic term is of the form

∫
d4θ(· · · ) and hence isQ+-exact.

We have formulated this discussion in terms ofQ+-cohomology in order to include very general
N=2 theories. However, whenever there is a superspace realization of the theory (as is true of the
Landau–Ginzburg theories we are studying), it is more convenient to study theD+-cohomology rather
than theQ+-cohomology, where

D+ = e−θ
+θ

+
∂+ Q+ eθ

+θ
+
∂+ .

In our Landau–Ginzburg theory, the equations of motion are

2D+D−Φj =
∂W

∂Φj
.

Consider the operator

T =
∑

j

((
1− αj

2

)
D−Φj D−Φj − iαΦj∂−Φj

)
;

thenD+T = 0 so that this defines aD+-cohomology class.2

In the free theory, withW = 0,T is an operator of dimension (1, 0). If we have a superconformal
theory, we will be able to write

T = J + θ−G + θ
−
G + θ−θ−T.

If we do arrive at anN=2 conformal field theory in the limit, then we should expect an OPE of the
form

T (x)T (y) =
ĉ

(x− y)2
+
T

(x− y)
+ holomorphic inO’s.

We can check this structure in the free field theory: the first term comes from a diagram of the form

with two propagators exchanged between the two operators and the second term comes from a diagram
of the form

with exchange of only one propagator.
Note that, in computing these terms in the operator product expansion, we can setW = 0, since

the superpotential term is too soft (superrenormalizable) to contribute to these singularities. Once
this is done, the different superfields are decoupled, so the computation ofĉ is a sum over different
superfields. So there is an immediate conclusion thatĉ is additivein theαj ’s, that is,̂c =

∑
f (αj) for

some functionf .

2We should worry about anomalies here, but in fact there is no quantum anomaly in the statement thatD+T = 0, though
there are such anomalies in somewhat similar statements in two-dimensional models with (0, 2) supersymmetry. See E.
Silverstein and E. Witten, “GlobalU(1) RSymmetry And Conformal Invariance Of (0, 2) Models,” Phys. Lett.B328(1994)
307.
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In summary, even in our microscopic Lagrangian, we can see an operatorT , which at the level of
D+ cohomology obeys atN = 2 superconformal algebra. So presumably this theory flows in the IR to
a conformal field theory whoseD+-cohomology contains the superconformal algebra.

If we have only one chiral superfield, sôc < 1, theN = 2 algebra acts almost irreducibly in the
quantum Hilbert space. Hence one should expect thatT will generate theQ+-cohomology. For̂c > 1,
theN = 2 algebra acts in a way that is far from irreducible, and one should expect to require additional
generators.

2 The elliptic genus

Our refined evidence for the equivalence of these theories will come from a computation of theelliptic
genus. We work on a Riemann surface of genus 1 with period lattice spanned by 1 andτ.

·
·
·
·
·

0 1

τ

We letq = e2πiτ, and compute Trq(H−P)/2q(H+P)/2(−1)FR.

The insertion of (−1)FR means that the right-moving fermionsψ+, ψ+ should be given theodd
spin structure (the one periodic in both directions) while the left-moving fermionsψ−, ψ− should be
be given theevenspin structure (anti-periodic in one direction):

·
·
·
·
·

+

−

ForN=1 supersymmetry, that was the right thing to compute—it turns out to be an index

Trq(H−P)/2q(H+P)/2(−1)FR = index(Q+ + Q+),

where (Q+ + Q+)2 = 2P+ = H + P.
The story is more interesting in the case ofN=2 supersymmetry, since there is the possibility of

insertingeiγJL , which commutes with bothQ+ andQ+.3 We introduce the function

F(q, γ) = Trq(H−P)/2q(H+P)/2eiγJL(−1)FR.

The insertion ofeiγJL means: when calculating the trace, glue the data on the torus usingeiγJL .
The first observation is that the quantityF(q, γ) is independent of any continuously variable pa-

rameters of the theory that preserve theN = 2 structure. This is so as it is a linear combination of
terms each of which is an index of an operator. For the same reason (or because the trace of the stress
tensor of the theory isQ+-exact)F(q, γ) is independent of the area of the torus, and only depends on
the complex structure.

We want to calculateF(q, γ) in two contexts: (i) an algebraic calculation for the known alge-
braically constructed models in the IR, and (ii) directly for the Landau–Ginzburg models in the UV.
The comparison of these two will then provide additional evidence that the Landau–Ginzburg theory
indeed flows to the “minimal model” in the IR.

3We use the same symbolJL for the leftR-current and the conserved charge derived from it.
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2.1 Algebraic calculation in the IR

The Hilbert space of a “minimal model” takes the formH =
⊕

α Hα ⊗ Hα, with the left-movers in

Hα and the right-movers inHα. Thus, the elliptic genus can be written

F(q, γ) =
∑

α

(
TrHα

q(H−P)/2eiγJL
) (

TrHα
q(H+P)/2(−1)FR

)
.

The right-moving contribution TrHα
q(H+P)/2(−1)FR evaluates to 1 ifHα has highest weight with

H + P = 0 and 0 otherwise. This has the effect of selecting a distinguished subset from among the
irreducible representations. Let us introduce a restricted sum

∑′ to denote the sum over that subset.
Then our elliptic genus can be written

F(q, γ) =
∑

α

′ TrHα
q(H−P)/2eiγJL .

(Note that the eigenvalues of the chargeJL are not integers in general. Rather, the object exp(2πiJL)
commutes with theN = 2 algebra and is a constant in each representation; the constant depends on
theR-charges of the chiral primary fields, which are rational numbers. SoF(q, γ) is periodic inγ, but
the period is not 2π.)

2.2 Direct calculation in the UV

For the Landau–Ginzburg theory itself, we can try to directly calculate in the UV. We use the fact that
F(q, γ) is independent of the area of the torus. We take the area to be very small. Roughly, in the UV
the interaction is negligible and we should be able to setW = 0. The only reason for this to fail has to
do with the behavior for large fields. The bosonic part of the action is

∫
|dφ|2 +

∫ ∣∣∣∣∣
dW
dφ

∣∣∣∣∣
2

.

In the presence of theW term, the unique minimum of the action isφ = 0. If we would setW to
zero, the action would be minimized for any constantφ. One would have to integrate over the space of
constantφ’s even in a leading approximation to the path integral, and then whenφ becomes sufficiently
large, theW term, if its coefficient is not strictly zero, is important.

The conclusion is, then, that as long asφ is a function on the torus, theW term cannot quite
be ignored. If, however,φ were not a function but a section of a nontrivial flat bundle, then even at
W = 0, the|dφ|2 part of the action would have a unique and nondegenerate minimum. In that situation,
it would be straightforward, in the limit of small area on the torus, to setW to zero.

In the path integral evaluation ofF(q, γ) for genericγ, we get just such a situation in whichφ is
a section of a nontrivial flat bundle. The reason is thatJL acts onφ by δφ = αφ. So in evaluating the
elliptic genus we are making the identification

φ(P + τ) = eiγαφ(P)

(where we regard the torus as the quotient of the complex plane by the lattice generated by 1 andτ,
andP is any point on the complex plane).φ is a section of the flat bundle on the torus specified by this
gluing. If γ is generic, the zero-section is isolated and moreover nondegenerate minimum of the action
even if we setW = 0. The nondegeneracy makes computations straightforward. The calculation of
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F(q, γ) can then be carried out in detail, settingW = 0 and expressingF as a ratio of determinants.
Explaining how this goes would take us too far afield, but the result4 is

F(q, γ) = e−iγkα/2 · 1− eiγ(k+1)α

1− eiγα
·
∞∏

n=1

(1− qneiγ(k+1)α)(1− qne−iγ(k+1)α)
(1− qneiγα)(1− qne−iγα)

.

When compared with the algebraic calculation in the IR, one can extract formulas for certain charac-
ters of theN=2 algebra. These formulas can be verified independently, giving strong support to the
claim that the Landau-Ginzburg theory flows to theN = 2 minimal model in the infrared.

2.3 Connection to Calabi–Yau models

Consider now theU(1) gauge theory with chiral superfieldsΦj of chargeαj andP of charge−1, such
that

∑
αj = 1. (We are no longer assuming that all of theαj ’s are equal, and we are using a different

normalization for the generator ofU(1) than in lecture II-12.) Denote the gauge supermultiplet by

Σ = σ + · · · ,
let W(Φ1, . . . ,Φn) be a transverse, quasi-homogeneous polynomial as above (i.e., satisfyingW =∑
αjΦj

∂W
∂Φj

, with W = dW = 0 only at the origin), and consider the Lagrangian

L =

∫
d2x d4θ


ΣΣ

4e2
+ Φ

j
Φj

 +

(∫
d2x d2θPW(Φ) + c.c.

)
+

(∫
d2x dθ+ dθ− tΣ + c.c.

)

such thatt = θ
2π − ir .

The polynomialPW(Φ) is gauge invariant, and we can repeat our earlier story: forr g̃0 we classi-
cally get a Calabi–Yau hypersurface{W = 0} in weighted projective spaceWCPn−1

(α1,...,αn) (which may
inherit some singularities from those of the weighted projective space); forr � 0 we get a Landau–
Ginzburg orbifold whose superpotential isW. The quantum theory is singular only whenr = r0,
θ = 0. (r0 is a constant computed as in lecture II-12.) The computation of the central charge in
Landau–Ginzburg theory gives

ĉ =
∑

j

(1− 2αj);

the computation for theσ-model giveŝc = dimC X, and these agree since
∑
αj = 1.

r

θ

σ

LG orbifold

-model

The elliptic genus should be independent oft since it is a topological invariant; this leads to a
formula which relates the elliptic genus of this type of Calabi–Yau manifold to the explicit elliptic
genus which can be computed via characters of minimal models on the Landau–Ginzburg side.

4E. Witten, “On the Landau–Ginzburg Description ofN=2 Minimal Models,” Int. J. Mod. Phys. A9 (1994) 4783–4800;
hep-th/9304026.

148



Although the elliptic genus is independent oft, one of the other quantities we have discussed for
N=2 theories—theQt-cohomology—varies holomorphically witht. Theinstantonsin this problem—
which are holomorphic curves in theσ-model—will contribute to the path integral in the forme−iθ

∫
F
2π ·

e−r
∫

d2x D whereD =
∑
αj |Φj |2−r, i.e.,e−2πit

∫
Σ

Φ∗(c1(L)). (I have used the fact that the instanton equation
of theN = 2 model – the condition for the field to be invariant under some supersymmetry – gives∫

d2xD =
∫

F/2π.) We will explore the instanton sums in the second half of the lecture.
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Lecture II-14, part II: Quantum Cohomology of K ähler Manifolds

Edward Witten 1

1 Introduction

We return now to twistedN = 2 supersymmetricσ-models in dimension two with target a Kähler
manifoldX. Recall that there were four possibilities for twisting depending on which supersymmetry
Q ∈ {Q+ + Q−,Q+ + Q−,Q+ + Q−,Q+ + Q−} is preserved. Whichever possibility one selects, the
cohomology ofQ as a vector space can be identified with the cohomology ofX. But there is more
structure; if we restrict to the case that the Riemann surface is a fixedS2, then the additional structure
is a ring structure on the cohomology ofQ. The resulting rings are called the (a, a), (c, a), (a, c), and
(c, c) chiral rings.

With one of the choices, the classical version of the chiral ring turns out to be the usual ring struc-
ture on cohomology, but quantum mechanically there are corrections, instanton corrections, to this
classical answer. For this reason the chiral ring of theσ-model is called the quantum cohomology
of the Kähler manifoldX. In this half of the lecture, we will discuss quantum cohomology generally
and then make some explicit computations in the caseX = CPn−1 and the caseX is a Fano hyper-
surface. These computations will be done both mathematically, counting holomorphic rational curves
with certain properties, and will be done from the physics point of view by using the renormalization
group flow (discussed in Lecture II-12 and the first half of Lecture II-14) from theseσ-models to
Landau-Ginsburg theories with extra vacua.

2 The space of0-energy states

We wish to compute some of these chiral rings, but before we deal directly with the operators, we
compute the 0-energy states in the Hamiltonian framework. The reason for doing this computation is
that as we showed in the last lecture there is a map

ψ : chiral ring→ {0−energy states}

given by inserting a local operator at a point on the hemisphere. In favorable circumstances this map
is an isomorphism.

In the Hamiltonian framework the bosonic space underlying the space of fields is

W = Maps(S1,X).

The minimum energy configurations are the constant maps and hence the space of these is a copy of
X. Since there are fermions in two copies of the spin bundle, when we quantize the resulting Hilbert
space is the tensor product of two copies of the spin bundle overX, i.e., the space of differential forms
on X. The Hamiltonian is the Laplacian and its space of ground states is then the spaceL2-harmonic
forms onX which is identified withH∗

L2(X). Of course, there are normal directions to the copy ofX
inW to consider, but supersymmetry implies that the quadratic form in the normal directions is non-
degenerate, and hence these directions produce a tensor products of harmonic oscillators and have a
unique ground state. Thus, in the end we find that the ground states for the entire theory are identified
with the harmonic forms onX. We shall see that the computation of the chiral rings gives the same

1Notes by John Morgan
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answer (additively), so that in the cases we consider today the mapψ is indeed an isomorphism. This
is true generally when the classical theory has the property that the energy grows as the fields go to
infinity.

3 Generalities on the chiral ring

In order to define a chiral ring we need a global supersymmetry. As we saw in Lecture II-13 the way
to obtain these is to twist the usual form of theN = 2 supersymmetric theory. Today we shall only
consider twists makingQ+ + Q− global. This is what we referred to in Lecture II-13 as Case A. It
is a twist that can be performed for any Kähler manifold – no assumption of vanishing first Chern
class is necessary. We shall consider local operators which are functions of the basic bosonic field
φ : S1 → X and fermions. Recall that one of the effects of twisting is to make the fermions sections
of bundles of integral rather than half-integral spin. That is to say, they are differential forms instead
of spinors. It will suffice in describing theQ-cohomology of operators, to consider only fermions of
zero spin. The reason for this is that all of theQ-cohomology classes of operators have representatives
that are constructed using only those fermions. To be more precise, theQ-cohomology classes have
representatives that depend only on the bosonic fields and spin zero fermions and not their derivatives.
2 Thus, our local operators will be of the form

O = O(φ, ψL, ψR)

where in the untwisted version of the theory,ψL is a section ofK−1/2 ⊗ φ∗T0,1X andψR is a section
of K1/2 ⊗ T1,0X. After we twist, these fermion fields lie inφ∗T0,1X andφ∗T1,0X, since the twisting
cancels out the line bundle overΣ. In particular, it is possible to form the sumψ = ψL + ψR and
consider operatorsO = O(φ, ψ).

3.1 Local Operators

For each differential formλ on X there is an operatorOλ(x) = Oλ(φ(x), ψ(x)). As we remarked in the
Lecture II-13, under the identifications of operators and forms,Q is identified with the usual exterior
derivative:

{Q,Oλ} = Odλ.

When, as in the case of theseN = 2 supersymmetricσ-models, the operator-to-state correspon-
dence is an isomorphism we can compute the ring structure of the chiral ring by computing correlation
coefficients. Our goal here is to compute in more classical topological and geometric terms the corre-
lation coefficient

〈Oλ1(x1) · · · Oλs(xs)〉
for closed formsλi . As we have already remarked, the correlation coefficient is unchanged if we
replace theλi by cohomologous forms. Also, to compute this correlation function, which means to
compute the path integral ∫

DφDψe2πiL∏

i

Oλi (xi)

2This is the operator analog of the fact that in the Hamiltonian description, the zero energy states are constructed from
differential forms on the target space with all oscillators in their ground state. Operators that contain derivatives of fields
would correspond to states in which some oscillators are excited.

151



over the space of all fields, it suffices to compute the integral over the subspace ofQ-invariant fields.
We have already identified the bosonic part of the subspace ofQ-fixed points: it is the space of holo-
morphic mapsΣ → X. For eachi choose a cycleHi Poincaŕe dual to [λi ]. Then we can choose a
representative forλi with support in an arbitrarily small neighborhood ofHi . To compute the corre-
lation function one will consider the moduli space of holomorphic maps from the Riemann surface
passing through all of theHi at the pointsxi . In the ‘best’ case when there are only finitely many
holomorphic maps passing through the cycles, one simply counts each of these maps with a sign.
The sign comes from evaluating the bosonic and fermionic determinants in an expansion around the
classical solution. Then the result is weighted by the exponential of 2πi times the value of the action
at this component.

Mathematically, there is a dimension count which must be satisfied for the differential form being
integrated to be top dimensional on the moduli space of holomorphic curves, and hence for the answer
to have a chance of being non-zero. From the physics point of view one sees the same dimension
restriction coming from the anomaly of theR-symmetry. The measure of integration in the path
integral has an anomaly under this symmetry, and one must use a set of operators whose product
has precisely the cancelling anomaly for the path integral to have a chance to be non-zero. Not
surprisingly, these two conditions are the same: namely, that the sum of the codimensions of theHi

in X must be equal to the dimension of the instanton moduli space of non-constant holomorphic maps
from Σ to X.

If one wants to see just the classical cohomology ring, rather than the quantum cohomology, then
one should consider just the constant maps toX. Then the dimension condition is

s∑

i=1

degreeλi = dimX

and the classical answer is simply ∫

X
λ1 ∧ · · · ∧ λs.

That is to say, the classical chiral ring is the cohomology ring ofX. This answer gets corrected
quantum mechanically by instanton corrections given by the integrals we were describing over the
moduli space of non-constant holomorphic maps. Thus, the chiral ring is a quantum correction to the
usual cohomology ring ofX. For this reason the chiral ring is usually called the quantum cohomology
ring of X.

4 More Details on the Ring Structure

Having given the general definition of quantum cohomology as the chiral ring and indicated the sorts
of mathematics that go into computing it, it is now time to be more concrete and compute an example.
We take the case ofΣ = S2 mapping into a compact K̈ahler manifoldX. Let us begin with a correlation
function with only two operators:

〈Oλ1Oλ2〉,
with the degree ofλ1 plus the degree ofλ2 equal to the dimension ofX. We of course know that the
space of constant maps gives a contribution to this correlation function equal to

∫

X
λ1 ∧ λ2.
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In this case there is no quantum correction and this is also the answer in the chiral ring. The
reason that there is no quantum correction is that the space of non-constant holomorphic maps of
S2 → X passing through a point ofH1 andH2 has a freeC∗-action on it. For a component of this
space to possibly give a non-zero correction to the correlation coefficient, it must be the case that its
formal dimension is zero. But if it has zero dimension and has a freeC∗-action on it, then it must
be empty. (Even for a possible nonzero component of this space, the freeC∗ action ensures that the
contribution is zero.) Thus, we have shown that under the identification of the chiral ring with the
cohomology ofX, the two point correlation functions, which compute the inner product on the vector
space underlying the chiral ring, give the usual inner product on cohomology or equivalently give the
intersection form on homology.

Now let us consider the ring structure. Fix a basis{λi} for H∗(X). Let the inner product in this
basis be given byηij :

ηij = 〈OλiOλj 〉.
Then the ring structure is determined by structure constantsck

ij defined by

OλiOλj = ck
ijOλk.

Letωijk be the three point function
〈OλiOλjOλk〉.

Since this three point function is also the inner product of the product of the first two local operators
with the third, we see

ωijk =
∑

r

cr
ijηrk.

Sinceηij is non-degenerate, this implies that the two and three point correlation functions determine
the ring structure of the chiral ring.

5 Calculations for CPn−1

We will now consider an example. We do the computation forCPn−1 by using a gauged linearσ-model
with linear bosonic fieldsφ1, . . . , φn, p as in Lecture II-12. To get all ofCPn−1 we set the superpotential
W equal to zero. We get a family of theories depending on a complex parametert = −ir + θ

2π , and as
we have seen, for Imt � 0 these are non-linearσ-models onX with some K̈ahler metric depending on
t and K̈ahler class roughly proportional to Imt. The only observable isOH whereH is the hyperplane
section. We call this operatorσ. Classically, inCPn−1 we have one relation, namelyσn = 0. Let us
see what happens quantum mechanically. We need to compute the three point function

〈σaσbσc〉
wherea+b+c = n−1+dn = dimMd, the dimension of the moduli space of rational curves of degree
d. Clearly, it suffices to consider the case whena,b, c < n. This implies that the only possibilities
for d ared = 0,1. Of course,d = 0 is the moduli space of constant maps and its contribution is the
classical ring structure. Ford = 1, we are considering straight lines inCPn−1. To calculate

〈σn−1(x)σn−1(y)σ(z)〉
we must consider the space of straight lines through two points meeting a fixed hyperplane. There is
exactly one such line. Since the instanton action ise−2πit , this lead to the relation

〈σn−1(x)σn−1(y)σ(z)〉 = e−2πit .
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Unraveling the ring structure from this three point function yields

σn = e−2πit

in quantum cohomology.
We can make the same calculation physically. We are considering theσ-modelCP1→ CPn−1. At

the end of Lecture II-12 we found that in the infra-red this flows ton vacua with a mass gap (since this
is a case in whichc1(X) > 0, the flow is from theσ-model to the Landau-Ginsburg model). The fieldσ
has different expectation values in each vacuum. Since the fields are massive, we simply set them equal
to their expectation values. These vacuum expectation values areσ = µe2πi(−t+k)/n, k = 0, . . . ,n− 1.
These give the idempotents of the quantum cohomology ring, from which we deduce the same answer
as before,3 namely that the ring is generated byσ modulo the relationσn = e−2πit .

6 Calculations for Fano Hypersurfaces

Now let us generalize these computations to the case of a hypersurface of degreed < n in CPn−1,
so-called Fano hypersurfaces.

According to [Collino-Jinzenji] the answer, computed mathematically, is that the quantum coho-
mology ring is generated byσ with one relation:

σd−1
(
σn−d − e−2πit

)
= 0. (6.1)

Let us think about how this computation fits with the fact that again thisσ-model flows in the
infra-red to a Landau-Ginsburg model plus extra massive vacua. The roots of the equationσd−1(σn−d−
e−2πit) = 0 are of two types: a root atσ = 0 of multiplicity d − 1, and nondegenerate roots (that is,
roots of multiplicity one) at nonzero sigma. The roots of the equation correspond to the vacua of the
quantum field theory. Nondegenerate roots correspond to massive vacua, which give idempotents of
the quantum cohomology ring. In analyzing the vacuum structure of this theory in lecture 12, we
foundn− d massive vacua at nonzero sigma. These give the factor (σn−d − e−2πit) in the equation for
the quantum cohomology. The other factorσd−1 is the contribution of the Landau-Ginzburg vacua
at the origin. This factor is present ifd > 1 (for d = 1 we are discussing a projective space of
codimension one, and there is no Landau-Ginzburg vacuum), and corresponds to a root at the origin
of multiplicity greater than one ifd > 2 (for d = 2, the central charge of the Landau-Ginzburg theory,
which in general iŝc = n(1− 2/d), vanishes; in this case the Landau-Ginzburg theory is massive and
infrared trivial). For generald, the multiplicity of theσ = 0 root of the quantum cohomology can be
computed by evaluating Tr(−1)F in the Landau-Ginzburg theory atσ = 0.

3Except for a factor ofµwhich has to do with a mismatch between our physical and mathematical conventions. In lecture
12,σ was defined as a field of dimension one and no effort was made to compare to any topological normalization. In our
mathematical discussion today,σ was normalized topologically as a field related to a hyperplane section of projective space,
and in particular has dimension zero. To compare the two definitions, one should, in the setting of lecture 12, integrate out
theσ field in the regionr g̃0 in favor of the massless fields of the sigma model. In this process,σ will turn into an operator
of the low energy theory that can be derived from a two-form onCPn−1. The cohomology class of this operator will be a
multiple C of the hyperplane section, andC is the factor by which the physical normalization of lecture 12 disagrees with
the topological normalization that givesσn = e−2πit .
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Lecture II-15. Four-dimensional gauge theories

Edward Witten
Notes by Pavel Etingof and David Kazhdan

In this lecture we will discuss the main known, believed, and conjectured results about 4-dimensional
gauge theory, with or without supersymmetry.
15.1. Gauge theory without supersymmetry.

We start with no supersymmetry (N = 0). We consider a pure nonabelian gauge theory for a
simple Lie groupG, with Lagrangian

L =
1

4g2

∫
|F|2.

We could add a topological term with the theta angle:iϑ
16π2

∫
F ∧ F. This is a well defined, asymptoti-

cally free theory. The problem we are interested in is how this theory behaves in the infrared.
It is believed that this theory has a mass gap, and conjectured that it exhibits confinement (the

area law for the Wilson loop operator, see Lecture 6). However, to justify the first and especially the
second statement is still an important open problem.
Remark. As we will see, the benefit of supersymmetry is that in the supersymmetric gauge theory,
both statements can be justified.

Now let us add matter. We consider the groupG = SU(N). The matter will be chiral spinorsψi , ψ
∗
i

with values in the vector representationV and the dual representationV∗, and the corresponding
antichiral spinors̄ψi , ψ̄∗i with values inV∗ andV (we are in Euclidean signature). Let the number of
spinors of each kind benf ,n∗f (the number of flavors). We must havenf = n∗f to avoid local anomalies
(see the next lecture).

The Lagrangian for the theory with spinors (with zero bare masses) is

L =
1

4g2

∫
|F|2 +

iϑ

16π2

∫
F ∧ F+

∑

i

∫
(ψ̄i ,Dψi) + (ψ̄∗i ,Dψ

∗
i ).

(15.2)

Remark. For G = SU(3) andnf = 2 or 3 this is the theory of strong interactions. In these cases it is
necessary to add small bare masses to match the physical reality.

This theory is asymptotically free ifnf is not too large. So one is interested in its infrared behavior.
It turns out that this theory exhibits symmetry breaking. Namely, the Lagrangian has a global

U(nf ) × U(nf ) symmetry permuting the flavors. However, quantum mechanically, this theory has
a chiral anomaly (i.e.D + A on chiral spinors may have a nonzero index). Therefore, quantum
mechanically the symmetry of the operator algebra is broken to the subgroupH = {(A,B) ∈ U(nf ) ×
U(nf ), det(A) = det(B)} (the rest of the group does not fix the measure of path integration).

It is believed that the groupH is spontaneously broken to the diagonal subgroupHdiag of U(nf ) ×
U(nf ). This breaking produces Goldstone bosons by Goldstone theorem. Ifnf ≤ 1, H is already
diagonal, and we don’t get any Goldstone bosons. In this case it is believed that the theory has a mass
gap. However, fornf > 1 the groupH is different from the diagonal subgroup, and there is no mass
gap because of Goldstone bosons. In this case, if the theory is infrared free and has no other massless
particles than Goldstone bosons, the low energy effective theory should be a sigma-model in the space
of vacuaH/Hdiag.
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Remark. The global symmetry breaking fromH to the diagonal subgroup is more delicate than the
one we considered in Lecture II1: in the present case this breaking is not seen classically, since the
classical space of vacua is a point.

The infrared behavior of this theory is not completely understood, but some aspects are. For
example, one can sometimes prove the absence of a mass gap, in the following way.

Let Ja, a = 1, ..., dim(H) be the currents forH. Consider the 3-point function〈Ja(x)Jb(y)Jc(z)〉.
Since the currents are conserved classically, we get

dx〈Ja(x)Jb(y)Jc(z)〉 = 0. (15.1)

if x, y, z are distinct. However, if there is symmetry breaking, the l.h.s. of (15.1) may be a singular
distribution supported on the set of non-distinctx, y, z. So let us go to the momentum space and
compute (15.1) to 1-loop order. Let

Fabc
λµν(k,q, r)δ(k + q + r) = 〈Ĵλa(k)Ĵµb(q)Ĵνc(r)〉

be the 3-point function ofJ in momentum space. Then we get (to 1-loop accuracy)

kλF
abc
λµν = εµναβq

αrβdabc, (15.2)

wherek + q + r = 0 anddabc are some numbers (ε is a symmetrization tensor).
It can be proved that this formula is exact, with no higher order corrections. This is proved, for

instance, by introducing a regularization (such as adding higher derivative terms of a certain kind to
the action ) that guarantees that higher than one-loop contributions to∂x < JJJ> are zero.

It is easy to show that no functionF that is real-analytic near k=q=r=0 can obey (15.2) with
nonzerod. Hence ifd is not zero,F is singular near zero momentum. This implies that the theory has
massless particles, so there is no mass gap.
Remark. This argument would not work if we considered a two-point function instead of the three-
point function. Namely, it can be shown that in 2n dimensions, it is precisely the n+1 point function
of currents for which there is a formula analogous to equation (15.2) – computable from one-loop but
exact. Whenever one has such a formula, one can use it to prove the absence of a mass gap. In four
dimensions, one uses a three point function; in two dimensions, one would use a two point function.

It can be seen from this calculation that the tensordabc is of the same nature as the tensordabc in
Lecture 16 which corresponds to the local gauge anomaly. In particular, its presence has to do with the
fact that our theory has fields with coefficients in the vector representation of the first copy ofU(nf )
and no fields in the dual representation (i.e. with the fact that the theory is chiral with respect to the
first copy ofU(nf )). In fact, if we try to gauge theH-symmetry, we will get a local gauge anomaly
like in Lecture 16.

Thus, in some cases we can see by a short distance calculation that we will have massless particles
in the infrared.

In 4 dimensions, there can be three types of massless particles: scalars (spin 0), spinors (spin 1/2),
and vectors (spin 1). Other particles are inconsistent with the existence of the energy-momentum
tensor. The general principle about massless particles is that they are massless for a reason. Namely,
it is believed that in infrared free theories spin 0 particles are always Goldstone bosons coming from a
broken global symmetry, spin 1/2 particles are fermions for which mass is prohibited by an unbroken
chiral symmetry, and spin 1 are gauge bosons. This allows us to analyse the origin of a nonzero tensor
dabc.

Let us look at the possibilities in the case whendabc , 0.
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Possibility 1. The theory is not free in the infrared.
Possibility 2. The theory is free in the infrared. Then Green’s functions can be calculated using
Feynman diagrams of light fields. So there must be diagrams which contribute to the non-analyticity
of F. There may be two cases.

Case 1. The fieldJ(x) does not create from the vacuum a state of one massless particle (the two-
point function ofJ has no pole at zero momentum). Then the tensordabc can come only from loop
diagrams. Such diagrams are expected to be with massless fermions inside, maybe not in the same
representation as the one in the classical Lagrangian, but producing a nonzero d tensor (massless spin
0 and spin 1 particles are not expected to contribute to the tensord since, as we mentioned, such a
contribution arises from chirality which has to do with spin 1/2). This possibility was pointed out by
t’Hooft in the late seventies, but examples were only found in the last few years.

Case 2. There is no massless fermions, and no loop contributions to the singularity ofF. Then
the tensord must come from the tree diagram forJ. In this case, the two point function ofJ has a
pole at zero momentum, corresponding to the fact thatJ creates from the vacuum a state consisting of
one massless particle. This state is a massless bosonπ of spin 0 from the vacuum (see Lecture II1),
such thatJ = ∗dπ in the infrared limit. This bosonπ is the Goldstone boson for the broken global
H-symmetry.
Remark. Even in case 1, the two point function need not be analytic at the origin. If there is no mass
gap, then the two point function ofJ is almost always nonanalytic at zero momentum: it has a branch
cut beginning at zero momentum.

Thus the conclusion is: if the theory has no massless fermions, theH-symmetry is spontaneously
broken to a groupH′ ⊂ H such thatd|H′ = 0.

This is what happens in nature. Namely, the diagonal subgroup ofH hasd = 0 since the repre-
sentation in which the fermions live is real for this group, and thus all chiral fields are balanced by
antichiral ones. This is the most obvious subgroup ofH with this property.
Remark. Consider Case 2 from the point of view of effective Lagrangians. Consider the microscopic
LagrangianL′ = L +

∫
ca ∧ Ja, whereJa are the currents defined above andca are external sources

which are 1-forms on the spacetime. For this Lagrangian, consider the effective Lagrangian in terms
of the fieldsca. It will have the linear term, the quadratic term, etc. The linear term corresponds
to one insertion ofJ, so it has the formca ∧ ∗dπa, whereπ is the Goldstone boson. The 3-point
function〈d ∗ Ja(x) ∗ Jb(y) ∗ Jc(z)〉 considered above corresponds to the quadratic termdca ∧ cb ∧ dπc

in the effective Lagrangian. The particlesπ and c can actually be observed in nature. In fact, it
was in seeking to understand the decay of theπ0 meson to two photons that Adler, Bell, and Jackiw
discovered anomalies around 1970.

In conclusion we will say what behavior in the infrared is expected in the theories we are consider-
ing. Recall that the condition for asymptotic freedom isnf < 11n/3. If nf is small compared to 11n/3,
it is believed that the theory is infrared free with the behavior described above. It is also expected that
it exhibits confinement for sufficiently smallnf /n. However, ifnf is close to 11n/3, it is expected that
the theory has nontrivial IR stable fixed points. This is expected because the two-loop correction to
the beta function of these theories is positive. Hence, if the one-loop beta function is made small by
takingnf close to but smaller than 11n/3, then the beta function has an infrared-stable zero close to
the origin and within reach of perturbation theory.
15.2. N=1 supersymmetric pure gauge theory.

Now considerN = 1 supersymmetric theories. We start with “pure gauge theory”. In terms of
components, this theory has a gauge fieldA and a chiral spinorλ with values in the adjoint represen-
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tation. The Lagrangian is

L =
1

4g2

∫
|F|2 +

iϑ

16π2

∫
F ∧ F +

∫
λ̄iDλ. (15.3)

The symmetry of this theory classically is the chiralU(1) symmetryλ → eiδλ. This chiral symmetry,
however, does not exist quantum mechanically since the operatorD + A on spinors in the adjoint
bundle may have a nontrivial index. However, one can show that this index for the sphereS4 is always
divisible by 2h, whereh is the dual Coxeter number of the Lie algebra (it equals 2hk for the bundle
with second Chern classk). This shows that the group of symmetries of the measure of integration is
Z/2hZ. This group acts on the quantum operator algebra.

In the infrared limit, the groupZ/2hZ could possibly be spontaneously broken to a subgroup. The
smallest subgroup it can break down to is{−1, 1} since−1 is the central element of the double cover
of the Poincare group.

The standard expectations about this theory are:
1. Mass gap.
2. Confinement.
The first statement implies that fermion masses are generated dynamically. This suggests that

Z/2hZ is broken down to a subgroup that allows bare masses for the elementary fermions. The largest
such subgroup isZ/2Z. So one expects that the unbroken group is preciselyZ/2Z. The spontaneous
breaking fromZ/2hZ to Z/2Z implies that the theory has at leasth vacuum states. It is believed that
the number is preciselyh.

It is remarkable that the statement about symmetry breaking can actually be checked. In order to
do it, it is enough to show that the one point function〈λλ〉 of the operatorλλ is not zero (byλλ we
mean a scalar obtained by contraction of the Lie algebra dimensions using the Killing form and of the
spinor dimensions using the skew form on spinors).

It is clear that〈λλ〉 = Ce2πik/h in the k-th vacuum, for some constantC, since the generator of the
groupZ/2hZ sends the k-th vacuum tok + 1-th and multiplies〈λλ〉 by e2πi/h.

Now let us ask ourselves: how does the function〈λλ〉 depend on the theta-angle? LetJ be the
current of theU(1) symmetry. Because of the chiral anomaly,dJ , 0 but equals to a multiple of the
Chern-Weil form:

dJ =
h

8π2
F ∧ F. (15.4)

This implies that the rotation ofλ by eiα is equivalent to adding 2hα to the theta-angle:ϑ→ ϑ + 2hα
(i.e. these two actions ofU(1) on the space of theories coincide). Thus we should expect that〈λλ〉 =

Ceiϑ/h, whereC is real and independent of the theta-angle. Note that this function is multivalued and
hash different values, corresponding toh vacua.

Since〈λλ〉 hash different values, it is convenient to consider itsh-th power〈λλ〉h = Cheiϑ. This is
a single-valued function ofϑ.

The constantC depends only on the gauge couplingg, and is zero in perturbation theory, since the
classical chiral symmetry prohibits masses in Feynman diagrams of all orders. Thus, ifC , 0, it is a
nonperturbative phenomenon (like in the Gross-Neveu model, see Gross’ lecture 4).

Now let us compute〈λλ〉h. We have

〈λλ〉h = lim
|xi−xj |→∞

〈λλ(x1)...λλ(xn)〉 (15.5)

(cluster decomposition). This statement is true at all the vacua.
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We would like to show that〈λλ(x1)...λλ(xn)〉 is independent ofx1, ..., xn. To do this, recall the
superspace formulation of our model (see the superhomework).

In the superspace formulation, we have the super-spacetimeR4,4 with coordinatesx0, ..., x3 and
θ+, θ−, θ̄+, θ̄−. The Lagrangian of our model is equivalent to the Lagrangian

L′ =

∫
d4x(d2θτW2 + d2θ̄τ̄W̄2),

whereτ = ϑ
2π + 4πi

g2 , andW is the supercurvature:W = λ + ΘF+..., W̄ = λ̄ + ΘF− + .... HereΘ is

the canonical linear chiral function onR4,4 with values inS+, F+ is the self-dual part of the curvature.
The termsΘF+ involves theSU(2)-mapC2 ⊗ C3→ C2.

The supercurvature is a spinor-valued chiral superfield. Namely, letD̄ be the spinor valued op-
erator which annihilates chiral functions (we have [D̄, D̄] = 0). ThenD̄W = 0. This implies that
D̄(WW) = 0 (whereWW is a scalar obtained by contracting spinors). Sinced = [D, D̄], we get
d(WW) = D̄D(WW).

Now recall that for any operatorX the 1-point function〈D̄X〉 is zero. This implies that

〈d(WW(x1))WW(x1)...WW(xn)〉 = 0,

which yields the independence of〈λλ(x1)...λλ(xn)〉 of x1, ..., xn after settingΘ = 0.
This implies that we can compute〈λλ〉h at short distances. At short distances,〈λλ〉h can be com-

puted using asymptotic freedom.
Our parameters areµ (the scale of renomalization),g (the gauge coupling), andϑ (the theta angle).

Thus〈λλ〉 = F(µ,g, ϑ). From dimensional arguments,F(µ,g, ϑ) = µ3hf (g, ϑ), wheref is dimension-
less (fermions have scaling dimension 3/2 in 4 dimensions). Also, we found that〈λλ〉h has the form
Ceiϑ, whereC is independent ofϑ. This implies thatf (g, ϑ) = ρ(g)eiϑ.

Now comes the main point. The main property of our theory, which follows from supersym-
metry, is that ifX is an operator such that̄DX = 0 then〈X〉 is a holomorphic function ofτ, where
τ is the “modular” parameter in the superspace formulation. This follows from the fact that∂L′

∂τ̄ =∫
d4xd2θ̄W̄2 = D̄Y, whereY = D̄W̄2. Therefore,F is holomorphic inτ. This implies thatf (g) =

e−8π2/g2
, i.e.

F(µ,g, ϑ) = C0e
iϑ− 8π2

g2 . (15.6)

whereC0 is a constant.
The constantC0 is tricky to find. To findC0, one should notice that the only nontrivial contribu-

tions to〈λλ〉h can be from field configurations with instanton number (=second Chern class) equal to
1. The reason thatC0 can come only from instanton number 1 is that〈λλ〉h has charge 2h under the R
symmetry, so the index of the Dirac operator must be 2h. An attractive further check is that 8π2/g2 is
the instanton action. Thus, the constantC0 can be found by doing perturbation theory in the vicinity
of a single instanton. In particular, it can be shown thatC0 , 0 (dynamical symmetry breaking).
Remark 1. SinceW̄ = λ̄+ΘF−+..., and since instantons are defined by having self-dual curvature and
λ = 0, we haveW̄ = 0 for instantons and hence the Lagrangian is holomorphic inτ at the instantons
(and only at them). This is an indication of why the functionF should receive its contribution from
instantons.
Remark 2. The functionF is a physically meaningful quantity (it has to do with fermion masses), so
it obeys the renormalization group equation

(µ
∂

∂µ
+ β(g)

∂

∂g
)F = 0, (15.7)
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whereβ is the beta-function. Apriori we know only thatβ(g) = −3hg3+O(g5). Formula (15.6) implies
that the 1-loop beta function is in fact exact:

β(g) = −3hg3. (15.8)

In other words, the parameterτ has an additive renormalization:τ(µ) = τ(µ0) + 48π2h ln(µ/µ0).
15.3. N=1 theories with chiral superfields.

Now let us consider the same theory with an adjoint-valued chiral superfieldΦ. The new La-
grangian is

L′′ = L′ +
∫

d4xd4θΦ̄Φ + (ε
∫

d4xd2θΦ2 + c.c). (15.9)

(c.c. is “complex conjugate”.) Hereε is a complex number which is a mass parameter forΦ. If ε is
very large, we recover the previous theory as an effective theory after integrating outΦ. If ε = 0 we
get Donaldson theory.
Remark. It can be deduced from supersymmetry that the caseε , 0 is the same as the case of large
ε in terms of the qualitative behavior of the theory in the infrared. This is proved by redefiningΦ

by Φ → Φ/
√
ε. This operation removesε from the superpotential. Theε dependence appears now

only in the kinetic energy ofΦ, which is a term of the form
∫

d4θ(...). Such terms are believed to be
generally irrelevant in the infrared behavior of a supersymmetric theory, so one expects the qualitative
behavior of this theory to be independent ofε.

For G = SU(2), this theory has two vacua (as in the theory without the superfieldΦ). Also, we
will show in later lectures that this theory has a mass gap and confinement.

Now we will specialize toG = SU(N) and do a superversion of QCD. So the Lagrangian will
be the same as before (withε = 0), except that the chiral superfieldΦ will be in the representation
R = V⊕nf ⊕V∗⊕nf , whereV is the vector representation ofSU(N). (As before, the multiplicity ofV and
V∗ must be the same to avoid anomalies). Namely,Φ = (Q1, ...,Qk,Q∗1, ...,Q

∗
k), wherek = nf . This

theory is asymptotically free iff k < 3N, sinceβ = −g3

π (3N − k).
The dynamical behavior of this theory is very nontrivial. For fuller details see Seiberg’s lectures.

The following picture is believed to hold:
1. k = 0 – discussed above. There is a mass gap.
2. k = 1, ...,N − 1 – discussed below. Low energy theory is a supersymmetric sigma-model with

a nonzero superpotential.
3. k = N,N + 1 – The theory is infrared free and has more massless fields than in case 2.
4. N + 2 ≤ k < 3N/2 – The theory is infrared free, is described in the infrared by a gauge theory,

but the IR gauge group is not a subgroup of the UV gauge group.
5. 3N/2 ≤ k < 3N – the infrared limit is nontrivial and non-free.
Today we only discuss the case 1≤ k ≤ N − 1. We will try to explain why the superpotential is

nonzero.
Let us compute the classical moduli space of vacua. According to lecture II2, this moduli space

should be the symplectic quotient:M = R//G (sinceR is the set of zero energy states). Here the
symplectic structure onR is induced by the Hermitian form onR. SinceG acts holomorphically, we
haveR//G = R/GC. So we are down to classical invariant theory.

Recall that fork < n all invariants ofSL(N) in Rare functions of the inner productsMij = (Qi ,Q∗j ).
These invariants are independent, and form a coordinate system onR/GC. Moreover, let us compute
the stabilizer of a point withdet(M) , 0. It is easy to see that this stabilizer is isomorphic toSL(n−k).
Thus, we have a Higgs phenomenon: theSU(N) gauge symmetry is spontaneously broken toSU(N−k)
(see lecture II2). In particular, fork = N − 1 it is broken completely. This says that fork < N − 1
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the classical theory has massless gauge fields ofSU(N − k) as well as massless chiral multiplets
parametrizing the symplectic quotient. Quantum mechanically the story will be more complicated for
several reasons.

Now, since the stabilizer of a point inM is SU(N − k), we should expect that the low energy
effective theory is anN = 1 supersymmetricSU(N − k)-gauge theory. As we know, this theory has
N − k vacua, so we should expect that the quantum vacuum space will be anN − k-fold cover ofM .
Call this coverM̃ . Thus the low energy effective theory involves a sigma-model intõM and possibly
a superpotential. It is shown similarly to the above arguments that this superpotentialW must be
holomorphic onM̃ and as a function of the complexified gauge couplingτ. The superpotential should
of course have the same symmetries as the theory itself.

Classically our theory has theU(k) × U(k) global symmetry acting on the superfield, as well as
the R-symmetry, which is theU(1) symmetry rotatingλ. Some of these symmetries are anomalous
(chiral anomaly). The anomaly free subgroup which acts on the quantum theory is generated by
the groupH = {(A,B) ∈ U(k) × U(k); det(A) = det(B)} and the groupU(1) = {(ζ, ζ−N−k

N , ζ
N−k
N ) ∈

U(1)× U(k) × U(k)}. From these symmetries (and remembering from the first part of the lecture how
the R-symmetry acts on the theta angle), we see that the superpotential must equal

W(M) = cN,k(detM)
−1

N−k . (15.10)

So we do get a function on a coverM̃ of M .
Now we need to computecN,k; in particular see if it is zero. The key fact for doing this is: If

cN,k , 0 thencN−1,k−1 is nonzero, and one can be determined from the other. Indeed, if we take
M which has one very large eigenvalue, we will effectively be down to the theory with parameters
N − 1, k− 1.

Thus if k < N − 1, we can descend from (N, k) to (N − k,0) and thus reduce the problem to the
case of pureN = 1 gauge theory. In pure gauge theory, the spaceM is a union ofN− k points, and the
role of the superpotentialW is played by the function〈λλ〉 that we have computed. Thus,cN−k,0 , 0.
Remark. It might seem that the superpotential is defined up to adding a locally constant function.
However, it is in fact defined up to adding only a constant function. This is because in the case when
the space is compact, there is only one vacuum and so theh points of the moduli space “know” about
each other.

Now letk = N − 1. Then the descent procedure will stop atN = 2, k = 1. In the caseN = 2, k = 1
one hasW = c2,1(detM)−1. More precisely, by dimension argumentsc2,1 = c̃2,1µ

5, wherec̃2,1 is
dimensionless. It is shown like for the pure gauge theory that instantons which contribute toc2,1 have
instanton number 1. Thus, by holomorphicity ofW with respect toτ, we have

W = c̃2,1µ
5eiϑ−8π2/g2

/det(M). (15.11)

The computation of ˜c2,1 is tricky. The reason is that there are instantons of all sizes, which makes
it more difficult to do perturbation theory around the instantons.

This was done by Affleck, Dine, and Seiberg. They showedc2,1 is not zero. ThuscN,N−1 is not
zero.
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Lecture II-16: BRST quantization of gauge theories

Edward Witten
Notes by Pavel Etingof and David Kazhdan

In this lecture we will discuss quantization of gauge theory by using BRST cohomology. This
approach is an improvement of the original Faddeev-Popov approach. An advantage of the BRST
approach as opposed to the Faddeev-Popov method is that BRST makes explicit the independence of
quantization of the choice of the gauge fixing procedure.

A similar approach can be used in gravity (see D’Hoker’s lectures).
16.1. The general setup.

We start with a general setup, and then consider examples. In the general setup, we have a compact
gauge groupG with Lie algebrag, and the group̂G, which is the group of gauge transformations of a
principalG-bundleE over a spacetimeM. Formally, we want to compute the path integral

1

Vol(Ĝ)

∫
DADφe−L(A,φ), (16.1)

whereL(A, φ) is a gauge invariant Lagrangian with a gauge fieldA and matter fieldsφ.
The difficulty with a perturbative treatment of this path integral is that its kinetic termF2

A for
the gauge field is degenerate along orbits ofĜ. One way to deal with this difficulty is to replace
the integrand in (16.1) by some expression that integrates to 1 on orbits ofĜ – then (16.1) would
equal to the integral of this expression (at least if everything were finite dimensional). For example,
this expression could be the delta-function of some gauge, i.e. of some submanifold in the space of
connections and matter fields which is a cross-section for theĜ-action (this procedure is called gauge
fixing). As we know (see Kazhdan’s lectures on gauge theory and Faddeev’s lectures), this introduces
a determinant under the integral (the Faddeev-Popov determinant). The determinant is a nonlocal
expression, so in order to work only with local expressions, one should replace this determinant with
a Gaussian integral over the space of fields times two copies of the odd space of sections of the
coadjoint bundle ofE. Thus, one has to introduce additional fermionic fieldsc, c̄ with values inad(E).
These fermions are called ghosts, since they do not correspond to any physical particles and violate
spin-statistics. After the introduction of ghosts the path integral can be treated as usual, e.g. by
perturbation theory techniques.
16.2. The BRST differential.

Of course, any gauge fixing procedure by definition destroys gauge invariance. Therefore, in
order to obtain a sensible quantization, we must make sure that in the final result the gauge symmetry
is restored. In particular, we must explain what replaces the gauge symmetry in the ghost setting of
the previous section.

It turns out that what replaces the gauge symmetry is a certain odd derivation of the algebra of
local functionals, which we will now construct.

We will first consider the classical theory. Let us look what fields our theory has after introduction
of ghosts. The basic fields are the connectionA, the matter fieldsφ, and the ghostsc, c̄, which are
sections of the adjoint bundle toE. We will add an auxiliary scalar bosonic fieldh, whose significance
will be seen below.

Let Rbe the algebra of local functionals. We want to define an odd derivationδ : R→ Rsuch that
δ2 = 0 (the BRST differential).

Recall that the algebra of local functionalsR is the quotientR̃/I , whereR̃ is the algebra of local
expressions in the fields andI is the differential ideal generated by field equations.
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We first define a derivationδ : R̃→ R̃, and then make sure that the field equations are respected.
Defineδ on generators by

δc =
1
2

[c, c], δφ = δcφ, δA = −dAc, δc̄ = h, δh = 0, (16.2)

whereδcφ means the variation ofφ along the infinitesimal gauge transformationc. It is easy to check
thatδ2 = 0.

Recall from Kazhdan’s and D’Hoker’s lectures that the Lagrangian with ghosts for our theory is

L̃ = L(A, φ) − δ(c̄(h/2 + Λ)) = L(A, φ) − (hΛ +
h2

2
− c̄δΛ). (16.3)

whereΛ = Λ(A, φ) is a non-gauge invariant local expression (the gauge fixing function). This La-
grangian is of course equivalent to

L̂ = L(A, φ) + (
1
2

Λ2 + c̄δΛ).

by eliminatingh.
We want the Lagrangian to be invariant under the derivationδ. SinceL(A, φ) is already invariant

(because it is gauge invariant), it is enough to check that the expressionhΛ + h2

2 − c̄δΛ is closed under
δ, which follows fromδ2 = 0.

Sinceδ preserves the Lagrangian, it preserves the set of its critical points and hence indeed defines
a derivation of the algebra of local functionals.

As an example consider the case whenE is the trivial bundle (and there is no matter fields). One
of the possible gauge fixing conditions is the Feynman gauge conditiond∗A = 0. So we takeΛ = d∗A.
Then one hasδΛ = −d∗dAc, so after elimination ofh the Lagrangian for pure gauge theory is

L =
1

4e2

∫
F2 + ((d∗A)2 − c̄d∗dAc). (16.4)

We see that this Lagrangian is nondegenerate, so one can do perturbation theory with it as usual. The
derivationδ onR in this case is defined by

δc =
1
2

[c, c], δA = −dAc, δc̄ = −d∗A. (16.5)

16.3. The properties of the BRST derivation.
Thus, we have constructed a derivationδ. The main properties ofδ are:
1. δ2 = 0.
2. δ is defined onR̃ apriori, without the use of the LagrangianL(A, φ) and the gauge fixing term

Λ. It preserves the Lagrangian with ghostsL̃ and therefore descends toR.
Now let us turn to quantum theory. In this case local functionals are replaced by local operators.

It can be shown that there exists a renormalization procedure under whichδ can be defined as above,
and properties 1 and 2 hold. This is discussed below.

However, in order to use the BRST method for quantization, we will need another, purely quan-
tum, property ofδ. Namely, denote byLef f the effective Lagrangian, i.e. the Lagrangian for which
the classical theory is equivalent to the quantum theory forL. This Lagrangian is of course nonlocal.
The third property ofδ that we need is

3. δ preserves the effective actionLef f. That is,δLef f = 0.
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This property may fail, and if it fails then one says that the theory is anomalous.
Remark. AlthoughLef f is nonlocal, it can be shown thatδLef f is always the integral of a local
expression. It can be shown that the obstruction to makingδLef f zero by adding an auxiliary term to
the Lagrangian (in a way that does not change the physics) is given by a 1-loop calculation. Thus,
anomalies arise in the 1-loop order of perturbation theory, and don’t have higher order corrections.
We will see this at the end of the lecture.
16.4. Operators in gauge theory and BRST cohomology.

Assume properties 1-3 hold. Consider the path integralZ given by LagrangiañL:

Z =

∫
DADcDc̄DhDφe−L̃ (16.6)

(possibly with some gauge-invariant insertions). Properties 1-3 imply thatZ is independent on the
gauge fixing conditionΛ. Indeed, for any local expressionX we have

∫
DADcDc̄DhDφe−L̃δX = δ

∫
DADcDc̄DhDφe−L̃X = 0, (16.7)

which implies the independence ofZ onΛ.
Remark. In (16.7), we used thatδ preserves the measure of integrationDADcDc̄DhDφ. It is easy to
see that this is equivalent to Property 3 (absence of anomalies).

The statement thatZ is independent ofΛ holds for operators (insertions) which are annihilated by
δ; for example, for any gauge-invariant insertions intoZ, depending only onA, φ. On the other hand,
if O = δO′ then the integral ofO is zero by (16.7). Thus, the space of “physical” quantum operators
in our theory is the cohomology ofδ. This cohomology is called the BRST cohomology.

The BRST cohomology comes with a naturalZ-grading. Namely, we have a grading in the space
of local operators, in which gauge and matter fields have degree 0,c has degree 1 and ¯c degree−1.
This degree is called the ghost number. It is easy to see thatδ raises the degree by 1. This allows to
introduce a grading in cohomology: we denote byHq

δ
the cohomology in degreeq.

The properties of this cohomology, which usually hold in this situation are:
1. Hq

δ
vanishes forq < 0.

2. H0
δ

is the space of gauge invariant local operators depending only onA andφ.
This shows thatδ plays the role of the gauge symmetry which was broken when ghosts were

introduced. Thus, we have established a setting for gauge theory which works well in perturbation
theory and in which the gauge symmetry does not die but rather appears in the form ofδ.
16.5. Renormalization and BRST differential.

Now let us discuss the renormalizability and renormalization group equation in the BRST ap-
proach. We will restrict ourselves to 4 dimensions and pure nonabelian gauge theory.

Recall that in order for a theory to be renormalizable, all interactions have to have nonnegative di-
mension. To find out whether it is so for the Lagrangian with ghosts, we will compute the dimensions
of fields (assuming thatδ preserves the scaling dimensions). It is easy to see that the dimensions are
as follows: [c] = 0, [c̄] = 2, [A] = 1. This shows that all interactions in the Lagrangian with ghosts are
renormalizable.
Remark. In this theory, dimensions ofc and c̄ are not uniquely determined; the only thing that
is determined canonically is [¯cc], which equals 2. This does not lead to a contradiction, since all
operators of nonzero ghost number have zero expectation value, and so their scaling dimension has
no intrinsic meaning. This is why we needed to make an additional assumption thatδ preserves
dimensions to fix precise values of the dimensions. If we had assumed thatδ raises dimension byk
we would get a different answer, which would be equally good for our purposes.
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Now let us look for critical couplings which will be renormalized. In the setting without ghosts,
the usual thing to do is to write down renormalizable (non-gauge invariant) operators of dimension 4,
which correspond to critical couplings: [A,A]2, [A,A]dA, (dA)2, and then argue that there is only one
gauge invariant combination of these operators, so that the only coupling which is to be renormalized
is the chargee. However, in the setting with ghosts, we also have to include operators of degree 4
involving ghosts: ¯ccA2, c̄d∗dc, .... The gauge invariance condition is now replaced by the condition
that δ is a symmetry, so we need to renormalize only delta-invariant interactions. This cuts down
the number of operators to be renormalized, but still leaves us with two renormalizable couplings:
the chargee and the gauge fixing parametera, corresponding to the scaling of the gauge fixing term
Λ2

2 + c̄δΛ. Thus the renormalization group vector field looks like

W = µ
∂

∂µ
+ β(e)

∂

∂e
+ β̃(e,a)

∂

∂a
. (16.7)

Hereβ is the beta-function of the theory, andβ̃ is the ghost beta-function. The beta-function of the
theory depends only oneand is physically meaningful; for example, the negativity of its leading term
insures asymptotic freedom. However, the ghost beta-functionβ̃ has no physical meaning: it only
matters for renormalization of operators and correlators containingc andc̄, which don’t make sense
physically.
16.6. The Hamiltonian approach.

So far we have considered BRST method from the Lagrangian point of view. Now let us consider
the connection of the BRST method with the Hamiltonian formalism.

Since ghosts violate spin-statistics (being scalar fermions), the “Hilbert space” of the theory with
ghosts cannot be an actual Hilbert space. Namely, it is possible to construct a certain spaceH̃ with
a Hermitian form, which is analogous to the Hilbert space in actual physical theories, but the form
will not be positive definite. However, on this space we have local quantum operators, obtained by
quantization of classical operators in the usual way. In particular, we have the global charges – the
HamiltonianH as well as the BRST chargeQ, obtained from ghosts as explained in D’Hokers lecture.
We also have a grading of̃H by ghost number, obtained naturally from the quantization procedure.

The operatorQ has the property [Q,O] = δO for any operatorO (not necessarilyδ-closed) in the
theory with ghosts. Also,QΩ = 0, whereΩ is the vacuum, and the ghost number ofQ is 1.

The operatorQ has properties analogous to those ofδ:
1. Q2 = 0. This can be confirmed by a direct computation.
2. Q is defined apriori, without the use ofL andΛ (by an explicit formula as in D’Hoker’s lec-

tures). In particular, ifH̃ is an irreducible representation of the operator algebra, thenQ is completely
determined byδ and the properties [Q,O] = δO, QΩ = 0.

3. If there is no anomalies, the elementQ commutes with the Hamiltonian and with all gauge
invariant local operators which involve no ghosts.
Remark. As in the Lagrangian setting, here the explicit expression forQ is independent onΛ only
if one uses the operatorh corresponding to the auxiliary field in the Lagrangian. This operator can
be expressed via other operators in the theory, in a way which depends onΛ: h = −Λ. If one makes
this substitution, the obtained formula forQ will involve Λ. Thus, property 2 should be understood as
follows: there exists a formula forQ in terms of the fields (includingh!) which is independent onL
andΛ but depends only on field configuration.

Let Hq
Q be the cohomology ofQ on H̃ , graded by ghost number.

The properties ofQ which usually hold are
1. Hq

Q vanishes ifq < 0.

165



2. The Hermitian form is degenerate on the kernel ofQ in H̃0 (operators of ghost number zero);
the kernel of this form is the image ofQ. The induced form onH0

Q is positive definite.

The spaceH0
Q plays the role of the physical Hilbert space of the theory, so we denote it byHphys.

In the spaceHphys, we have an action of the HamiltonianH and “physical” local operatorsO ∈ H0
δ
.

These operators no longer involve ghosts and correspond to actual observables of the theory.
Let us now compare the BRST and the “traditional” approaches to quantization of gauge theory.

For simplicity, we consider pure gauge theory. Traditionally, a scheme of quantization would be as
follows. Suppose that the space part of the spacetime is compact. In this case we have seen that
classically the space of solutions to the equations of motion can be realized asT∗A, whereA is the
space of connections on a space cycle modulo gauge transformations. Therefore we would define
the Hilbert space asL2(A) (with respect to some measure). We call this Hilbert space the traditional
Hilbert space.

We claim that these approaches give the same result, i.e.Hphys is isomorphic toHtrad as a repre-
sentation of the operator algebra.

First of all, Hphys does not depend on the gauge fixing termΛ, and the Hamiltonian and the
quantum operators inHphysdon’t depend on it either. This follows from the fact that whenΛ is varied,
operators in the pseudo-Hilbert spaceH̃ are changed by adding aδ-exact expression, so their action
onδ-closed vectors is changed by aδ-exact expression.

To identifyHphyswith Htrad we can use a convenient gauge fixing termΛ. It is enough to do it for
one such term, but we will do it for two – just for fun.

SetΛ = ud∗A + vA0, whereA0 is a time component of the connection (this uses the splitting of
spacetime into space and time). Then we get a sensible theory unless bothu = 0 andv = 0. Even
u = 0, v , 0 gives a nice theory – this gauge fixing term is called “temporal gauge”.

We first consider the caseu = 0. Then the Lagrangian is

L̂ =

∫
(

1

4e2
F2 +

1
2

v2A2
0 − vc̄

Dc
Dt

),

whereD denotes covariant derivative. Replacing ¯c with −vc̄, and tendingv to infinity (using the fact
that nothing depends onv), we see that the path integral is localized to the hyperplaneA0 = 0, and in
the limit we get a Lagrangian

L̂ =

∫
(

1

4e2
F2 + c̄

dc
dt

), (16.8)

SinceA0 is now zero, we get usual quantum mechanics where dynamical variables are a spacial
connection, its time derivative, and the ghosts. Thus,H̃ has the formO(Ã) ⊗ Λĝ∗, whereÃ is the
space of connections on the space cycle,O(Ã) is the space of functions oñA, g̃ is the Lie algebra of
the group of gauge transformations on the space cycle, andΛg̃∗ is the space of functions ofc ∈ Πg̃.
Moreover, the Hamiltonian for the ghosts vanishes since there is no nontrivial evolution on the space
of classical solutions (the Euler-Lagrange equations for ghosts are simplydc

dt = dc̄
dt = 0). Thus the

Hamiltonian in our theory is the usual gauge theory Hamiltonian

H =
1

2e2

∫
d3xF2

A +
e2

2
∇2

A,A ∈ Ã (16.9)

acting on the first component of the tensor product.
It is easy to see that the spacẽH with the grading by ghost number is nothing but the space of

the standard complex of the Lie algebrag̃ with coefficients in the moduleO(Ã). Moreover, from the
explicit formula forQ one gets that in this caseQ is exactly the differential in the standard complex.
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Thus, the physical Hilbert spaceHphys which is by definition the 0-th cohomology ofQ, is the 0-th
the cohomology of̃g with coefficients inO(Ã). This is just the space ofg̃-invariants inO(Ã), i.e. the
space of functions on ˜A/G, which is by definition the traditional Hilbert spaceHtrad.

This shows that BRST cohomology is an infinite dimensional generalization of Lie algebra coho-
mology.

Now consider another gauge obtained by settingv = 0,u = 1: Λ = d∗A. Let us try to see the
isomorphism betweenHphysandHtrad using this gauge. We have,

L̂ =
1

4e2

∫
F2 + (

1
2

(d∗A)2 − c̄D∗dAc). (16.10)

In this case the equations of motion for ghosts are nontrivial and of second order, so the Hilbert space
H̃ consists of functions ofAs, c, c̄,A0, whereAs is a connection on the space cycle. In this case, one
finds

Q = QLie algebra cohomology+ Q′, (16.11)

whereQ′ =
∫
πc̄πA0, andπc̄, πA0 are the momentum operators for ¯c, A0.

It is easy to check directly that the two summands in (16.11) anticommute, and that (Q′)2 = 0. It
can also be checked thatQ′ is acyclic except in 0-th degree, where it has a 1-dimensional cohomology.
Thus, by Kunneth formula, we again getHphys= Htrad.
16.7. Anomalies.

Now let us recall conditions 1,2,3 which were necessary for the BRST construction, and analyze
when they are satisfied. These conditions are

1. Lagrangian:δ2 = 0.
Hamiltonian:Q2 = 0.
2. Lagrangian:δ is independent onΛ andL̃.
Hamiltonian:Q is independent ofΛ, L̃.
3. Lagrangian:δLef f = 0.
Hamiltonian: [Q,H] = 0.
As we mentioned, properties 1 and 2 can always be attained.
However, as we also mentioned, Property 3 may fail if anomalies are present. So let us consider

anomalies more closely.
Consider a 4-dimensional gauge theory with a chiral spinorψ with values in a complex represen-

tationρ of the gauge groupG and antichiral spinor̄ψ with values in the dual representation̄ρ. The
basic gauge-invariant Lagrangian for such fields is

L =
1

4e2

∫
F2 +

∫
ψ̄DAψ. (16.12)

In quantum theory we are interested in the path integral
∫

e−L. Integrating outψ in this path integral,
we get ∫

det(DA)e−L(A)DA, (16.13)

whereDA : Γ(S+)→ Γ(S−) is the covariant Dirac operator andL(A) the Lagrangian of the pure gauge
theory.

Integral (16.13) may not have a gauge invariant regularization. What is worse, it may not even have
a non-gauge-invariant regularization for which the gauge invariance is restored as the cutoff goes to
infinity. In this case the gauge theory we are considering does not make sense quantum mechanically,
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even in perturbation theory, because gauge symmetry cannot be restored. This phenomenon is called
an anomaly.

A geometric reason for an anomaly is that although the operatorDA is gauge invariant, its determi-
nant det(DA), in general, fails to be gauge invariant. In other words, this determinant is not a function
on the space of gauge classes of connections but rather a section of some line bundle over this space,
called the determinant line bundle; this bundle comes with a canonical connection. If this canonical
connection does not trivialize the bundle, this “function” cannot be sensibly integrated.

It is useful to distinguish two types of anomalies.
1. Local anomaly. The canonical connection has a nonzero curvature. In this case for suitable

spacetime manifolds this curvature may represent a nontrivial second cohomology class, so that the
determinant bundle is not trivial topologically.

2. Global anomaly. The canonical connection is flat but has a nontrivial monodromy (and possibly
the bundle is not trivial).

Thus, both local and global anomalies can produce topological anomalies, but only the first one
can be seen in perturbation theory (by computing of the curvature).

Here we will consider only local anomalies.
Remark 1. To analyze when we can expect local anomalies, one may consider the situation from the
topological point of view. We assume that our spacetimeM is compact and orientable (e.g.Sd), with a
specified point∞, and will consider bundles, connections, and gauge transformations which are trivial
at infinity. In this case the space of gauge classes of connections can be regarded as a classifying space
BĜ for the group of gauge transformationsĜ. Nontrivial line bundles onBĜ are classified byH2(BĜ).

Now, if M is compact and orientable, we have the transgression mapτ : H2(BĜ) → Hd+2(BG)
defined as follows: given a two-dimensional homology class, pick a surfaceS in BĜ which represents
it, and take the corresponding principalĜ-bundle onS. Its transition functions can be considered as
transition functions of aG-bundle on the 6-dimensional manifoldS× M, which defines an element
τ([S]) of Hd+2(BG). Consider the dual mapτ∗ : Hd+2(BG)→ H2(BĜ). It can be shown that the Chern
class of our line bundle isτ∗(C), whereC is a fixedd + 2-dimensional characteristic class which does
not depend onM, and is computed locally from the curvature. This class is exactly the local anomaly.

Thus ford = 4 local anomalies live inH6(BG), or (S3g)g, whereg is the Lie algebra ofG.
For example, in the standard model the gauge group isSU(3)×SU(2)×U(1), and thus the space of

anomalies (S3g)g is 4-dimensional: it equals to the sum of four subspacesS3
inv(su(3)),S3

inv(u(1)),S2
inv(su(2))⊗

u(1),S2
inv(su(3))⊗u(1), which are 1-dimensional (here “inv” denotes that we are taking invariant sym-

metric polynomials).
This discussion illustrates why anomalies don’t arise in the case when all fermions are in a real

representation of the gauge group. Indeed, in this case, the determinant bundle is real, and thus its
Chern class must be zero.
Remark 2. Although the local anomaly can be considered from the above topological point of view,
one should remember that it has a purely local nature, and has nothing to do with the macrostructure of
the spacetime. If there is a local anomaly, the quantum theory will not make sense on any spacetime,
even onRd. The problem is that even if the determinant bundle is topologically trivial, it will not have
a flat connection defined in a local way: otherwise this flat connection would have been good for any
simply connected spacetime, and no topological anomaly would arise. Thus, path integral (16.13) is
not sensible even onRd.
Remark 3. In the standard model, the gauge group isSU(3) × SU(2) × U(1). In particular, there
is a possibility for local anomalies, and they do appear in reality. However, one can check that the
anomalies coming from the different matter fields of the standard model miraculously cancel, in all
four components of the space of anomalies. An explanation of this is that the representation of the

168



gauge group in the standard model extends (after adding some insignificant summands) to a spinor
representation ofSpin10, for whichH6(BG) vanishes.

Let us show how to analyse anomaly in perturbation theory. Our goal is to explain why, after
possibly enlarging the space of fields, properties 1. and 2. of section 16.3 can always be assumed to
hold (that is,δ2 = 0 andδ is defined independently of the choice of a particular Lagrangian) but one
cannot assume that the effective Lagrangian is delta-invariant.

First, let us just try to make sense of integral (16.3) perturbatively. When we write down Feynman
diagrams, we will find divergences in the 1-loop order which we cannot remove in a gauge invariant
fashion. To fix the 1-loop order, we will regularize the path integral by adding another, very heavy
matter fieldχ such that its determinant bundle is inverse to that forψ. In favorable cases, our original
theory should be recovered from this theory in the limit when the massmof χ goes to infinity. In other
cases, the procedure will exhibit why there is an anomaly.

To satisfy this condition, the matter fieldχ can be taken to be a bosonic field (χ+, χ−) with values
in (S+⊕S−)⊗ρ. In this case the complex conjugate fieldχ̄ is with values in (S+⊕S−)⊗ ρ̄, whereS+,S−
are the spin representations of the Poincare (recall that bothS+ andS− are self-dual and self-complex-
conjugate in Euclidean signature). It is of course needless to say that these fields violate spin-statistics
and therefore, like ghosts, don’t make physical sense.

The natural Lagrangian term for the fieldsχ± would be

L′(A, χ±) =

∫
d4x((χ̄+,DAχ−) + (χ̄−,DAχ+) + m(χ̄+, χ+) + m(χ̄−, χ−)) (16.14)

(Here the Dirac operator is skewselfadjoint).
Remark. Theχ’s are called Pauli-Villars regulator fields.

If we add expression (16.14) to the Lagrangian, we will get the squared absloute value of the
determinant rather than the determinant itself, and will not fix the anomaly. Thus, we modify (16.14)
in a way that breaks the gauge invariance: we letA0 be a fixed connection and set

L′′(A, χ±) =

∫
d4x((χ̄+,DAχ−) + (χ̄−,DA0χ+) + m(χ̄+, χ+) + m(χ̄−, χ−)) (16.15)

Now consider the theory with the LagrangianL + L′′. Integrating out theχ fields, we will get a
factor det(DADA0 − m2)−1. For m = 0 this factor is gauge invariant up to a multiplicative constant,
and cancels the determinant in the numerator, which is caused by anomaly. This shows that in this
theory, we don’t have a topological anomaly for any finitem (i.e. the appropriate determinant bundle
is trivial). However, form > 0, the gauge invariance fails. So we have to study the limitm → ∞
(which is supposed to recover our original theory) and see whether the gauge symmetry reappears.

Differentiating the determinant ratio det(DADA0 −m2)/det(DA) in the direction of a gauge trasfor-
mation t ∈ ĝ, we obtain (using the path integral interpretation) that it is equal tom〈

∫
[(χ̄+, tχ+) +

(χ̄−, tχ−)]〉, where〈X〉 denotes the expectation value ofX. This expectation value has a decomposition
in powers of 1/m.

To see whether the failure of gauge invariance persists form→ ∞, let us consider the two-point
function of the curvature operatorF. It is easy to see that the leading contribution (in 1/m) to the
derivative of this function in the direction oft is from the 1-loop diagram with aχ loop having the t
operator inside and two outgoingF-edges. This contribution is of the 0-th order in 1/m, and has the
form

∑
dabctaFbFc, wheredabc is some tensor. So ifdabc , 0, the gauge-noninvariance remains in the

limit.
Remark. In case the original fermions were in a real representation,dabc is zero and the regularization
in (16.14) is completely satisfactory. The problem arises when the original representation is complex.
Then a regularization as in (16.14) doesn’t work unless one gives up gauge invariance.
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Remark. Whendabc , 0, one can choose a regularization scheme to remove all loop contributions to
the non-gauge invariance except 1 loop.

Now let us consider anomalies from the BRST veiwpoint. If a local anomaly is present, we will
haveU = δLef f(A) , 0 (hereLef f(A) is the effective Lagrangian forA, with the ghosts integrated out).
However, since the anomaly is localU must be the integral of a local expression ofA andc which is
linear inc. It is also clear thatδU = 0. Furthermore, one can show thatU involves onlyA and its first
derivatives (and no matter fields).

On the other hand, ifU is δN whereN is the integral of some local expression ofA then we can
arrangeδLef f = 0 by redefining the Lagrangian asL → L+N. Thus, anomalies lie in the cohomology
of δ on local functionals of degree≤ 1 of A andc (linear inc) modulo complete derivatives.

Now let us show that such cocycles are in fact related to invariant symmetric tensors on the Lie
algebrag (or equivalently, the cohomology ofg).

Let C be aG-invariant element inSn+1g. To this element there corresponds a 2n + 2-dimensional
characteristic class ofG-bundles, namelyC(Fn+1), whereF is the curvature. The Chern-Simons

form CSC(A) corresponding toC is the local 2n + 1 form such thatδ̃C(Fn+1)
δ̃A

= CSC(A) ∧ δ̃A modulo

differentials of local forms (herẽδ denotes the variation to distinguish from the BRST differentialδ).
The main property of the Chern-Simons form is the following. Although this form is not gauge

invariant, its Lie derivative along an infinitesimal gauge transformation is a differential of a local form.
Now let M2n be our spacetime. LetA be a connection onM2n. We want to define a functional of

the formU(A) =
∫

W(A), whereW(A) is a 2n-form onM2n which is local inA but not gauge invariant,
and such thatδW = 0.

Let X2n+1 is a smooth manifold with boundary equal toM2n. Choose an extension of the connec-
tion A to X2n+1 in any way (for simplicity we assume that there is no topological obstruction to the
choices ofX and the extension ofA; this assumption is in fact inessential). Now setV(A) =

∫
X

CSC(A).
This functional depends on the extension ofA to X. However, by the main property ofCS, the func-
tional δV(A) = W(A, c) (whereδ is the BRST differential) does not depend on the extension and
therefore is a local functional inA andc linear in c. One can show that it represents a nontrivial
cohomology class in the localδ-cohomology. Thus, we get an injective mapSn+1(g)g → H1,local

δ
. For

4-dimensional theoriesn = 2 and the cocycles come from (S3g)g = H6(BG) as we expected.
Recall (Lecture 2) that in a Hamiltonian approach to classical gauge theory, the phase space is

obtained as a symplectic quotient of the cotangent bundle. The quantum analogue of taking symplectic
quotient is taking invariants in the Hilbert space. If degeneracies are present,

In the future it will be convenient to eliminateh and use the Lagrangian̂L. After elimination of
h, we will haveδc̄ = h = −Λ. However, in presence ofh the operatorδ is independent on the theory
and onΛ and depends only on the field configuration, which is an important property ofδ; this is the
reason thath is introduced.
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Lecture II-17: N = 2 Super-symmetric Yang-Mills theories in dimension four: Part 1

Edward Witten 1

1 Introduction

Today we shall be studying the dynamics ofN = 2 super-symmetric Yang-Mills theories in four-
dimensions. The underlying manifold on which we shall study these theories will be Minkowski
four-spaceM4 = R3,1. We are mainly interested in the case when the gauge groupG is SU(2). Since
low energy limits ofSU(2) theories can generateU(1)-theories, we shall begin by studyingU(1)-
Yang-Mills theory. One should note that theseU(1)-theories are purely unrenormalizable (all terms
are unrenormalizable) in dimension four. Thus, they don’t make sense as fundamental theories, but
they are free in the infra-red. But, by the same token, we can study their low energy limits by doing
semi-classical calculations. Of course, when we get to theSU(2)-theory we will be dealing with an
asymptotically free, renormalizable theory which has strong quantum effects. This is then a reasonable
fundamental theory, but its low energy limit is hard to understand.

We shall eventually use the analysis of low energy limits of these gauge theories on Minkowski
space as a tool in the analysis of low energy limits of these theories on compact Riemannian four-
manifolds. Understanding these limits will give another mechanism for computing certain correlation
functions associated to cycles in the four-manifold. These correlation functions can be computed in
the low energy limit because one shows that they are invariant under deformation of the parameters.
Computing in the high energy limit, one identifies these correlation functions with differentiable in-
variants, namely the Donaldson invariants of the four-manifold. In this way we obtain totally different
expressions for the Donaldson invariants of a four-manifold. In most cases these invariants can be
directly computed from aU(1)-monopole theory. This then produces the link between the Donaldson
polynomial invariants and the Seiberg-WittenU(1)-monopole invariants. All this is the subject of the
next several lectures. Today we study low energy limits ofU(1)-gauge theories.

2 Low Energy U(1) N = 2 super Yang-Mills Theories

2.1 The basic fields

Consider pureN = 2 super Yang-Mills theory in four-dimensions with gauge groupU(1). This means
that the fields in the Lagrangian will form a singleN = 2 vector super-multiplet. That is to say, we
will have the gauge field, and itsN = 2 super-symmetric partners. All the fields will be massless.
Let us recall from the super-homework what theN = 2 massless vector super-multiplet looks like
in dimension 4. Massless particles are associated to representations of the ‘little’ subgroupSpin(2)
in the Lorentz groupSpin(3, 1) fixing a nontrivial vectorv ∈ R3,1 of norm zero. The ‘helicity’ of
such a particle (i.e., its spin around its direction of motion) is the representation of its stabilizer.
These are indexed so that the fundamental representation ofSpin(2) is labeled 1/2. The irreducible
representations of the Poincaré group that comprise theN = 2 vector super-multiplet in dimension
four are arrayed as pictured below:

helicity −1 −1/2 0 ⊕ 0 1/2 1
multiplicity of representation 1 2 1 1 2 1.

1Notes by John Morgan
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The action of CPT conjugation on these representations is to interchange the right and left halves of
this table. This multiplet has aU(2)R symmetry, acting so as to preserve helicity. Thus, theSU(2)R ⊂
U(2)R acts trivially except on those particles of helicities±(1/2). On each of these it acts via the
fundamental two-dimensional representation. TheU(1)R acts trivially on the states of helicity±1
and acts by (two copies of) the standard representation on the states of helicity±1/2 and by the±2
power of the fundamental representation on the states of helicity zero. The CPT involution normalizes
the U(1)R and acts on it by conjugation. Thus, the representation ofU(1)R on the other half of the
multiplet is given by the negative of the above.

The fields of anN = 2 vector super-multiplet onN = 1 super-space in dimension four decompose
into anN = 1 vector multiplet and anN = 1 chiral multiplet. TheN = 1 vector super-multiplet is the
gaugeN = 1 super-multipletA. The fieldA is the super-connection and (after partial gauge fixing to
Wess-Zumino gauge) consists of a triple

A = (A, λ,D)

whereA is the usualU(1)-gauge field,λ is a fermion field, andD is an auxiliary field. The curvature of
A is a two-form onN = 1 super-space. The entire curvature form is determined by certain components
Wα which are (12,0) spinor chiral super-fields. (Representations ofSpin(3,1) = SL2(C) are indexed
by an ordered pair (a, b) of half-integers. The pair (1/2, 0) indexes the defining two-dimensional
complex representation. It is chiral because the second half-integer is zero.) The only way that the
super-connectionA enters the action is through the fieldWα. The other fields form anN = 1 super-
multiplet calledΦ. This is a (scalar) chiral super-multiplet. It consists of

Φ = (φ, ψ,F)

whereφ is a complex-valued scalar field,ψ is a fermion, andF is an auxiliary field. The auxiliary
fieldsD andF enter the action quadratically and without derivatives so that they can be integrated out
using the equations of motion. Thus, they play no role in the analysis.

2.2 The Lagrangian

Now we are ready to write the Lagrangian for the pureN = 2 U(1)-gauge theory in four-dimensions.
Though we require imposeN = 2 super-symmetry, we choose to write the Lagrangian first as a
Lagrangian for fields onN = 1 super-space and then study the consequences of the extra super-
symmetry. The Lagrangian is:

L =

(
i

4π

∫
d4xd2θτ(Φ)WαWα + c.c.

)
+

1
4π

∫

R3,1|4
d4xd4θK(Φ,Φ). (2.1)

As we remarked above,W is a piece of the curvature of theN = 1 super connectionA. It is a chiral
super-field. The functionτ(Φ) is a holomorphic function on the complex plane (or more generally the
complex curve) whereΦ takes its values. SinceΦ is a chiral super-field it follows thatτ(Φ) is also a
chiral super-field. We write

τ =
θ

2π
+

4πi

e2
.

Lastly,K(Φ,Φ) is a Kähler potential onΦ-space.
We have encountered this Lagrangian before, with one essential difference. That difference is

that here we are not assumingτ is constant. Rather we allow it to be a holomorphic function ofΦ.
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Briefly, the reason that we consider this generalization is that this theory will arise as a low energy
limit of someSU(2)-theory. That theory will have a complex plane of classical vacua (i.e., the space
of minima of the potential energy will beC). We find terms in the low energy limit which involve
functions on this space of classical vacua (cf, sigma-models arising as low energy limits). It is in this
way that the non-constant holomorphic functionτ arises. The main application we have in mind for
this study is to the low energy limits ofN = 2 super-symmetric pureSU(2) gauge theory. Of course,
in the low energy limitΦ will be slowly varying, i.e., almost constant. To the extent thatΦ is almost
constant the same will be true ofτ, and we find ourselves expanding around a low energy effective
theory with constantτeff.

Another difference of this Lagrangian from the generalN = 1 super-symmetric Lagrangian is
that there is no super-potential term. The reason is that one can have such a term in anN = 1
super-symmetric theory onN = 1 super-space in four-dimensions, but the extra conditions imposed
by requiring the theory to haveN = 2 super-symmetry imply that this term must be zero. Another
related, but more delicate, consequence of the same idea is thatN = 2 super-symmetry imposes a
relation betweenτ andK. To see this, let us write out the Lagrangian in components. We get

L =
1
4π

∫

R3,1
d4x

(
i
[
τ(F+ ∧ F+) − τ(F− ∧ F−)

]
+ Kφφ∂φ∂φ (2.2)

+Imτλi/∂λ + Kφφψi/∂ψ
)

One thing which is clear from this formula, which we have seen before, is that it is not the Kähler
potentialK(Φ,Φ) per sethat enters into the Lagrangian; only the Kähler metricKφφ∂φ∂φ of the
potential enters.

To see the relation ofτ andK we use theSU(2)R-symmetry which is a consequence ofN = 2
super-symmetry. Notice that ifKφφ = Imτ, then the pair (λ, ψ) form a multiplet for theSU(2)R which
is isomorphic to the standard representation. Conversely if there is anSU(2)R-symmetry, then with
an appropriate holomorphic redefinition of the coordinates the (λ, ψ) form a standard multiplet for the
SU(2)R action. Thus, in these coordinates the coupling terms forλ, λ andψ, ψ must have the same
strength, and hence with this choice of coordinates we have Imτ = Kφφ. One immediate consequence
of this is that Imτ > 0. This seems like a problematic condition. Locally it is not hard to ensure
that it holds, but for a global holomorphic function on all ofC it cannot be achieved. There are two
possibilities to contemplate. One is that asτ approaches the real axis, for some reason the physics
breaks down. One would then be faced with studying what happens at these ‘bad’ limits. Another
possibility is thatτ is multi-valued. After all, we already know that the transformationτ → τ + 1
(i.e., increasingθ by 2π) does not affect the theory. So at least to that extent one must considerτ as
multi-valued. Of course, this does not solve the problem we are addressing since any non-constant,
entire holomorphic functionτ to C/{τ � τ + 1} still cannot have Imτ > 0. To arrange this we need a
larger group of indeterminacy for the values ofτ. For example, recall that it is easy to construct global
holomorphic functions into the upper half-plane if we permit them to be multi-valued, say under the
standard action ofSL2(Z). As we shall see, this is exactly what happens in this case.

2.3 Indeterminacy ofτ

In order to make the notation consistent with that of [Seiberg-Witten ???] we setφ = a. The term in
the Lagrangian derived from the Kähler potential becomes

i
4π

∫

R3,1
d4x(τ − τ) ∂a

∂xi

∂a

∂xi
,
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which means that the induced Kähler metric on theΦ-plane, now calledU, is

ds2 =
i

4π
(τdada− daτda),

wherea is a local holomorphic coordinate on theU. It is convenient to introduce another holomorphic
functionaD (calledthe dual ofa) locally on an open subsetV of U with the property thatdaD = τda.
Given this, we can re-write the metric onV as

ds2 =
i

4π
(daDda− dadaD).

We denote byΩ the Kähler form of this metric:

Ω =
−1
8π

(daD ∧ da− da∧ daD) .

We can view this more symmetrically ina andaD by forming the complex two-space with coordinates
(a, aD). Then there is an embedding of the complex curvef : V → C2 into this complex two-space so
that the image is a solution curve for the differential equationdaD = τda. This embedding will be the
graph of either of the variables as a function of the other. Letω = −1

8π (da∧ daD − daD ∧ a). It is a
closed, non-positive (1,1)-form on complex two-space. Of course,f must be such thatf ∗ω = Ω > 0.

The question is: How much freedom do we have in the representation of the theory in terms of the
parametersa, aD (and implicitly τ)? Said another way, In what ways can we find other Lagrangian’s
of this form with differenta andaD (and hence differentτ) which represent the same theory? Just
considering the K̈ahler potential term we see an obvious geometric change of coordinates that brings
the Lagrangian back into the same form with different values of the parameters. Namely, we can act
by an extended versionISL2(R) of SL2(R). We define

0→ C2→ ISL2(R)→ SL2(R)→ 0

to be an extension which is a semi-direct product with the natural action ofSL2(R) onC2. An element

(M,

(
cD

c

)
) in this group acts by

(M,

(
cD

c

)
) ·

(
aD

a

)
= M ·

(
aD

a

)
+

(
cD

c

)
.

Sinceτ = daD
da , one sees that the action of this group onτ is the usual fractional linear transformation

of M onτ ∈ H: (
r s
t u

)
· τ =

uτ + t
sτ + r

.

In this way this change of variables brings thed4θ term of the Lagrangian back into the same form
with a differenta,aD, τ.

This computation with the K̈ahler metric leads us to ask whether the non-uniqueness in our de-
scription of the holomorphic functionτ should be that we are allowed to composeτ with anySL2(R)
fractional-linear transformation. But we must examine the other term in the Lagrangian whereτ ap-
pears. That is in the term involving the gauge field (or photon). Recall from Lecture II-8 what happens
for constantτ. Sinceτ = θ

2π + 4πi
e2 and the action is given byeiL, if we consider strictly upper triangular

matrices the only ones that leave invariant this part of the action are those of the form
(
1 b
0 1

)
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with b ∈ Z. As we have seen in Lecture II-8, this action of the strictly upper triangular matrices
in SL2(Z) extends to an action ofSL2(Z) on representations of the theory. That is to say, ifτ and
τ′ in H differ by the action ofSL2(Z), then the pureU(1)-gauge theory withτ as parameter has
another representation as aU(1)-gauge theory (with different basic fields) where the parameter isτ′.
The transformationτ → (−1)/τ is the duality transformation inU(1)-gauge theory interchanging the
electric and magnetic charges. The upshot of all this is that the full symmetry group of representations
of the theory by Lagrangian’s of the given form is

ISL2(Z) = C2 × SL2(Z).

The way this group transforms the parameterτ is through composing with the usual fraction linear
transformation action ofSL2(Z) on the upper half-plane.

We now see how to describe our low energy effective theory globally. There is a complex curve
U of vacua and there is a global holomorphic functionτ : U → H/PSL2(Z). Furthermore, for each
u ∈ U there is a neighborhoodV of u, a lifting of τ to a holomorphic functionτ : V → H, andN = 1
super-fieldsA,Φ such that there is a Lagrangian in the form given in Equation 2.1 (or Equation 2.2 in
components) which represents the theory inV. As we pass from one of these open subsets to another,
the representation of the low energy effective theory locally by Lagrangian’s changes. The function
τ changes by the natural action ofSL2(Z) on H. The chiral super-field changes by the action of
ISL2(Z) described above, and the gauge super-fieldA changes by the duality action ofSL2(Z) action
on the representations of pureN = 1 super-symmetricU(1)-gauge theory as described in Lecture II-8.
Because there are global holomorphic functions toH/SL2(Z), this is a completely consistent picture
of a global theory in which Imτ never goes to zero.

2.4 The Family of elliptic curves associated toτ

We have now established all the relevant general features of the low energy effective theories we
want to study. We have anN = 2 super-symmetric pureU(1)-gauge theory with a family of vacua
parameterized by a complex curveU, where the scalar fieldφ = a takes its values. This curve has an
open covering{Vα} and on each open subset there is a pair of dual holomorphic coordinatesaα,aαD
so thatτα =

daαD
daα is the parameter appearing in the Lagrangian. We assume that the different local

representations of the theory differ by automorphisms inISL2(Z). We have just seen that the local
holomorphic functionτ on U which appears in the Lagrangian is in fact a global function ofU to
H/SL2(Z). Thus, for eachu ∈ U it is natural to considerτ(u) as thej-invariant of an elliptic curve
E(u). Of course, it is possible that at a discrete set of points{pi}i in U that τ goes off to infinity,
or equivalently that the elliptic curvesE(u) develop a node asu → pi . At these points the physics
changes and there are more massless fields, fields that become massive at nearbyu ∈ U.

There is a natural way to fit these elliptic curves together. Namely, there is a complex analytic
surfaceE together with a proper holomorphic mapE → U whose fibers form the family of elliptic
curves{E(u)}u∈U The simplest way to construct such a family is to take the Weierstrass form. That is
to say, there are functionsA,B onU such thatE is defined by

Y2 = X3 + AX + B,

with an appropriate completion of the missing point at infinity in each elliptic curve. (For globally
non-trivial basesU, we will have a line bundleL over U andA andB will be sections ofL⊗4 and
L⊗6, respectively.) This family of elliptic curves has a natural section (the section at infinity in the
Weierstrass description), and thus, it can be viewed as a family of one-dimensional Abelian varieties.
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There are, of course, other families of holomorphically varying genus-one curves over the same base
with the samej-invariant function but without a section. But given the information of thej-invariant
function only, there is no distinguished family except the one with a section.

Suppose that we have a family of elliptic curvesE → U with a sectionσ. Furthermore, suppose
that we have an open covering{Vα}α of U such that on eachVα there are a pair of dual holomorphic

coordinatesaα, aαD such thatτα =
daαD
daα is a function to the upper half-plane. We suppose that these two

sets of data are related as above. That is to say,E|Vα is isomorphic to the familyVα×C/(1, τα(v)). This
allows us to define one-cyclesEα

1(u),Eα
2(u) ⊂ E(u) for all u ∈ Vα as the images of the arcs{u} × [0,1]

and{u} × [0, τα(u)] in {u} × C. Then, there is a differential of the second kindλα (i.e., a meromorphic
one-form with trivial residue along its polar locus) onE|Vα such that

∫

Eα1 (u)
λα = aα(u)

∫

Eα2 (u)
λα = aαD(u).

In general, we can not fit these differentialsλα of the first kind together to produce a global object.
(We will see the precise conditions when this can be done soon.) But we claim that we can fit together
the two-formsdλα. Namely, we claim that we there is a unique global holomorphic two-formη onE
such that onE|Vα we have ∫

Eα1

η = daα

∫

Eα2

η = daαD.

Of course, the uniqueness assertion immediately implies that the restriction of any such global two-
form η to Eα is equal todλα.

Recall thatEα is identified withVα × C/(1, τα(u)). On the universal covering spaceVα × C we
have the holomorphic one-formdz induced from the standard holomorphic coordinate onC. This
one-form does not descend to the quotient becauseτ is not a constant function ofaα. Nevertheless,
the two-formdaα ∧ dzdoes descend to give a well-defined two-form onEα. It is clear that the only
holomorphic two-form onE|Vα which satisfies the first integral equation above is

ηα = −daα ∧ dz.

This two-formηα also clearly satisfies the second integral equation. Now we need to see that these
local two-forms fit together to give a global formη. But this is clear from the uniqueness of the local
forms.

Now let us computeπ∗(η ∧ η), whereπ is the projection fromE → U. Let us restrict attention to
E|Vα . From our local description we have

π∗(η ∧ η) =

∫

fibers
dλα ∧ dλ

α
.

It follows immediately from the formulas for the integrals ofdλ over Eα
1 andEα

2 and the fact that
Eα

1 · Eα
2 = 1 in the homology ofE(u) that the result is

π∗(η ∧ η) = daα ∧ daατα + daα ∧ daατα = (τα − τα)daα ∧ daα = 8πΩ|Vα .
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Since the two-formη is holomorphic, it integrates trivially on any fiber and on the sectionσ of the
elliptic fibration. Thus, its homology class is determined by the integrals ofη along two-tori which lie
over circles inU.

The deRham cohomology class ofηmeasures whether or not the automorphisms required in pass-
ing between our local descriptions in terms of various sets of (a,aD, τ) lie in SL2(Z) or in the extended
groupISL2(Z). We claim that if the deRham homology class ofη is trivial, then the automorphisms
we use lie inSL2(Z). The point is the following. We already know that the change inda,daD is by
elements inSL2(Z). We need to compute the changes ina,aD. If we go around any loopγ in U with
the property thatE1 comes back to itself, then the cyclesE1(γ(t)) fit together to make a torus and the
integral around this torus ofη is equal to

∫
γ

da. If this integral is trivial, thena can be analytically
continued around this loop to a single valued function. Similar arguments apply toaD. Thus, if all the
periods ofη are trivial, thena, aD transform bySL2(Z).

In general, the deRham cohomology class of a holomorphic two-form such asη is trivial if and
only if there is a global differential of the second kindλ onE with dλ = η. In the more general case,
we can write the holomorphic two-formη asdλ for some global differentialλ of the third kind onE
(i.e., λ is a meromorphic one-form onE with constant residue along its polar locus.) In turns out in
our application to pureSU(2)-gauge theory, that the automorphisms between our various descriptions
lie in SL2(Z), so that we shall not need to consider this more general case. The proof of this fact is the
subject of the next section.

2.5 The BPS formalism

Our goal here is to show that if the low energy effectiveU(1)-gauge theory that we have been consider-
ing is the low energy limit of a pureN = 2 super-symmetricSU(2) gauge-theory, then the transforma-
tions between the various local descriptions in terms of (a, aD, τ) of theU(1)-theory lie inSL2(Z). We
shall establish this by using the BPS formalism. In anyU(1)-theory we have two conserved charges,
the electric and magnetic charges:

Qe =
1
4π

∫

S2
∗F

Qm =
1
4π

∫

S2
F.

Here, we are doing the integrals on the sphere at infinity in some time slice in Minkowski four-space.
In pureU(1)-theory on four-space, these charges are both zero. But in the case that ourU(1)-theory is
the low energy limit of anSU(2)-theory these charges can be non-zero. Recall from Lecture II-9 that
ourSU(2)-theory has aU(1)-symmetry whose conserved charge is

Ne = Qe +
θQm

2π
.

As a result, this operator has integral eigenvalues. It is called the electric charge. There is another
conserved charge, the magnetic charge, given by

Nm = Qm.

This is the first Chern class of the line bundle at infinity and hence is clearly has integral eigenvalues
as well. Of course, as we saw in Lecture II-9 and II-9 these two charges are interchanged by duality.
Thus, both charges come fromU(1)-symmetries of the theory.
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At least in the case of constantτ they are related to theQe,Qm by

Nm = Qm

Ne = Qe +
θQm

2π

The N = 2 super-symmetry generatorsQi
α, i = 1,2 satisfy the relations of the super Poincaré

group
{Qi

α,Q
j
α̇} = δi

jPαα̇

wherePαα̇ is infinitesimal translation in the spatial direction{αα̇}. Also, we have

{Qi
α,Q

j
β
} = ε ij εαβU

whereU is multiplication by a scalar, the central charge of the theory.
In general, there is the BPS bound on the mass of any state which says

M ≥ |U|.

In addition, there is a good understanding of the BPS saturated states, i.e., those for which this in-
equality is an equality.

In our case we wish to compute the central chargeU. To do this recall that the Lagrangian (forτ
constant) is:

L =
1
4π

∫
d4xd2θiτWαWα +

∫
d4xd4θImτΦΦ.

From this one knows (from Lecture II-9) that for this value ofτ

U = aNe + aDNm

whereΦ = a + . . .. (On dimensional grounds, this formula holds even ifτ is not constant.) The
interpretation is that different realizations of the low energy theory correspond to different values of
a. In these realizationsU depends on the values ofa, aD by the above formula. Recall from Lecture
II-9 that (Nm,Ne) transform underSL2(Z) as we take different representations of our theory. SinceU
has to be unchanged, we see that if (

aD

a

)
7→ M ·

(
aD

a

)
,

then (
Nm Ne

)
7→

(
Nm Ne

)
·M−1

for anyM ∈ SL2(Z).
The first important point to notice is that we can not compensate for the operation of adding a

constant to

(
aD

a

)
by a change in (Nm,Ne). This shows that the automorphisms between the various

representations of theU(1)-theory in terms of (a, aD, τ) lie in SL2(Z). Thus, in this case we can
construct a differentialλ of the second kind onE such that for eachα we have

∫

E1

λ = aα

∫

E2

λ = aαD.
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onE|Vα .
More generally, if theSU(2)-theory has extra symmetries (as might be the case if we add matter),

then the form of the central charge becomes

U = aNe + aDNm + S

whereS is some other conserved charge. In this case it is possible to compensate for the affine
translations in (ad, a). Namely, we can have


aD

a
1

 7→


M

(
cD

c

)

(
0 0

)
1

 ·

aD

a
1



and

(
Nm Ne S

)
7→

(
Nm Ne S

)
·


M−1

(∗
∗
)

(
0 0

)
1

 .

In all these transformations no derivatives ofτ enter. In fact, what we did was to compute the
transformation laws forτ constant and just extended them in the obvious way to the case whenτ is
holomorphic. The reason that we know that this mechanism works is that on dimensional grounds
alone we know that no derivatives ofτ can enter the formulas. While one can consider the low energy
limits of these more complicatedSU(2)-theories with matter, we shall restrict ourselves to the case
when there are no extra symmetries and the transformations between the various representations of
our low energy theory lie inSL2(Z).

We gave a derivation of the formula for the central charge above from the form of the Lagrangian.
Let us give another derivation of the same formula (or at least a piece of it). Let us considerU(1)-
gauge theory with a chargedN = 2 vector hyper-multiplet. In theN = 1 language, this hyper-multiplet
is a pair of chiral super-fields (T, T̃) of equal but opposite charges. Super-symmetry implies that the
charges must be opposite, let us denote them by±ne. In the Lagrangian we have added a super-
potential

W = neΦTT̃.

SinceΦ = a + . . ., we see that the mass of the pair (T, T̃) is aNe. Thus, we see this term in the central
charge of the theory from this point of view.

2.6 Jumping of the BPS spectrum

Let us return to our low energyN = 2 super-symmetricU(1)-gauge theory given locally bya,aD. In
such theories the BPS mass inequality is

M ≥ |nea + nmaD|.

SinceNe andNm are integers, this is a good bound in the sense that it implies that there is a positive
constant which is a lower bound forM as long as the lattice inC generated bya andaD is a honest
lattice. Let us examine what happens as the lattice generated bya andaD degenerates, i.e., whena
andaD become collinear inC. At such points the triangle inequality is no long strict and this permits
states to decay to other lower states. In this way BPS states can disappear (or appear), accounting for
the jumping in the BPS spectrum.
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Generically, we expect this to happen along a real curve inU. (Notice the lattice generated by
(1, τ) is not degenerating, rather it is the lattice of values ofa andaD which is degenerating.) This
phenomenon is similar to that in Vafa’s lecture forN = 2 super-symmetric theories in dimension two.
There the jumping occurred when the values of the central charge became collinear. In the example
of interest, we shall obtain explicit information about the curve inU where the BPS spectrum jumps.

2.7 More about the application toSU(2)-gauge theory

As we have remarked in passing several times, we will study anN = 2 super-symmetricSU(2)-
gauge theory with no matter hyper-multiplets. We shall do this by studying the theory as anN = 1
super-symmetric theory withΦ an adjoint-valued chiral super-field. The microscopic (or high energy)
effective Lagrangian is given by:

Lmac =
1
4π

∫
d4xd2θτ0(Λ0)TrWαWα + c.c. +

1
4π

∫
d4xd4θImτ0(Λ0)TrΦΦ

whereW is a piece of the super-curvature of the super-connectionA on a principalSU(2)-bundle over
Minkowski space, andΦ = φ + θψ + · · · with φ being a field with values in the complexification of
the adjoint bundle. TheΛ0 refers to the ultraviolet momentum cut-off that we have chosen to regulate
theSU(2)-theory. Here,τ0 is a constant (in the fields) which depends on the value ofΛ.

The space of classical vacua is given by configurations consisting of trivial connections and con-
stant (covariantly constant) sectionsφ of C ⊗ su(2) which are zeros for the potential, up to gauge
equivalence. The potential for this Lagrangian is the norm-squared of the moment map

V =
Imτ0

4π

∫
d4xTr

(
[φ, φ]2

)
.

If φ is a zero of the potential function, then clearlyφ andφ commute. Writingφ = γ + iδ with
γ, δ ∈ su(2), we see that the condition thatφ andφ commute is simply thatγ andδ commute. This
means thatγ andδ can be simultaneously diagonalized. That is to say, up to gauge transformation,

φ =
1√
2

(
a 0
0 −a

)

for a ∈ C. There is a further conjugation, namely the action of the Weyl group, which in this case
is Z/2Z and acts by sendinga 7→ −a. Thus, the moduli space of classical vacua is a complex plane
parameterized by the complex coordinate

u = Trφ2 = a2.

In the classical theory, foru 6= 0 theSU(2)-gauge symmetry is broken toU(1) and the low energy
theory is as we have discussed today. It has a single massless multiplet, which becomes Higgs’ed and
acquires a mass. The low energy effective theory at the exceptional pointu = 0 remains an unbroken
SU(2)-gauge theory.

Let us examine it in light of our discussion today about low energy effectiveU(1)-theories. As we
have just explained the space of classical vacua is the complex plane – theu-plane. Let us examine the
metric on theu-plane. All points of this plane except zero correspond to aU(1)-theory as described in
this lecture. The metric on the space of classical vacua is induced from the natural metric on the space
of trivial connections and covariantly constant scalars in the complexified Lie algebra. This is simply
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the ad-invariant metric on the complexified Lie algebra. Restricting to the diagonal matrices as above,
we see that the induced metric isda∧ da. Sinceu = a2, this means that the metric on theu-plane is

ds2 =
dudu

|u|2 ,

which has a singularity at the origin. This singularity reflects the fact that at the origin there are
other masses fields so that the the low energy effective theory is not a pureN = 1 super-symmetric
U(1)-gauge theory at that point.

Now we can describe the family of tori over theu-plane punctured at 0, and the holomorphic two-
form η on the total space of this family. The functionτ is constant, and hence the family of tori has
monodromy contained in{±1} ⊂ SL2(Z). Since the metric on theu-plane minus the origin is given by
Imτda∧ da we see that the parametera =

√
u is the parameter of the same name in theU(1)-theory

(i.e., the first of the dual pair of local holomorphic coordinates on the base) and the dual parameteraD

is τa. This means that the monodromy around infinity (or equivalently around zero) sendsa to−a and
aD to −aD. This means that the family of tori over the punctureu-plane is obtained from the product
family (C − {0}) × E over the punctureda-plane by dividing out by the involution (a, z) 7→ (−a,−z).
(Here,E is the elliptic curveC/L(1, τ), the quotient of the complex plane by the lattice generated by
1 andτ.) The holomorphic two-formη is the image ofda∧ dz wheredz is a global holomorphic
one-form onE.

This description is of the classical theory. In the next lecture we shall discuss the quantum version
of this theory. It turns out that things change somewhat in going to the quantum theory, but the changes
are in some ways not as drastic as one might imagine. For example the space of quantum vacua will be
the sameu-plane, though the singular points will be different, and they will correspond to a different
type of object becoming massless. Also, the monodromy will be different.
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Lecture II-18: N = 2 Super-symmetric Yang-Mills theories in dimension four: Part II

Edward Witten 1

1 Review of material from the last lecture

We are considering pureN = 2 super-symmetric gauge theory (i.e., without hyper-multiplets) in four-
dimensional Minkowski space. The gauge group is eitherSU(2) or the closely related groupSO(3).
(In fact, working as we are today over Minkowski four-space, which is contractible, we will not see
the distinction between these two gauge groups.) We write the theory in theN = 1 super-symmetric
notation. The fields which form a singleN = 2 vector multiplet decompose under theN = 1 super
Poincaŕe group in four dimensions as a vector multipletA (the gauge fields) and a chiral super-field

Φ = φ + θψ + · · ·

whereφ is a scalar field (under the Poincaré group). It is a section of the complexification of the
adjoint bundle. The microscopic Lagrangian is

L =

∫
d4xd2θτ0(Λ0)TrWαWα + c.c. +

∫
d4xd2θImτ0(Λ0)Tr(ΦΦ)

whereW is a certain piece of the super-connection of the super-connectionA. (HereΛ0 is a cut-
off used to render finite the Feynmann path integrals. We varyτ0 as a function ofΛ0 in order to
renormalize, i.e., render the expectation values in the theory finite asΛ0 7→ ∞. In order to decide
how to renormalize we must fix a so-called ‘subtraction point’Λ at which to fix the value of one
parameter in the theory. We shall see later a convenient normalization scheme for this particular
theory which involves the details of the theory (theu-plane, etc). But for now we leave vague the
actual renormalization scheme. Once we have fixed the value of the extra parameterΛ, the coupling
constantτ0 is a function ofΛ0.) While τ depends on the cut-off, it is independent of the fields.

Our object today is to solve this theory by explicitly understanding the moduli spaceM of quan-
tum vacua, as well as a description of the theory near each vacuum state. As we established last time,
the space of classical vacua of this theory consists of gauge equivalence classes of constant matrices
in su(2)

1√
2

(
a 0
0 −a

)

modulo the action of the Weyl group, which is a group of order two switchinga and−a. This space
is analytically isomorphic toC and the natural local holomorphic coordinate to use on this plane is
u = Trφ2 = a2. While the analytic space of classical vacua is smooth, there is one point in the moduli
space of classical vacua where the Kähler metric becomes singular. This is the origin. The singularity
is a consequence of the fact that at this point there are more massless fields (in fact a super-symmetric
SU(2)-theory is the lower energy effective theory). Furthermore, as we discussed last time, away from
u = 0 the low energy effective theory is a pureN = 1 super-symmetricU(1)-gauge theory. Thus,
away fromu = 0, the nature of this effective theory is described by a family of tori over the punctured
u-plane. In the case of the moduli space of classical vacua this is a family of tori with constantj

1Notes by John Morgan
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invariant given by the choice ofτ in the Lagrangian. The monodromy around infinity for this family
is −1. The K̈ahler metric on theu-plane is

ds2 = Imτ
dudu

4|u|2 .

(Notice that there is a singularity in the metric atu = 0 as predicted by the fact that at this vacuum
there are extra massless fields classically.)

1.1 First results about the moduli spaceM of quantum vacua

LetM be the space of quantum vacua. Notice that, because we are assuming that our theory isN = 2
super-symmetric, the space of quantum vacua has a Kähler metric (from the weakerN = 1 super-
symmetry) and over this space of vacua there is a holomorphic family of tori. The fieldu, which is
a coordinate on the space of classical vacua, is a chiral field in the theory, and thus its expectation
values in the various quantum vacua defines a holomorphic function onM. We denote this function
by u: M→ C:

u(Ω) = 〈Ω|u|Ω〉, for all Ω ∈ M.

The part ofM that is most closely related to theu-plane of classical vacua is the region whereu
is large. More precisely, suppose that we have fixed the mass parameter,Λ, in the renormalization
scheme which determines the specific quantum theory we are studying. Suppose that we are studying
the theory near a classical vacuumΩ with u(Ω) >> Λ2. (Notice that sinceu has dimensions of
mass squared it naturally compares toΛ2.) Because ourSU(2)-theory is asymptotically free, and the
U(1)-theory to which it is limiting is free in the infra-red, ifu >> Λ2, then the quantum theory is
well-approximated nearΩ by the classical theory. This means that the low energy quantum theory
nearΩ is described by a sigma model on theu-plane, perhaps perturbed by some super-potential. But
N = 2 super-symmetry means that any such super-potential must be a constant, and hence cannot lift
the vacuum degeneracy nearΩ. (There is also the possibility of a Fayet-Iliopoulosθ-term to consider
as well, but theSU(2)R-symmetry rules these out.) What this argument shows is that for largeu there
is a unique quantum vacuum for each classical vacuum. That is to say, there is a constantC(Λ) > 0
and an open subsetU ⊂ M with the property thatu: U → ({z ∈ C||z| > C}) is a holomorphic
isomorphism.

In Seiberg’s lectures we have seen other examples of gauge theories where near infinity in the
space of classical vacua the gauge groupSU(Nc) is broken down to a non-abelian gauge groupSU(Nc−
Nf ). Since the gauge theory for this smaller group is not free in the infra-red, we cannot conclude
that the space of quantum vacua near infinity can be identified with the subspace of critical points
of a superpotential on the space of classical vacua. In fact, in these examples the moduli space of
quantum vacua is a finite covering space of the space of classical vacua near infinity. To repeat, this
is possible because the low energy theory is not free in the infra-red. When it is free, as in the case
under discussion now, and whenN = 2 super-symmetry rules out the existence of super-potentials,
the classical and quantum moduli spaces can be identified over a neighborhood of infinity in the space
of classical vacua.

One assumption that we shall make without any justification is that the moduli spaceM is com-
plete in an appropriate sense so that it corresponds to an open complex algebraic variety.

We have found one component ofM which has an end isomorphic underu to a neighborhood of
infinity in C. Two other questions present themselves:

• Are there other ‘ends’ ofM, ends that are not seen classically?
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• Are there other irreducible components ofM not seen classically?

The answer to the first question is ‘No.’ The point is that all ends of the quantum moduli space
must be visible classically, i.e, they must be related to ends of the classical moduli space. The reason
is that quantum effects are bounded and hence cannot effect a non-proper change in the passage from
the space of classical vacua to the space of quantum vacua.

As to the second question, there are no examples known where there are branches of the quantum
space of vacua which are not seen classically. Still in this generality, it has not been established that
such components do not exist. Nevertheless, in our case we can give arguments showing that there
are no other components. The first thing to note is that, by the answer to the first question, any other
component ofM must be compact. To exclude the possibility of other compact branches we use the
fact that the theory has a relevantN = 1 super-symmetric perturbation. That is the perturbation

∆L =

∫
d4xd2θεu + c.c.

whereε is a complex constant. As we saw in Lecture II-??, with this perturbation the resultingSU(2)-
theory has two vacua, each with a mass gap and each with confinement. If we examine what happens
to these perturbed theories in the low energy limit, then of course they look the same: they have two
vacua each with a mass gap and confinement. Thus, this perturbation would have to lift the vacuum
degeneracy along a compact componentN of M by adding a super-potential. On the other hand,
sinceu is a holomorphic function along this branch, it is constant. Now the super-potential term that
we have added to the microscopic Lagrangian is simplyεu which is constant along this branch. One
can see that this persists in the low energy theory, so that the low energy effective super potential is
also a multiple ofu, and hence is constant. This means that the addition of the above super-potential
cannot lift the vacuum degeneracy along this branch. Since we know the resulting low energy theory
has only two vacua, this implies that the other branch is in fact not present. (This argument still allows
for the possibility of isolated points (at most two), but we shall see later by counting singularities, that
they do not occur either.)

We have now argued thatM has a single branch (plus possibly at most two isolated points) and
that this branch has a single neighborhood of infinity which is mapped byu isomorphically to a
neighborhood of infinity in theu-plane. By our completeness assumption, we know thatM is a
possibly singular, irreducible complex curve with one puncture. The existence of the holomorphic
functionu with a only one pole, that being the simple pole at infinity ofM, implies thatM is actually
the complex plane and thatu is a global holomorphic parameter onM. Following the analysis of the
last lecture, our goal is to solve the theory by finding the family of elliptic curves (in Weierstrass form)
overMminus the singular points

y2 = x3 + A(u)x + B(u)

and a holomorphic two-formη on the total space of this family

η = f (u)du
dx
y

whose periods determine the differentialsda anddaD of the dual pair of local holomorphic coordi-
nates.

1.2 The nature of infinity in M
As we have already remarked, we obtain information near infinity inM, i.e., whereu is large using
asymptotic freedom of theSU(2)-theory. Our goal here is to compute the monodromy at infinity
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of the family of elliptic curves over the moduli space of quantum vacua. We begin by studying the
monodromy at infinity for the space of classical vacua. Recall that the space of classical vacua is the
space of matrices

φ =
1√
2

(
a 0
0 −a

)

up toa 7→ −a. The dual coordinateaD is given byaD = τcl.a whereτcl. is a constant (denoted byτ0

earlier) with large imaginary part. The global coordinate on theu-plane isu = Tr(φ2) = a2, so that
a =
√

u. From this it is clear that the monodromy at infinity in this classical family is−1.
The monodromy around infinity for the spaceM of quantum vacua is different. We give two

arguments calculating it. The first is based on asymptotic freedom and the second is based on the
U(1)R-anomaly. To computeτeff(u) for largeu we consider the 1-loop formula. With an appropriate
choice of the mass parameterΛ, the formula is:

Imτ =
4π

g2
eff

= 4π
(
2b0ln(

√
|u|/Λ)

)
, (1.1)

whereb0 is the 1-loopβ-function coefficient.
One loop computations identify

b0 =
1

4π2
.

Sinceτ is holomorphic, knowing its imaginary part determines it uniquely. We see that foru large we
have

τeff =
2iln(u/Λ2)

2π
. (1.2)

Thus, we see that monodromy around infinity shiftsτ by −2 and hence shiftsθ by −4π. This implies
that the monodromy around infinity inM is given by

(−1 2
0 −1

)
.

Said another way we are considering the system

u2 = a
daD

da
= τ =

2iln(u/Λ2)
2π

(1.3)

as we turn once around infinity. Clearly,a comes back to−a andτ comes back toτ − 2. The above
form for the monodromy then follows easily.

Now let us compute this monodromy using the anomalousU(1)R symmetry. Classically, the
U(1)R-charges of the component fields in the gauge super-multiplet are given as follows: the charge
of A is zero, the charges ofλ, ψ are 1 and the charge ofa is two. This means thatu = a2 has charge 4.
(This is related to the fact that in Donaldson theoryµ(pt) is four-dimensional.) This means that under
the U(1)R symmetryeiβ the variableu transforms byu 7→ ue±4iβ. In fact, the sign is negative. On
the other hand, as we know, there is a quantum anomaly breaking thisU(1)R down toZ/8Z (which
is the dimension of the one-instanton moduli space onR4). This is an index computation which uses
the fact that the Casimir of the adjoint representation ofsu(2) is 4 times the Casimir of the defining
representation. This means that under theU(1)R symmetryeiβ the angleθ transforms toθ − 8β. Thus,
as we transverse a loop around infinity in theu-plane the argument ofu changes by 2π, β increases by
2π/4 = π/2 andθ decreases by 4π. This means thatτ 7→ τ − 2 under the monodromy around infinity.
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Of course, these are not independent computations. Super-symmetry imposes a relation between
theU(1)R anomalies and theβ-function.

Actually, we can say more about the nature ofτ at infinity. For |u| >> Λ2 in perturbation theory
we have a series

τ(u) =
2iln(u/Λ2)

2π
+ τ≥2 (1.4)

where the first term is the sum of the classical value and the one-loop correction (as calculated above)
and the second term is the sum of the corrections for higher loops. These higher loop corrections
produce a power series ing2 (k-loop corrections produce the powerg2k−2). Since there are no loop
corrections toθ and sinceτ is a holomorphic function ofu, it follows immediately that all the higher
loop corrections vanish. Thus, in perturbation theory the one-loop correction is exact. There are
however non-zero corrections to the perturbation expansion coming from instantons. Of course, these
can not be seen in perturbation theory. Let’s study their nature. We know thatτ is invariant under the
U(1)R-symmetry. An instanton breaks theU(1)R-symmetry by 8k where 8π2k is its total energy. Since
u hasU(1)R-charge 4, thek instantons go with evenu2k. Of course, the dimensionless expression is
Λ4k/u2k. Thus, the instanton action for an instanton of total energy 8π2k is of the form

fkexp(−8kπ2/g2)ekiθ = fkΛ
4ke2kπiτ = fk

Λ4k

u2k

for a dimensionless constantfk. Thus, the full expression forτ at |u| >> 1 is of the form

τ(u) =
2iln(u/Λ2)

2π
+

∑

k≥1

fk
Λ4k

u2k
. (1.5)

1.3 BPS states and singularities inM
Next, we wish to understand the singularities inM. By a singularitywe mean a point of the moduli
space where the physics changes. This may or may not be accounted for by a topological singularity in
the space. As a general principle, we expect that the singularities have to do with particles becoming
massless. In this case since the particles are to add singularities to the low energy limit which is a
U(1)-theory, they must be charged under theU(1). It is also quite reasonable to expect that if any
particles become massless, then some BPS states (which are the states of lowest energy) become
massless. In our case we have two types of BPS states near infinity in theu-plane. We have the vector
multiplet (i.e., the gauge boson) which hasne = ±1 andnm = 0 and we have the magnetic monopoles
with nm = 1 and any value ofne. (Of course, as we increaseθ by 2π a particle withnm 6= 0 hasne

which changes by±2, so that having one BPS state withnm = ±1 gives rise to BPS states with all
even or all odd values ofne. Our claim here is that there are two families of these BPS states, one
with evenne and one with oddne.) Notice that this BPS spectrum is invariant under the monodromy
at infinity since under this monodromyne 7→ −ne + 2nm andnm 7→ −nm. On the other hand we claim
that this spectrum can not be invariant under the entire monodromy of our family. The reason is that
as we shall see the image of the monodromy on all ofM is a non-abelian subgroup ofSL2, under
which the above-described BPS spectrum is not invariant. This means that the BPS spectrum cannot
be continuous throughoutM, that is to say there must be a jumping locus, which is a real curve in
M along which extra BPS states become massless. As we saw in the last lecture, this happens when
a/aD becomes real.

As we have seenM is a complex analytic space with exactly one irreducible component. Further-
more, the holomorphic mapu: M→ C is proper and is an isomorphism in a neighborhood of infinity
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ofM. Next, we wish to analyze the singularities ofM. We are assuming thatM is in fact a complex
algebraic variety. There must be singularities inM since the monodromy at infinity is non-trivial. As
we have argued singularities inM are associated with a certain super-symmetric multiplet consisting
of charged BPS states becoming massless. We have two types of BPS multiplets – those where the
maximal spin in the multiplet is 1 (the vector multiplet) and those where the maximal spin is 1/2,
(the hyper-multiplet). A vector multiplet becoming massless corresponds to restoring a non-abelian
gauge group (SU(2)). There are several reasons one does not expect this to happen. First of all, with
unbrokenSU(2) one has a theory which is unstable in the infra-red. This is exactly what happens at
the singularity in the classical moduli space. Since theβ-function is negative, we have flowed away
this theory, so we don’t expect to see it occurring in the low energy limit which we are assuming to be
free in the infra-red. Of course, if our gauge theory has enough hyper-multiplets becoming massless
to makeβ > 0 then we might see such a low energy limit. But at these points we have multiplets with
maximal spins both 1 and 1/2 becoming massless. So the simplest thing that we can do is to require
that only a hyper-multiplet with maximal spin 1/2 become massless. Let us analyze this possibility.

Suppose that the singularity inM is associated to a multiplet whose maximal spin is 1/2 becoming
massless. Recall that a massiveN = 2 super-symmetric multiplet of spin at most 1/2 is automatically
BPS saturated. Thus, we might expect that what is happening is that one of the BPS states that exist
in theory for|u| >> Λ2 is simply becoming massless at the singularity. Of course, more complicated
phenomena could occur. For example, as we come in from infinity inM we could cross a jumping
line of the BPS spectrum before we reach the singularity, and then at the singularity it is one of the
‘new’ BPS saturated states that becomes massless, rather than one of the original states that exist near
u = ∞.

Let us assume that a hyper-multiplet becomes massless. Denote its charge by (ne,nm) under the
electric and magnetic charge. We have already argued that this hyper-multiplet must be charged, so
thatq = g.c.d (ne,nm) is a well-defined positive number. After anSL2(Z) change in the representation
of the theory by a Lagrangian, we can arrange thatne = q andnm = 0. Thus, near the singular point
u0 ∈ M our theory is aU(1)-theory with a charged particle which is becoming massless atu = u0.
(But notice that it may well be the case thatnm 6= 0. If that happens then theU(1)-gauge fields in
the representation of the theory nearu = u0 are different from theU(1)-gauge fields that we naturally
have at infinity.) Unlike the spin-one case, this theory is stable in the infra-red, i.e.,β > 0. Since the
behavior of the theory nearu = u0 is infra-red free, we can computegeff andθeff in this region using
perturbation theory. We see thatgeff vanishes logarithmically and is given by the one-loopβ-function.
The relevant one-loop Feynmann diagram is:

qq

Clearly, this diagram gives a multiplicative factor ofq2. It also diverges logarithmically foru 7→
u0. The result is that foru nearu0 we have:

τ(u) = 2q2 ln(u− u0) + constant
2πi

.
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This means that the monodromy ofτ(u) in PSL2(Z) around this singularity is

±
(
1 2q2

0 1

)
. (1.6)

Of course, the monodromy is actually an element inSL2(Z) and is only determined up to sign
by the monodromy inPSL2(Z) To pin down the sign we argue as follows. The physics nearu = u0

is described by aU(1)-gauge theory with gauge fields (Ã, ã) and a charged hyper-multiplet (T,T′)
which is becoming massless atu0. Thus, the Lagrangian is of the form of the gauge couplings plus
a super-potential ˜aqTT′. The scalar field ˜a is a local coordinate on theu-plane and in fact is related
to a,aD at infinity by an ISL2(Z) transformation. (The image of this transformation inSL2(Z) is
determined by the charge (ne,nm) of the hyper-multiplet (T,T′) with respect to theU(1) at infinity in
the u-plane.) Since theU(1)-theory exists throughout this neighborhood even at the singularity, we
see that under monodromy aroundu0 the field ã comes back to itself. This implies that there is an
invariant vector under theSL2(Z)-monodromy aroundu0 and hence shows that the monodromy is as
written in Equation 1.6 with a plus sign.

We can generalize this picture. Suppose that atu0 there are several hyper-multiplets of chargeqi

becoming massless. Then the local form ofτ would be

τ = 2
∑

i

q2
i
ln(u− u0) + constant

2πi

and the monodromy aroundu0 would be
(
1

∑
i 2q2

i
0 1

)
.

Notice that the monodromy around a singularity where a hyper-multiplet is becoming massless
has trace 2 whereas the monodromy at infinity has trace−2. This means in particular, that there cannot
be only one singularity in theu-plane if the singularity is of this type. (This of course also follows
from the positivity ofτ in the complement of the singularities.)

1.4 The number of singularities inM
To understand the number of singularities inM, let us begin with a microscopicN = 2 super-
symmetricSU(2)-theory and break it to anN = 1 super-symmetric theory by adding a perturbation of
the form

∆L =

∫
d4xd2θmu+ c.c, (1.7)

with m a complex constant. (Recall thatu = Trφ2.) This theory has two vacua, each with a mass gap
and with confinement.

Let us suppose that at a point in the space of quantum vacua we haveNh hyper-multiplets be-
coming massless, say (Ti ,T′i ) of chargeqi . So near this point the physics is described by a super
potential

W = ã


∑

i

qiTiT
′
i

 + mu(ã).

where, as before ˜a is a local parameter on theu-plane and is related by anSL2(Z) transformation to
a,aD at infinity. Let us find the space of vacua in the macroscopic theory. That is to say we solve
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dW = 0 and divide by theC∗-action. Clearly, the equationdW = 0 is equivalent to

ãTi = ãT′i = 0 for all i.

m
du
dã

+
∑

I

qiTiT
′
i = 0.

If Nh > 0 this gives us a positive dimensional space of vacua. This is impossible since the microscopic
theory has only two vacua. This means that (as indicated above) at each singularity we have only one
hyper-multiplet becoming massless. Furthermore, sincedu

dã 6= 0 we see from the second equation that
T,T′ 6= 0. By the first equation, this means that ˜a = 0. Since there is only one hyper-multiplet, the
equation becomes

m
du
dã
|ã=0 + qTT′ = 0.

This determines the vacuum uniquely up to the action ofC∗. Thus, we see that there is a unique
vacuum associated to this singularity. Having one vacuum for each singularity in the macroscopic
theory, and having only two vacua in the microscopic theory, it follows that there are at most two
singularities inM. Notice also that the critical points foru onM also give vacua in the macroscopic
theory. Thus, we see

Nc + Nh ≤ 2

whereNc is the number of critical points inM of the analytic functionu andNh is the number of
points at which a hyper-multiplet becomes massless.

As we have already remarked, the monodromy around a point where a hyper-multiplet is massless
and the monodromy at infinity have opposite traces and hence are not conjugate inSL2(Z). At a critical
point of u there is no monodromy. Thus, these facts about monodromy imply thatNh ≥ 2. It follows
thatNh = 2 andNc = 0. That is to sayu: M→ C is everywhere a local analytic isomorphism. Since
it is an isomorphism between neighborhoods of infinity, it follows thatu: M→ C is an isomorphism.
(Recall that we established this fact directly from the fact thatu is an isomorphism at infinity. This
gives a consistency check on our model.) Even though the spaces of classical and quantum vacua
are identified, there are important differences. Whereas classically, there is only one singular point in
the u-plane and at this singular point theSU(2)-theory is restored as the low energy limit, quantum
mechanically there are two singularities in theu-plane (at as yet to be identified points), and at each
of these a charged spin 1/2 hyper-multiplet becomes massless. Furthermore, unlike the classical case,
the monodromy in the quantum family is non-trivial inPSL2(Z). This implies that, unlike the classical
case, the family of tori over the space of quantum vacua do not have constantj-invariant.

Notice that now that we have found two singularities in theu-plane, each contributing a vacuum
when we add the perturbation in Equation 1.7. Since there are at most two vacua in the perturbed
theory, it follows that there cannot be isolated points of the space of quantum vacua; these isolated
points would also produce quantum vacua of the perturbed theory.

TheU(1)R-symmetry is broken down to aZ/8Z-symmetry which sinceu has charge four under
U(1)R acts on theu-plane as aZ/2Z-symmetry. It is the symmetryu 7→ −u. This implies that the two
singularities inM are at points±u0 for someu0 6= 0. As we have already seen dimensional analysis
tells us thatu goes likeΛ2, the square of the mass parameter in the theory. This means that we can
make a choice of the mass parameterΛ so that the quantum theory labeled byΛ has singularities at
u = ±Λ2. In this way we are adopting the precise definition of the mass scale parameterΛ promised
in the introduction. Notice that this choice ofΛ is different from the one that we have used until
now. The only affect of this change in the choice ofΛ simply is to introduce an additive constant into
Formulas 1.1 through 1.5.
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1.5 The new massless particles

The next step is to identify what is becoming massless. Let (ne, nm) be the charge of the hyper-
multiplet becoming massless atΛ2 when we express things in the basis in which the monodromy at
infinity is upper triangular. Ifnm = 0, then the monodromy atΛ2 commutes with the monodromy at
infinity. Since the total space of the non-singular part of the family is the three-times punctured sphere,
the monodromies atΛ2 and∞ generate the entire monodromy image. Thus, if the monodromy at∞
andΛ2 are simultaneously upper triangular, then the entire monodromy image is upper triangular and
hence commutative. This would mean that Imτ could not be positive everywhere. Our conclusion is
thatnm 6= 0. That is to say, the particle becoming massless atu = Λ2 is magnetically charged. Exactly
the same analysis holds for the singularity at−Λ2. This is a very interesting phenomenon. Particles
which started life when|u| >> Λ2 as massive solitons are becoming massless asu approaches±Λ2.
Also, it means that our description of the theory near±Λ2 as aU(1)-theory is a different representation
from theU(1)-representation of the theory near infinity in theu-plane.

Now we wish to calculate the magnetic charge±nm of these particles. Notice that as we come
in from infinity ±nm is well-defined independent of the path we choose from infinity to±Λ2 but the
electric charge depends on the path – if we wind around the pair of singularities±ne changes by twice
the magnetic charge, since the monodromy around infinity isne 7→ −ne + 2nm.

The model we are discussing today has various mathematical applications, but just in terms of
physics one of its most striking applications was to give a new model of confinement. We recall
that confinement is the statement that there is a linear potential between external electric charges or
alternatively that there is area law decay for a Wilson loop in the an appropriate representation (in
the present example, the two-dimensional representation ofSU(2)). We recall that in a Higgs phase,
where a charged field gets a vacuum expectation value2, one can explicitly calculate by a topological
argument that the ’t Hooft loop gets area law decay. If one could just naively exchange electricity
and magnetism, then Wilson loops would be exchanged with ’t Hooft loops and we would conclude
that confinement will arise if a magnetically charged field gets a vacuum expectation value. This
was argued heuristically in the 1970’s by ’t Hooft, Mandelstam, Nambu and others but with great
difficulty in exhibiting actual models, since usually one does not have magnetically charged fields in
the formalism and magnetically charged objects (which arise as classical solutions) are heavy in the
weakly coupled regime where one understands them concretely. Thus it was generally rather hard to
see how one could actually exhibit a phenomenon in which a magnetically charged field gets a vacuum
expectation value.

In the present context, this happens. We have already seen that after adding themuperturbation
to the superpotential, which is expected to give confinement, the vacuum nearu = Λ2 hasT,T′ 6= 0,
so in fact in this vacuum (nm being non-zero) a magnetically charged object has obtained a vacuum
expectation value. Thus as expected a magnetically charged field obtained a vacuum expectation value
just in the confining case. (To pursue this with greater precision, it is important that the magnetically
charged field in question hasnm odd. Indeed, as the center ofSU(2) is Z/2Z, the explanation of
confinement via a dual of the usual Higgs mechanism requires a nonzero expectation value of a field
of oddnm. We will see thatnm actually is odd, in fact±1, for T andT′.)

Notice something surprising has happened. The magnetic monopoles have mass at infinity on
the order of

√|u|ln(|u|) whereas there are other BPS states of masses on the order of
√|u|. Thus, at

infinity the monopoles are not the least massive of the massive particles. Nevertheless, they are the
ones becoming massless at the singular points.

2This is a somewhat imprecise description as we have seen in previous lectures, but is valid in weak coupling.
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1.6 Explicit nature of the family of elliptic curves

We are now ready to describe the macroscopic theory associated to the quantum theory labeled by
mass parameterΛ by describing explicitly the family of elliptic curves and the two-formη associated
with the space of quantum vacua of this theory. As we have seen, for this theory the moduli space of
quantum vacua isC with parameteru = Trφ2. TheSL2(Z)-monodromy at infinity for the family is

(−1 2
0 −1

)
.

There are in addition two other points±Λ2 in theu-plane where there are singularities. TheSL2(Z)-
monodromy,m±Λ2 at each of these points has trace two. We write

m−1
Λ2 =

(
1 + b −b2/a

a 1− b

)
,

for integersa, b. (This is the general form of a matrix of trace two and determinant one.) Since

m−Λ2 = m−1
Λ2m∞

has trace two, we conclude that

2 = Tr

(
1 + b −b2/a

a 1− b

) (−1 2
0 −1

)
.

It follows by a direct computation thata = 2. Since−b2/a is an integer, we see thatb is even.
Now let us conjugate the matrix form−1

Λ2 by the matrix

(
1 1
0 1

)
,

which commutes with the monodromy at infinity. The result is to changeb by 2. Thus, after a number
of these conjugations we arrive atb = 0. This means that in an appropriate basis the monodromy at
infinity is (−1 2

0 −1

)

and the monodromy atΛ2 is of the form (
1 0
−2 1

)
.

Thus, we have shown that the monodromy representation is uniquely determined up to conjugation
in SL2(Z). Notice also that according to Equation 1.6 the magnetic chargenm of the hyper-multiplet
that is becoming masses atΛ2 is ±1. The same of course holds at−Λ2. In fact, because theSL2(Z) is
uniquely determined up to conjugation it is invariant, up to conjugation, under the symmetryu 7→ −u.

It is easy to identify the family of elliptic curves over the twice punctured plane with this mon-
odromy. The base of the family can be identified with the modular curveH/Γ(2) given by dividing
out the upper half-plane by the (free) action of the subgroup ofPSL2(Z) consisting of all matrices
congruent to the identity modulo two. The family is the universal family of elliptic curves with ‘level
two structure’ over this base. Since the singularities are atu = ±Λ2, the Weierstrass equation for the
family of elliptic curves associated to this quantum theory is

y2 = (x− u)(x− Λ2)(x + Λ2).
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Now let us consider the two-formη as described in the last lecture. We know that in the Weierstrass
model given aboveη has the general form

η = f (u)du
dx
y
.

Implicitly in the discussions before we assumed thatη was a complex symplectic form without zeros
or poles at least away from the exceptional values ofu. Such zeros or poles would produce non-
physical singularities. If we takef to be a non-zero constant, then the Kähler formπ∗(η∧ η) is smooth
except at∞,±Λ2 where it has the correct singular behavior. Any otherf would produce either poles
or zeros at other points or the wrong singular behavior at one of∞,±Λ2. It follows thatη = Cdudx

y

for an appropriate constant which can be computed by comparing to the formulaa2 = u nearu = ∞.
Clearly,

η = d

(
C

udx
y

)
= d

(
C

2ydx

x2 − Λ4

)
.

The formλ = 2Cydx/(x2−Λ4) is a differential of the second kind on the total spaceE of the family
of elliptic curves. This means, as we have been asserting all along, that [η] ∈ H2(E; C) is trivial and
hence that the monodromy of our family of representations of the theory is contained inSL2(Z), inside
the bigger groupISL2(Z). This was expected since the theory has no conserved charges exceptne, nm.

1.7 Description of the BPS spectrum

The line in theu-plane wherea/aD is real is a simple closed curve that passes through the points
u = ±Λ2. The spectrum of BPS states is continuous off this circle. Approaching fromu = ∞, we
see that atu = Λ2 we havea = 0 andaD 6= 0, whereas atu = −Λ2 we have−a + aD = 0. (Of
course, the exact values depend on the path chosen from∞ to±Λ2, but if we come in along rays from
infinity toward the origin then given equations hold.) Since we can approach the two singularities
from infinity without crossing the jumping locus for the BPS states, we see that the BPS states that
are becoming massless atu = ±Λ2 are indeed among the original BPS states at infinity. That is to say,
these particles are analytic continuations of the original magnetic monopoles at infinity.

Now let us examine whether, at other points on the jumping locus besides±Λ2, there are particles
forced to become massless. As we move along the jumping line on the open upper arc fromΛ2 to
−Λ2, we find that for everys, 0 < s< 1 there is a point wheresa−aD = 0. So if there is a BPS state at
infinity has charges (ne, nm) with (ne,nm) = t(s,−1) for somet ∈ R, then at some point along this open
arc we find that this state becomes massless. This, and the symmetric argument for the open lower arc
of the jumping line, show that all the BPS states at infinity that satisfy

(ne, nm) = (p,±q)

with 0 < p < q become massless somewhere on the jumping curve minus±Λ2. But we know by our
analysis of the singularities that there are no points on these open arcs where BPS states (or any other
charged states) become massless. The conclusion is that there are no BPS states at infinity satisfying
the above inequality. Said another way the only BPS states at infinity are those of charges

(ne, nm) = (±1,0)

(ne, nm) = (p,±1).
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Of course, these are exactly the BPS states that do exist at infinity. The first are the vector multiplets
and the second are the magnetic monopoles. This gives us a check of the internal consistency of the
theory.

This analysis of the BPS spectrum in the quantum theory can be compared in an interesting way
to the following classical computation. LetMk be the moduli space ofk-monopole solutions of this
theory, reduced by dividing by translations. It is a hyperkähler manifold of dimension 4k− 4 that has
been much studied mathematically. It can be shown thatL2-holomorphic forms (possibly valued in
a flat line bundle) onMk would givek-monopole bound states, fork > 1. From what we have seen,
there should be no such bound states, so there should be noL2-holomorphic forms onMk. More
generally, an argument by Sen using duality ofN = 4 super Yang-Mills (rather than theN = 2 theory
that we have considered in this lecture) determines the fullL2-cohomology of theMk.
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Lecture II-19: N = 2 Super-symmetric Yang-Mills theories in dimension four: Part III,
Topological Applications

Edward Witten 1

1 A survey ofN = 2 super-symmetric gauge theories in dimension four

Let us begin with a brief overview of the range ofN = 2 super-symmetric gauge theories. We must
specify a gauge groupG which will be a compact group. We shall be doing gauge theory, which
means our fields include a vector multiplet consisting of the gauge fields and their super partner fields
with values in the adjoint bundle of the principalG-bundle. We can also have hypermultiplets.N = 2
super-symmetry forces these hypermultiplets to lie in vector bundles associated to the principalG-
bundle by a representationρ : G → Sp(n). This means that the associated bundles are quaternion
bundles. The most important invariant for the qualitative nature of the theory is theβ function, and in
particular, the one-loopβ-function. The formula for the one-loopβ-function is

β1(g) =
−g3

8π2
(4h− c2(ρ)),

whereh is the dual coxeter number of the groupG andc2(ρ) is the trace of the quadratic Casimir for
ρ, normalized so that the defining representation ofSU(2) hasc2 equal to one. Of course, 2h is simply
c2(adjoint), the quadratic Casimir of the adjoint representation ofG on its Lie algebra. There are three
possibilites:

• The one-loopβ-function vanishes.

• The one-loopβ-function is negative.

• The one-loopβ-function is positive.

Since

τ =
θ

2π
+

4π2i

g2

we have the expansion

µ
d
dµ

(τ) = constant+
∑

ell≥1

C · g2ell +
∑

cn,ellg
2ellexp(2πinτ),

where the constant term is the computed from the one-loopβ-function, the higher powers ofg arise
from higher loop contributions and the exponential terms come from instanton corrections (which are
of course not seen in perturbation theory). By super-symmetryµ d

dµ (τ) is a holomorphic function, and
hence the positive powers ofg in this expansion vanish identically. Thus, if the one-loopβ function
vanishes thenβ vanishes in perturbation theory. In this case it is believed thatβ ≡ 0. This result is not
completely clear – it is not always the case inN = 2 super-symmetric theories that the exponentially
small terms vanish. (Recall that in the pureSU(2)-theory that we studied last time we found instanton
corrections toτwhich gave exponentially small, but non-zero, corrections to the one-loopβ-function.)
On the other hand, one case when the one-loopβ-function does vanish is when the hypermultiplet
representationρ is the tensor product of the adjoint representation ofG with the quaternions. This

1Notes by John Morgan
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theory in fact hasN = 4 super-symmetry. Using this enhanced super-symmetry one can show that the
β-function vanishes identically. The general belief is that when the one-loopβ-function vanishes then
theβ-function is identically zero. Whenβ ≡ 0, the theory has a well-definedτ just like the classical
theory. It is believed that in this case there is a subgroupΓ of finite index inSL2(Z) with the property
that the theory is invariant under a faithful action ofΓ. Of course, whenβ 6= 0 the theory has a mass
scale andτ is no longer constant. For these theories one would expect, as we saw for theU(1)-theory
in Lecture II-17, that there is not an exact duality of the theory, but rather that there is an action of the
duality group on the representations of the low energy behaviour of the theory by Lagrangians.

When the one-loopβ-function is negative, then theβ-function is negative, at least for sufficiently
high energy scales. (The pureSU(2)-theory we studied last time is of this type.) In this case, we have
an asymptotically free theory which is a good fundamental theory. That is to say we have a well-
definedproblem(to describe the low energy effective version of the theory). We solved this problem
in the last lecture forG = SU(2) orSO(3) with ρ being the trivial representation.

When the one-loopβ-function is positive, we do not have a well-defined problem, since the theory
is not asymptotically free. Rather these theories are candidatesolutionsto the problems posed by
the theories with one-loopβ-function negative. A theoryTmac with positiveβ-functioin theory is a
candidate solution in the sense that its low energy effective theory is well-defined and infrared free. It
is a solution to the problem posed by a theory,Tmic, with negativeβ, if Tmic flows in the infrared to
Tmac in the sense that at long distances (or equivalently low energies) the correlation functions of the
two theories converge to each other.

The gauge theories we will study today are Lagrangian models that come by quantizing classical
physics. But there are more exoticN = 2 theories in four-dimensions, some of which come from
string theory. Not all of these have Lagrangian formulations. Whether or not they have Lagrangians,
theseN = 2 supersymmetric theories should also lead to four-manifold invariants. Those without
Lagrangians should lead to four-manifold invariants which do not have a classical description in terms
of the moduli space of solutions to some differential equation.

2 From Minkowski space to a compact riemannian four-manifold

Let us fix one of theN = 2 super-symmetric asymptotically free gauge theories (one withβ < 0).
For example, if we wish to study Donaldson theory we will take pureN = 2 super-symmetricSU(2)-
gauge theory. But for a while we can be more general. The theory, as we have discussed it so far, has
been on Minkowski four-space. That is to say, we have written down an action which involves the
integration over Minkowski space of a Lagrangian function of various fields on this space. We wish
to pass from this to a theory defined on a compact riemannian four-manifold. This passage is carried
in two steps – i) rotating from Minkowski four-space to Euclidean four space, and ii) globalizing to a
compact riemannian four-manifold.

Let us describe how to Wick rotate the theory to Euclidean four-space. Our theory consists of
a family of local operators with an operator product expansion (O.P.E). A realization of the theory
gives values to the correlation functions of these operators at various points of Minkowski four-space.
But there is an open subset of the complexification of Minkowski four-space where the O.P.E. and
the correlation functions are defined by analytic continuation. This open subset contains Euclidean
four-space. In this way we Wick rotate to define the theory on Euclidean four-space (see, for example,
Kazhdan’s lectures from last fall). In our case we are dealing with (supersymmetric) actions

S=

∫

M4
L
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which are integrals of LagrangiansL which are analytic expressions involving fieldsφ on the un-
derlying Minkowski space. These expressions extend to holomorphic expressions on complexified
Minkowski space and then can be restricted to the Euclidean subspace to produce a Euclidean La-
grangainLE. The Euclidean action is defined by

SE =

∫

R4
LE.

The path integral for a correlation function in Minkowski space is
∫
DφO1(x1) · · · Ot(xt)e

iS,

and under this process it Wick rotates to the path integral
∫
DφO1(x1) · · · Ot(xt)e

−SE

computing the correlation function in Euclidean space. (Of course, Feynmann diagram computations
of path integrals are easier to do in the Eulcidean framework and this process is reversed to give
answers in Minkowski space.) For more details on this see the article ‘Actions and Reality’ by D.
Freed.

2.1 Globalizing by twisting – the case of the super-symmetric algebra

Now let us examine the question of putting the quantum field theory on an oriented riemannian four-
manifoldX. Our supersymmetric theory is defined over four-space by an actionSwhich is an integral
of a Lagrangian function of local fields which are spinors and vector representations of certain types
underSpin(4). Of course, there are bundles on Minkowski or Euclidean four-space associated to these
representations. In order to write the ‘same’ action on a four-manifoldX we need to be able to write
down the supersymmetric Lagrangian on that manifold. This means that all fields that appear in the
Lagrangian must be globally defined (as sections of bundles) onX. This will not in general be the
case for the theory as it has been presented so far because the relevant spin bundles may not exist
globally onX. In fact one sees that the ‘physically untwisted’ theory on a riemannian four-manifold
requires thatX be spin and generically breaks all supersymmetry. We have seen before (see Lecture
II-??) how to deal with this problem – we twist the theory by an appropriate homomorphism of the
spin groupSpin(4) to theR-symmetry group. As we shall see an appropriate twist will both allow us
to write down the Lagrangian on any oriented riemannian four-manifold and also allow us to preserve
a crucial piece of the supersymmetry.

The decomposition ofΛ2T∗R4 into self-dual and anti-self-dual components is covered by a de-
composition of the groupSpin(4) asSU(2)+ × SU(2)−. Fortunately, theN = 2 theR-symmetry group
is U(2)R = SU(2)R × U(1)R. (TheU(1)R is often absent, e.g., if the hypermultiplet has nonzero bare
mass. It is also anomalous ifβ 6= 0. But even so, we still haveSU(2)R as anR-symmetry group.)
With this R-symmetry group twists are possible. (ForN = 1 theR-symmetry isU(1)R and there is
no possibility for twisting.) Recall from the super-homework that the super-symmetric generators
are right-invariant vector fields onR4|8 {Qi

α} and{Qjα̇} where 1≤ i, j, α ≤ 2. Both of these sets are
acted on bySU(2)R in the standard fashion on thei, j indices. (Theα andα̇ are the spinor indices for
SU(2)+ × SU(2)−.) The actions of the spin group and theSU(2)R are summarized in the following

196



table.
Transformation under

Charges SU(2)+ SU(2)− SU(2)R
{Qi

α} 1
2 0 1

2
{Qjα̇} 0 1

2
1
2

We defineSU(2)′ as the diagonal subgroup ofSU(2)+×SU(2)R under the obvious identification of
these two groups. We shall be interested in the groupSU(2)′×SU(2)−. If follows from the information
in the table that underSU(2)′ × SU(2)− the{Qi

α} transform in the representation

(
1
2
⊗ 1

2
,0) = (0,0)⊕ (1, 0).

This means that the twisted form of the vector fields{Qi
α} decompose as a complex-valued vector

field and a vector field with values in complex self-dual two-forms. Similarly, the{Qjα̇} transform in
representation

(
1
2
,
1
2

)

of this same group and thus are tangent vectors, so that the{Qjα̇} become vector fields with values
in the complexified tangent bundle. Thus, both these representations are vector representations of
Spin(4) and hence exist globally on any oriented riemannian 4-manifold. Also, notice that these
representations are naturally real representations (even though the original ones were only complex).
This means that on the riemannian manifold we can take real fields.

In the superspace language, we are working on the split supermanifold whose even part isX and
whose odd part is the parity reversed vector bundle∧0TX⊕ TX⊕ ∧2

+(TX). On this supermanifold we
have a globally defined real vector fieldQ defined as follows. Suppose that we have local coordinates
(x1, . . . , x4) on an open subset ofX. We letθR be the natural coordinate in the odd∧0TX-direction and
θi be the coordinates in the oddTX-direction determined by thexi . We denote by∂Rodd and∂i,odd be
the corresponding vector fields in these odd directions. Lastly,∂i,even is the usual partial derivative in
thexi-direction. We write

Q = ∂Rodd + θi∂i,even.

Clearly, as we change local coordinates, this expression is invariant. This gives us a globally defined
real vector fieldQ on the super manifold which is the globalization of the (0,0) component of the
twisted form of the local supersymmetry generators{Qi

α}. It is because of the presence of this one
global, everywhere nonzero, super-symmetric generator satisfyingQ2 = 0 that we can do global
topological quantum field theory onX.

We also have a globally defined one-formK onX with values in vector fields on the supermanifold
derived from the twisted form of{Qj,α̇}. A formula for it in the same local coordinates is:

K =
(
∂i,odd + θR∂i,even

)
dxi .

One sees directly from the formula thatK is invariant under change of coordinates, and hence is a
well-defined global object onX.

It is easy to deduce from the super-Poincaré algebra structure, or from the above explicit formulas,
thatQ2 = 0 = {K,K}. The direct computation, or the general super-symmetric algebra structure, also
gives

{Q,K} = d, (2.1)

whered is the exterior derivative onX.
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In fact, by Noether’s theorem there is a local (or unintegrated) form of these equations. Working
in Minkowski space and choosing a time-sliceΓ, the chargeK̃ associated to the operatorK can be
written as

K̃ =

∫

Γ

S

for a local operatorS, which is the tensor product of three-form on Minkowski space with a one-form
on Minkowski space. LettingT be the stress-energy tensor (which will exist once we have managed
to formula the theory on a general riemannian manifold) , the unintegrated form of Equation 2.1 is

{Q,S} = T.

This equation can either be viewed as an equation for Poisson bracket of charges or as an equation
for the bracket of the associated vector fields (the symplectic gradients of the charges). Physicists
often do not distinguish between the charge and the vector field. In Euclidean space there is the usual
relation between the stress-energy tensor and the translations

Pµ =

∫

Γ

d3xTµ0

Qα̇ =

∫

Γ

d3xṠα0

{Qi
α,Qjα̇} = Pαα̇δ

i
j

{Qα,Sµα̇} = Tµαα̇.

When we pass from Minkowski space to a riemannian manifold, we can no longer viewK and
Q as operators on Hilbert space. Nevertheless, in this more general context the charges associated to
K andQ act by Poisson bracket on the local fields to produce new local fields (or equivalently the
associated vector fields act by differentiation to produce new local fields).

2.2 Topological Quantum Field Theory onX

We shall be considering expectation values of products ofQ-closed operators. Since the expectation
value of anyQ-exact operator is trivial (see Lecture II-??), it follows that the expectation value of any
product ofQ-closed operators is zero provided that at least one of them isQ-exact.

The fact that{Q,T} = 0 means that as we vary the metric, the correlation functions change by the
insertion of an operator which is in the image ofQ. It then follows that the correlation functions we
are considering are independent of the metric. The operators that we have in mind are the analogues
in this more general gauge theory setting of the Donaldson classes. The independence of the metric
of the correlation functions ofQ-closed operators is the physics analogue of the independence of the
Donaldson invariants under change of metric.

Let us recall the general scheme of generating operators with values in higher dimensional dif-
ferential forms out of local operators with values in functions. Here we are generalizing from two-
dimensions to four-dimensions the discussion and results of Lecture II-10.

Begin with a polynomial functionP of degreed on Lie algebrag of the gauge groupG, invariant
under the adjoint representation. Classically, this produces a Chern formP(FA) of degree 2d when
applied to any connectionA on a principalG-bundle. Applying this to the universal connection on the
universal bundle over the product of the manifoldX with the spaceB of gauge equivalence classes
of configurations yields a closed form of degree 2d on X × B. Recall from the last two lectures that
part of theN = 2 supersymmetric gauge multiplet is anN = 1 chiral multiplet which includes a scalar
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field φ with values in the adjoint bundle. Quantum mechanically, the polynomial functionP applied
to φ produces aQ-closed local operatorO(0)

P in the theory. ApplyingK repeatedly yields operators

O(n)
P = KnO(0)

P . These are local operators with values inn-forms onX. For ann-cycle Σn ⊂ X, the
operator ∫

Σn
O(n)

P

is the analogue of taking the slant product of the Chern formP(FA) of the universal connection on
X × B with the cycleΣn to produce a closed formµP(Σ) of degree 2d − n onB. As we shall see, the
expectation value

〈
s∏

i=1

∫

Σi

O(ni )
P 〉

computes ∑

E

∫

ME

µP(Σ1) ∪ · · · ∪ µP(Σs)

whereE ranges over the topological types of principalG-bundles overX and whereME ⊂ BE is the
moduli space of classical solutions. This integral of course is only taken when the virtual dimension
ofME is equal to

∑s
i=1(2d − ni).

From the fact that{Q,K} = d and the fact that
{
Q,O(0)

}
= 0, we have

{
Q,O(n)

}
= dO(n−1).

Thus, we see that the expectation value of products these operators are topological in nature in the
sense that these expectation values depend only on the homology classes of theΣi in the four-manifold.

TheN = 2 supersymmetric theory that we have been discussing onR4 or Minkowski four-space
is induced by dimensionally reducing from a theory onR6|8, i.e., anN = 1 supersymmetric theory in
six dimensions. For more details on this, see the superhomework.

2.3 Twisting and globalizing theN = 2 vector multiplet

We still have work to do before we have installed the supersymmetric theories on a riemannian mani-
fold. So far we have studied the effect of twisting on the super Euclidean group, and seen how to im-
plement that on an oriented riemannian manifold. We must still examine the fields in the Lagrangian.
In this section we study the vector multiplet.

Let us recall the basic configurations of the (untwisted) fields from anN = 2 vector multiplet in
theN = 1 language. First theN = 2 vector multiplet decomposes as anN = 1 vector multiplet

A = (A, λ,D)

and anN = 1 chiral multiplet
Φ = (φ, ζ,F).

In the first (vector) multipletA is a gauge field,λ is a spinor with values in the adjoint bundle and
D is a real auxiliary field with values in the adjoint bundle. In the chiral multipletφ is section of
the complexification of the adjoint bundle,ζ is a spinor with values in the adjoint bundle, andF is a
complex-valued auxiliary field with values in the adjoint bundle. Under theSU(2)R-symmetry the pair

(λ, ζ) transform in a two-dimensional representation denotedψi
α and

→
D= (D,ReF, Im F) transforms

under the adjoint representation ofSU(2)R.
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The following table summarizes theU(1)R-charge of the various fields

TheN = 2 Vector Multiplet
U(1)R charge −2 −1 0 1 2

Field φ ψα̇j A ψi
α φ

→
D

Now we twist as described above usingSU(2)R. TheSU(2)R acts trivially except on
→
D and on the

fermions, thuys these are the only fields which change character when we twist. After twisting theψi
α̇

transform in the (1/2,1/2) representation. This means that after twisting theψi
α̇ become a one-form

with values in the adjoint representation, denotedψ(1) onX. Similarly, after twisting theψαj transform
in (1

2 ⊗ 1
2,0) and hence decompose as a direct sum of a functionψ(0) and a self-dual two-formψ(2).

The auxiliary field
→
D also transforms in (1, 0) and hence becomes a self-dual two-form onX.

We see that, after twisting, all these fields exist globally onX since they have become differential
forms. This means that as far as pure gauge theories are concerned, we can write the Lagrangian on
any closed oriented 4-manifold perserving the supersymmetric chargeQ.

Let us examine the action ofQon these fields. The fields (A, ψ(1), φ) with Q, acting as a differential,
form a model of the equivariant cohomology of the gauge group action on the space of connections.
To make the notation more suggestive of a differential we letδ denote the action ofQ. Then we have

δA = ψ(1)

δψ(1) = −/∂Aφ

δφ = 0.

The Q-closed operators have representatives moduloQ-exact operators using only these fields. We
begin with any operatorO(0)

P = P(φ) given by a gauge-invariant polynomial inφ. For example, in
theSU(2)-case we takeP(φ) = Tr φ2. This polynomial hasU(1)R-charge four and corresponds to the
Donaldson classµ(pt) in the fourth cohomology. From these local operators we build operators with
values in formsO(j)

P = K jO(0)
P .

The action ofδ on the other fields is:

δφ = ψ(0)

δψ(0) = [φ, φ]

δψ(2) = F+
A−

→
D

δ(F+
A−

→
D) = [φ, ψ(2)].

Here we are following the notation that the curvatureFA is decomposed into its self-dual and anti-
self-dual componentsF+

A + F−A.

2.4 Twisting and Globalizing theN = 2 hypermultiplet

Let us turn now to theN = 2 hypermultiplet. We have the following table describing the nature of the
fields in thisN = 2 multiplet before twisting.
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TheN = 2 Hypermultiplet
Helicity −1/2 0 1/2
U(1)R− charge −1 0 1
SU(2)R− action trivial 1/2 trivial
Field λα̇ M λα
Type −chirality Boson +chirality

spinor spinor

The boson and the spinors of both chiralities in the above table all take values in the quaternionic
bundle overX associated to the representationρ.

After twisting the bosonM becomes a spinor of type (1/2, 0), that is to sayM becomes a plus chi-
rality spinor (a section of the plus spin bundle). The fermionsλ andλ are unchanged under twisting
since theSU(2)R acts trivially on them. Thus,λ remains a spinor of plus chirality andλ remains a
spinor of minus chirality. Thus, in order to write the part of the Lagrangian involving the hypermulti-
plet we must be able to make sense of the tensor product of the spin bundlesS±(X) of each chirality
with the quaternionic representationρ. (Of course, it is not necessary that the spin bundles actually
exist globally, only that these tensor products exist.)

Assuming that we are in this situation, let us describe the action of the differentialQ on these
fields. Again denoting it byδ we get

δM = λ

δλ = [a,M]

δλ = /∂(M) + fermions.

3 The general form of the high energy computations

At this point we have succeeded in defining a twisted version of ourN = 2 super-symmetric gauge
theory on any oriented riemannian four-manifoldX for which the bundlesS±(X) ⊗ ρ are defined. In
particular, we have implemented all pure gauge theories on any oriented riemannian four-manifold.
Since the ultraviolet behavior of the theory is independent of the metric on the manifold and inde-
pendent of any global topology, we see that if we began with a fundamental theory (one which has a
negativeβ-function and hence is asymptotically free), then the implementation of the theory on a com-
plete riemannian four-manifold will also be asymptotically free. Thus, it is a well-defined problem to
compute the correlation functions in this theory.

We are interested in the correlation functions of theQ-closed local operators in the theory. There
is a localization result to the effect that to compute these in the UV limit one does not need to integrate
over the entire infinite dimensional space of fields, but rather only over the fixed points of the action
of Q on the space of fields (see Lecture II-??). Another way to think about this is that the correlation
functions we are computing are independent of the metric and we can compute in the limit when as
the metric shrinks to zero, or equivalently by asymptotic freedom, as the coupling constant goes to
zero. In the limit we are doing a classical computation over the minima of the Lagrangian – this space
of minima is exactly the fixed points ofQ.

Let us examine the bosonic part of the fixed point set ofQ. From the equations above, ignoring the
fermion components and working modulo the action of the gauge group, we see that the fixed points
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of Q are given by:

dAφ = 0

0 = F+
A−

→
D

0 = /∂A(M)

Now using the equations of motion allows us to integrate out the auxiliary field
→
D giving the equation

→
D= µ(M)

whereµ is the hyperk̈ahler moment map. Thus, the above system becomes

dAφ = 0 (3.1)

F+
A = µ(M) (3.2)

0 = /∂A(M) (3.3)

Away from solutions whereA is reducible, the first equation implies thatφ = 0, and we can
ignoreφ and this equation. At the reducible solutions however this equation is important. Notice that
Equations 3.2 and 3.3 are the Seiberg-Witten equations in the more general setting where the gauge
group is not required to beU(1). Also, notice that if we are considering a pureN = 2 supersymmetric
gauge theory (with no hypermultiplets), thenM = 0 and these equations become the usual Yang-Mills
equations.

What we see is that our correlation functions will localize to be integrals over supermanifolds
whose underlying geometric manifold is a disjoint unoin of the moduli spaces

ME =



dAφ = 0

F+
A = µ(M)

0 = /∂(M)


/(Modulo gauge),

where the union is taken over all the topological typesE for the principalG-bundle. Recall that,
assuming thatX is compact, there is an index theorem which computes the virtual dimension ofME.
It is

virt. dim(ME) = k (4h− c2(ρ)) − 1
2

dim(G) (χ(X) + σ(X)) − σ(X)
4

quaternion dim(ρ),

wherek is the instanton number of the bundleE, χ(X) is the Euler characteristic ofX andσ(X) is its
signature. IfG is simply connected and simple then

k =

∫

X

Tr(F ∧ F)

8π2
.

Notice that ifβ = 0 then the virtual dimension ofME is independent ofE. But whenβ < 0, the
virtual dimension of theME go to infinity as the instanton number ofE goes to infinity, so that our
localization process becomes an integral over an infinite number of finite dimensional moduli spaces.

As we have said before, we are interested in computing the expectation values of products of
operators of the form ∫

Σi

O(ki )
P
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for an invariant polynomialP on the Lie algebrag and for surfacesΣi in X. In the case of pureSU(2)-
gauge theory these operators correspond to the usual operators in Donaldson theory in the following
way. Since the gauge group isSU(2) the space of irreducible polynomials is generated by Tr(φ2) = u.
If we use this polynomial invariant to defineO(0), then this operator corresponds to what is usually
denotedµ(pt) in Donaldson theory. That is to say, the operator corresponds to the cohomology class
on the moduli space which is minus one quarter the first Pontrjagin class of theSO(3)-bundle over the
moduli space given by the based moduli space. Furthermore, the derived operators

∫

Σ

O(k)

correspond to the cohomology classesµ([Σ]) ∈ H4−k(ME).
One can begin with any polynomial functionP of degreed on the Lie algebra invariant under

the adjoint representation to produceO(0)
P and derived operators ofO(n)

P . In general, we know from
topological considerations (the Künneth formula) how to express the products of integrals of operators
derived out of a decomposable invariant polynomial function in terms of the integrals of products of
operators constructed from indecomposable invariant functions. Thus, in general it suffices to work
exclusively with products of higher dimensional operators derived from indecomposable invariant
polynomial functions on the Lie algebra. In the case ofsu(2) there is only indecomposable invariant
polynomial Trφ2. Hence, it suffices to compute operators derived from this one local zero dimensional
operator. These are the computations we shall do when we come to Donaldson theory.

In general, to compute a correlation function of the type whereO(0)
P comes from an invariant

polynomialP of degreed

〈
s∏

i=1

∫

Σi

O(bi )
P 〉

we must do the integration over all components of the supermanifold of solutions whose underlying
geometric manifold,ME, satisfies

virt. dim(ME) =

s∑

i=1

(2d − bi).

Actually, we can do slightly better in the case thatG is not simply connected. We can sum over all
principalG-bundlesE which have a fixed isomorphism class over the two-skeleton ofX. (Of course,
if G is simply connected, all principalG-bundles onX have isomorphic restriction to the two-skeleton,
so in that case we are summing over allE.)

As we have seen before, integration of functions over the odd directions in the supermanifold sim-
ply become integration of differential forms over the underlying geometric manifold. The dimension
equation ensures that we are integrating a top dimensional form over the geometric manifoldME

underlying the supermanifold of solutions.

3.1 A case whenβ = 0

Let us continue with the case whenβ = 0. For simplicity, we take the gauge groupG to be a connected
(compact) semi-simple group. Then, since theME all have the same formal dimension, our integration
is over allME at once. We have not written down the Lagrangian explicitly on the curved four-
manifold, only on flat four-space. In putting the theory on a curved space we can add terms to the
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action which involve the metric. Sinceβ = 0, there is a well-defined coupling constantτ for these
theories. There are two such terms that preserve the topological invariance, namely:

∫

X
f (τ)Pf(R) + g(τ)L(R)

whereR is the riemann curvature tensor of the metric on the four-manifold, Pf denotes the Pfaffian,
andL denotes theL-polynomial, andf ,g are holomorphic functions ofτ. (Since∂/∂τ = {Q, ·}, any
topological invariant must be a holomorphic function ofτ.) These give topological terms computing
universal multiples ofχ(X) andσ(X), respectively. Adding in such terms inserts a multiplicative factor
in the correlation function. Even if we begin with a classical Lagrangian without these extra terms,
they would be added in the renormalization process, and the coefficients with which they appear will
depend on the explicit nature of that process. Thus, in the end what we are computing is of the form

qa(τ)χ(X)+b(τ)σ(X)
∑

k

〈
s∏

i=1

∫

Σbi

O(bi )〉kqk

for functionsa,b derived fromf ,g. For example, iff , g are linear functions ofτ, thena,b are constants.
Here, we have fixed the isomorphism class ofE over the two skeleton and indicated byk the instanton
number. (This action may not be an integer but its value moduloZ is determined by the isomorphism
class of the bundles over the two-skeleton.) Also,q = e2πiτ, and the factorqk · qa(τ)χ(X)+b(τ)σ(X) is
the value of the exp(−S) on the component of the moduli space of classical solutions with instanton
numberk. Because of the proposed invariance of such a theory under a subgroupΓ ⊂ SL2(Z) of finite
index, this result should be a modular form underΓ possibly with poles at the cusps of the quotient
of the upper half-plane byΓ. We can compute this expression by showing that there isk0 such that if
ME is non-empty thenk ≥ k0. Also, if k >> 0 then the index of/∂ is negative and hence generically
at least we expect no solutions to/∂(M) = 0 except the trivial solutionM = 0. Thus, in this range we
expect to have to do a computation over the moduli spaceMinstantons

E of solutions to the anti-self-dual
equations. In this case we are computing

∫

Minstanton
E

∏

i

∫

Σi

O(bi )χ(V)

whereV is the obstruction bundle, which in this case is identified with the cokernel of/∂ : S+ ⊗ ρ →
S− ⊗ ρ. One case where we can show that there is a vanishing theorem for/∂ for all instanton number
is the case when the gauge group isSU(2) andρ = su(2)⊗ (quaternions) and the manifold is a hyper-
Kähler manifold. In this case we haveN = 4 supersymmetry, andV is identified with the tangent
bundle of the instanton moduli space. In particular, the virtual dimension ofME is zero. Thus, in this
case, for dimension reaons there can be no positive dimensional surfaces in the integrals. That is to
say, we are computing

qC
∑

k

qkχ
(MEk

)
,

for an appropriate constantC. Our conclusion is that this series inq is a modular form (possibly with
poles at infinity), for a subgroupΓ ⊂ SL2(Z) of finite index. (In fact,Γ is the 2-congruent subgroup
Γ2

0.) This prediction has been compared successfully in some detail to mathematical computations
[Vafa-Witten,A strong coupling test ofS-duality, Nuclear Physics B, 431 (1994) 3-77].
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3.2 Donaldson Theory

Now we are ready to specialize to Donaldson theory which is the case of pureSU(2)-theory, pure in
the sense that the representaionρ is trivial so that there are no hypermultiplets. As we remarked above
the basic operator isO(0) = u = Tr φ2, coming from the quadratic invariant polynomial onsu(2), and
the derived operatorsO(i), i = 1, . . . ,4 which are to be integrated overi-cycles inX. We denote the
various components of the geometric manifold underlying the supermanifold of classical solutions by
Mk wherek ∈ Z is the instanton number, i.e., the value of the second Chern class of the principal
SU(2)-bundle. The short distance arguments above show that

〈
s∏

i=1

∫

Σi

O(bi )〉k =

∫

Mk

µ(Σ1) ∪ · · · ∪ µ(Σs)

whereMk is the moduli space of instantons onX with second Chern classk, provided that

virt. dim(Mk) =

s∑

i=1

(4− bi),

or equivalently that

8k− 3
2

(χ(M) − σ(M)) =

s∑

i=1

(4− bi).

The integral on the right-hand-side is the value of the usual Donaldson polynomial invariant

D([Σ1], . . . , [Σs]) =

∫

Mk

µ(Σb1
1 ) ∪ · · · ∪ µ(Σbs

s ).

4 Low Energy Computations for Donaldson thoery

From now on we concentrate exclusively on Donaldson theory. To get something interesting we must
compare this high energy computation, which we have just showed limits to the usual Donaldson
polynomial invariants, with a computation using the low energy effective limit of the theory. In terms
of metrics, we imagine a one-parameter family of metricst2g0 for some fixed metricg0. As we
have already remarked, since we are commuting correlation functions ofQ-cohomology classes of
operators, the answers are independent of the metric. Ast 7→ ∞ we are recovering the short distance
(or high energy) computations we sketched above and we find that the results are the Donaldson
polynomial invariants. Ast 7→ 0 we can recover the correlation functions by computing in terms of
the space of vacua of the theory.

Thus, we obtain a result of the form

〈
∏

i

∫

Σi

O(bi )〉 =

∫

u plane
E(Σ1, . . . ,Σs).dµ

for an appropriate expressionE that depends on the dimensions of the operators and a measuredµ on
theu-plane that depends on the four-manifold and the path of metrics going to infinity. (Recall that
all our operatorsO(bi ) are higher dimensional operators derived from the invariant polynomial Trφ2.)
It will turn out that as long asb+

2 (X) > 1, that this integral over theu-plane becomes a sum of two
computations, one at each ofu = ±1. Whenb+

2 (X) = 1, then the answer has three contributions –
discrete contributions atu = ±1 as before and an actual integral of a function over theu-plane. In
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this case the terms are not topological invariants. As we vary the metric in a generic one-parameter
family (which of course is all that is necessary to check independence of the metric) there will be a
finite set of points where things degenerate and on the two sides of each of these points the terms will
have changed. The changes atu = ±1 are the wall-crossing formulas for the Seiberg-Witten invariants
whereas the sum of the changes of the three terms is the wall-crossing formula for the Donaldson
polynomial invariants.

When we do the integral over theu-plane, everywhere except atu = ±1, we are computing in a
pureU(1)-theory, but atu = ±1 we cannot ignore the hypermultiplets which become massless at these
points. Atu = ±1 the classical equations are

F+
A = (MM)+

/∂(M) = 0.

HereA is aU(1)-connection on a line bundle detS+ ⊗ L andM is a section ofS+ ⊗ L. Of course,
we must sum over all complex line bundles. Actually, as we remarked earlier, it is not necessary that
S+ exist, only thatS+ ⊗L exist. Thus, we are really summing overSpinc-structures onX (which form
a principal homogeneous set for the group of isomorphism classes of complex line bundles onX).

The appearance ofM only atu = ±1 is of course the reason that there are delta-function contribu-
tions to the measure at these points.

4.1 Operators in the effective low energy theory

In order to do the low energy effective computations we need to know the image of our operators
(defined in the fundamental or high energy theory) in the low energy effective theory. In defining
the low energy effective version of an operator we must integrate out all the high energy modes.
This operation does not commute with taking products. Thus, while we shall see that several of the
elementary operators will correspond in the obvious way, funny things will happen to products. In the
high energy theory we have the operatoru = Tr φ2. We have seen that this operator flows in the low
energy limit to an operatoru which we know explicitly. Its expectation values are used to parameterize
the vacua of the low energy theories. Of course, local operators at the pointx in the high energy theory
map to local operators at the same pointx in the low energy theory, and hence the derivative of a local
operatorO in the high energy theory maps to derivative of the imageO of O in the low energy theory
and similarly

∫
Σ
O in the high energy theory flows to

∫
Σ
O. Since the low energy theory is stillN = 2

supersymmetric, it has the operatorsQ andK, which are the images of the operatorsQ andK in the
high energy theory. Thus, the image in the low energy theory ofKnu is K

n
u. Thus, as long asΣ1,Σ2

are disjoint cycles inX, the operation of taking products commutes with integrating over the high
energy modes. This means that the high energy operator

∫

Σ1

Kn1u ·
∫

Σ2

Kn2u

goes in the low energy theory to the product of the images of the individual operator:
∫

Σ1

K
n1u ·

∫

Σ2

K
n2u

as long as
Σ1 ∩ Σ2 = ∅.
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Where products will not be preserved in passing to the low energy effective theory is when the cycles
intersect. In this case the general form of the answer is that the product

∫

Σ1

Kn1u ·
∫

Σ2

Kn2u

of high energy operators flows in the low energy limit to an operator of the form
∫

Σ1

K
n1u ·

∫

Σ2

K
n2u +

∫

Σ1∩Σ2

K
n1+n2f (u)

for some functionf (u). If we take products of more than two operators of this form then there will be
higher corrections over triple and higher intersections of the cycles. The reason for all this is that if
Oi(x) 7→ Oi(x) then

O1(x)O2(y) 7→ O1(x)O2(y) + δ(x− y)Õ12(x)

for an appropriate operator̃O(x) in the low energy theory. In our case ifOi = Kni u, then it must be the
case thatÕ12 = K

n1+n2f (u). Integrating this result for local operators gives us the formula above for
the image in the low eneryg theory of the product.

Let us simplify the dicussion by supposing thatb1 = 0. Then the only operators that we need to
consider areu,K2u,K4u. But there is never any problem withK4u since it is a numerical invariant
which is simply the second Chern class, so that inserting it in a correlation function simply multiples
the expectation value on the bundle by the second Chern class. From now on we drop this operator
from consideration. Among the remaining operators there are no triple intersections assuming, as we
always can by topological invariance, that the cycles over which we integrate are in general position.
Furthremore, the only double intersections are finite sets of points where a pair of two-cycles meet
transversely. In this case we have that the image of product of the high energy operators

∫

Σ1

Kn1u ·
∫

Σ2

Kn2u

in the low energy effective theory will be of the form
∫

Σ1

K
n1u ·

∫

Σ2

K
n2u + (Σ1 ∩ Σ2)T(u),

whereT is a holomorphic function ofu and whereΣ1∩Σ2 denotes the algebraic intersection ofΣ1 and
Σ2. The reason thatT(u) is holomorphic is that sinceQ-closed operators map toQ-closed operators,
we must have that the correction term in formula isQ-closed. On the other hand, up toQ-exact terms
anyQ-closed function ofu is holomorphic.

4.2 Warm-up with U(1)-theory with a hypermultiplet

We shall now do a practice computation that will help in learning to relate theSU(2) and theU(1)-
theories. But we shall do this practice computation in a simpler theory – theU(1)-theory with a
hypermultiplet and a minimal Lagrangain, minimal in the sense that we will omit certain couplings.
We simply take the Lagrangian for the vector multiplet and hypermultiplet as we wrote them down in
flat space withτ constant. We setq = exp(2πiτ). The only invariant polynomials for the Lie algebra
u(1) are polynomials ina. We are assuming thatH1(X) = 0 so that the operators under discussion are
the zero-dimensional operatorO(0) = a and the two-dimensional operatorO(2) = c1(L). Once again
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insertion of this latter operator simply multiplies the correlation function by the first Chern class of
the line bundle, and hence can be ignored. That is to say the only operators whose expectation values
we need to compute are holomorphic (or polynomial) functionsP(a).

Recall that in this theory the bosonic part of the hypermultiplet fieldM becomes after twisting a
section ofS+ ⊗ L. This means thatL should be though of as aSpinc-structure onX rather than as a
complex line bundle. (We shall come back to this point in the next lecture.)

Let us suppose that we wish to compute〈P(a)〉λ for someSpinc-structureλ. The high energy
arguments outlined above show that this expectation value concentrates along the geometric manifold
Mλ underlying the moduli space of solutions to the classical equations for theSpinc-structureλ. Since
the value of exp(−S) onMλ is qλ

2
, we have:

〈P(a)〉λ = qλ
2
∫

Mλ

P(a).

Sincea is a two-form onMλ, this integral is equal to

qλ
2
cnλ

∫

Mλ

anλ ,

wherenλ is one-half the virtual dimension ofMλ andcnλ is the coefficient ofanλ in the Taylor series
for P(a) ata = 0. Of course,

SWX(λ) =

∫

Mλ

anλ

is by definition the Seiberg-Witten invariant of the manifoldX evaluated on theSpinc-structureλ. (By
convention, all of these integrals are interpreted to be zero ifnλ is not an integer.) Thus, we have
evaluated the expectation value〈P(a)〉λ to be the coefficient ofanλ in the Taylor series forP(a) times
qλ

2
SWX(λ). It is convenient for some of the later computations to rewrite this as

〈P(a)〉λ = qλ
2
SWX(λ) · Resa=0

(
da

a1+nλ
P(a)

)
.

Summing over allSpinc-structures yields

〈P(a)〉 =
∑

λ

〈P(a)〉 =
∑

λ

qλ
2
SWX(λ) · Resa=0

(
da

a1+nλ
P(a)

)
.

There is a similar formula when we allow a two-dimensional operator as well.

〈P(a) · exp

(
α

∫

Σ

O(2)
)
〉 =

∑

λ

qλ
2 · α〈c1(λ),Σ〉〈P(a)〉λ

=
∑

λ

qλ
2 · α〈c1(λ),Σ〉SWX(λ) · Resa=0

(
da

a1+nλ
P(a)

)
.

Now let us generalize thisU(1)-gauge theory computation by allowing more general terms that
preserve topological invariance. The most general form for the Lagrangian on a curved manifoldX,
preserving topoloogical invariance, is

L(a,A,M) = {Q, ·} +
∫

K4e(a) +

∫
g(a)Pf(RX) +

∫
h(a)L(RX)
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whereRX is the riemannian curvature tensor ofX. By supersymmetry, topological invariance implies
that the functionse,g,h must be holomorphic functions. Of course

∫
Pf(RX) gives a multiple of the

Euler characteristic whereas
∫

L(RX) gives a multiple of the signature ofX.
The expectation value is

∑

λ

SW(λ)Resa=0

{
da

a1+nλ

(
E(a)λ

2
G(a)χ(X)H(a)σ(X)

)}
,

whereG = e−g,H = e−h, andE = exp(−∂2e/∂a2). The reason for the last equation is that since
K(a) = ψ andK(ψ) = F, we haveK(e(a)) = e′(a)ψ and

K2(e(a)) = e′′ψ ∧ ψ + e′(a)K(ψ) = e′′ψ ∧ ψ + e′(a)F.

Continuing the differentiation, we find that

K4(e(a) = e′′(a)F ∧ F + ψ ∧ (· · · ).
In our case all the terms involvingψ vanish sinceb1(X) = 0.

4.3 The case ofSU(2)

Now we are ready to return to the pureSU(2)-theory and understand the low energy effective com-
putation in terms of theU(1)-computations we just did. Suppose that we fixα ∈ C and a class
Σ ∈ H2(X; C). We wish to compute

〈exp

(
αu + β

∫

Σ

O(2)
)
〉SU(2).

The general form of the answer will be

〈exp(αu + β

∫

Σ

O(2)〉u=1 + 〈exp(αu + β

∫

Σ

O(2)〉u=−1 +

∫

u−plane
· · · .

Let us see what operators we obtain in the low energy effective theory. By our above computations
of K2(e(a)) we have ∫

Σ

O(2) 7→
∫

Σ

K2u =

∫

Σ

∂u
∂a

F +

∫

Σ

∂2u

∂a2
ψ ∧ ψ.

Here, this expression is valid in some region of theu-plane and we have picked one of the possibilities
of theU(1)-variablesa (remeber there is anISL2(Z)-family of sucha) which is a local parameter in
this region. Nearu = ∞we use the usuala but nearu = 1 we have to use the a differenta. If b1(X) = 0
then we can drop the second term so that we have

∫

Σ

O(2) 7→
∫

Σ

∂u
∂a

F.

Now using the rules for multiplication of the two-dimensional operators worked out above we see

exp

(
αu + β

∫

Σ

O(2)
)
7→ exp

(
αu + β

∂u
∂a

∫

Σ

F + β2Σ2T(u)

)
.

Now let us compute theu = 1 contribution to the Donaldson invariant. Thea we use here is the
one produced by the monopole field that is massless atu = 1. We translate this coordinate so that

209



u = 1 corresponds toa = 0. The effective low energy theory is aU(1)-theory and is a special case of
the one we discussed in the last section with soem unkonwn universal functionse, g,h (or equivalently
unknown functionsE,G,H).

So, we have

〈exp

(
αu + β

∂u
∂a

(Σ, λ) + β2Σ2T(u)

)
〉

= 2
∑

λ

SW(λ)Resa=0

{
da

a1+nλ
exp

(
αu + β

∂u
∂a

(Σ, λ) + β2Σ2T(u)

)
Eλ2

Hσ(X)Kχ(X)
}
.

The factor of 2 is introduced because of the following reason. The group of gauge transformations
is SU(2)-bundle automorphisms, but its action on the space of connections is not faithful. There is a
central group of order 2 which acts trivially. In performing the path integrals in gauge theory one has
to normalize by dividing out by the volume of the group of gauge transformations. The fact that this
group is twice as big as the group that acts faithfully introduces a factor of two in the comparison of
the path integral with the topological formulas obtained by integrating over the moduli space.

Of course, by the index theorem, the one-half the dimension of the moduli space,nλ, is a linear
function ofλ2, χ(X), σ(X).

Let us suppose that the manifoldX is of simple type (Seiberg-Witten simple type). By definition
this means that all the invariantsSWX(λ) vanish except those for whichnλ = 0. Our expression then
simplifies to

2
∑

λ

SWX(λ)Resa=0
da
a

exp(· · · )

where the unwritten expression is a regular expression ina. We can evaluate atu = 1 to obtain

2
∑

λ

SWX(λ)exp

(
αu|u=1 + (Σ, λ)

du
da
|u=1 + Σ2T(1)

)
G̃χ(X)H̃σ(X).

Here G̃ and H̃ are complex numbers derived fromE,G,H by settingu = 1 and using the index
theorem (recallnλ = 0) to expressλ2 as a linear compbination ofχ(X), σ(X). To complete determine
the answer we must evaluate

u(1),
∂u
∂a

∣∣∣∣∣
u=1

, G̃, H̃,T(1).

Of course, we also have the contribution atu = −1 which differs from this one by the involution
u 7→ −u.

In any event, assuming that, as we shall show in the next lecture, the integral over theu-plane does
not contribute to the answer whenb+

2 (X) > 1, in this case the Donaldson polynomial invariant ofX
is completely determined by the functionSWX(λ) on Spinc structures and the explicit determination
involves five universal constants that must be computed. Fortunately,there is a list of four-manifolds
whose Donaldson invariants are explicitly known, and whose Seiberg-Witten function is easy to com-
pute, elliptic surfaces. From these known answers it is an easy computation to determine the constants.
In fact, there is more than enough information available to determine these constant since there are
infinitely many manifolds for which both SW and the Donaldson invariants are known. This gives
infinitely redundant determinations of the constants and gives then infinitely many checks on the
method. All these computations produce the same values for the five unknown constants in the above
discussion.
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The final result is that for manifoldsX with b+
2 (X) > 1 which are of Seiberg-Witten simple type

we have:

〈
exp


∑

a

βa

∫

Σa

O(2) + αO(0)


〉

= 21+ 1
4 (7χ+11σ)

exp

(
v2

2
+ 2α

)∑

λ

SWX(λ)ev·c1(λ)

+i∆exp

(
−v2

2
− 2α

)∑

λ

SWX(λ)e−iv·c1(λ)

 ,

wherev =
∑

a βa[Σa] and where∆ = (χ(X)+σ(X))/4. The first of the two terms on the right-hand-side
is the contribution atu = 1 and the second is the contribution atu = −1. It can be derived from the
first by using the involution.

The factor of 2 in front of theα seems to appear mysteriously, and is not consistent with the
formulas that we developed because in those formulas the coefficient was always one. The reason
for this descrepancy is that we made an implicit assumption throughout this discussion which now
has to be corrected in order to compare with Donaldson theory. Recall that in the low energy theory
there is a mass scaleΛ2 and that the monopoles become massless atu = ±Λ2. We have implicitly
assumed that the monopoles become massless atu = ±1. But there is no reason that this value ofΛ2

should be the one that is compatible with topology. So we should do the computations with an extra
unknown variable±Λ2 and then determine this variable by comparison with topological computations
in examples. Since±Λ2 is the expectation value ofu at the two special points, the way that±Λ2

enters the formulas derived from the low energy computations is as a multiplicative factor in front of
α (the two different signs appearing in the two different terms). It also changes the points at which
we evaluate the unknown functions, but these values were not determined directly in terms of±Λ2,
but rather by comparing with known answers. The fact that±Λ2 = ±2 in order for the field theory
computations to give the usual Donaldson polynomial answers is a reflection of the fact that the simple
type condition implies thatu2 = 4 in Donaldson theory.
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