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Acknowledgements and disclaimers
I’d like to thank our Physics Department for giving me this opportunity to give this course. I’d like
to ask participants to point out as many errors as possible in these notes and also during lectures.

In general, the lecture notes contain much more than I will or can actually cover in the lec-
ture. In the same vein, there are many remarks in this lecture notes which can be skipped without
affecting the understanding of later parts. (Many such non-essential parts are marked as asides.)
Similarly, many remarks in the lecture notes give mathematical and/or physical facts without any
explanation. Because of these reasons, a reader should not fret when s/he finds something s/he
does not understand in the lecture notes. I simply wish this lecture notes to be a starting point from
which a reader can start to explore various topics of algebraic topology. But again, because of this
nature of this lecture notes, I do not want to include wrong or incorrect information. Please do not
hesitate to report to me (by emailing yuji.tachikawa@ipmu.jp for example) if you find anything
wrong in the lecture notes.

This is the first time I’m heavily utilizing AI to prepare my lecture notes. More concretely
I’m using GitHub Co-pilot for LATEX, which is based on Chat-GPT. This tool suggests sentences or
paragraphs while writing the notes; the suggestions are not always perfectly correct, but they are
often useful, with mostly correct LATEX macros. But I fear that in some sense I’m plagiarizing the
contents used to train the AI. At least for these notes, I don’t think it is particularly problematic,
since the contents of this course are mostly well-known and not my original work. The possibly
only original part is the selection of the contents and the order of presentation.1 If anybody notices
any parts which look like a direct copy from some other source, please let me know.

1 General introduction

1.1 Why now?
Even though there are a number of mathematical physicists in our physics department, there has
been no course on mathematical physics in the graduate school, at least since when I got hired about
ten years ago. I always wanted to give one such course, but I know there are a lot of bureaucratic
hurdles to be cleared before adding a lecture slot with a new subject name in the curriculum.

Last year, I noticed that there already actually is a lecture slot with the name 数理物理学
(mathematical physics) which was somehow not used for about 20 years. It turns out reviving a
long dormant lecture slot requires almost no paperwork, so I decided to do just that.

Mathematical physics can mean many things. It is often distinguished from mathematical meth-
ods for physicists (which has a distinct translation in Japanese,物理数学). It often means those
parts of theoretical physics where the discussions are mathematically rigorous, e.g. the part of sta-
tistical physics where the existence of thermodynamic limit or of phase transitions are rigorously
proved. It can also mean those parts of theoretical physics where various mathematical concepts
are heavily used, albeit not quite rigorously, such as string theory.

1But this particular sentence was also auto-suggested by Co-pilot, when I typed ‘The possibly only’...
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I’m not sure how other faculty member would use this slot in the future, but my goal this
year is to provide an introduction to algebraic topology for physicists, so it’s closer to a course on
mathematical methods for physicists, although the sub-subject of mathematics covered is somewhat
different from the usual ones (calculus, linear algebra, a bit of group theory, etc.). My rationale is
the following.

As you already know, math plays a very important role in physics, as was famously pointed
out by Wigner in his essay [Wig60]. But it is definitely not that all subfields of math are equally
important. Clearly important ones are:

• Calculus: in some sense this subject arose from physics (by Newton etc.)

• Linear algebra: this is important for anything which deals with first-order approximations.
It is also a crucial ingredient of quantum mechanics (QM).

• Theory of Hilbert spaces: equally important for QM.

• Group theory: Symmetry is one of the fundamental concepts in physics. It gives rises to
conserved charges in both analytical mechanics and quantum mechanics, for example.

• Differential geometry: this is important for general relativity (GR).

But there are also ones whose usefulness is quite dubious (or at least not immediately obvious):

• Number theory: physics is primarily based on R and C, while the number theory is about
Z.

• Algebraic geometry: this is about shapes of objects defined by polynomial equations. Why
should physicists care about polynomial equations?

• Mathematical logic / set theory: Will we ever use Gödel’s incompleteness theorem in
physics? Will physics depend on the choice of the particular axioms of set theory?

Algebraic topology was in the middle of these two lists, until about 15 years ago. From 1970s,
basic homotopy theory was used in the study of topological solitons in particle physics and in con-
densed matter physics. Starting in the 1980s, some characteristic classes were used in the study of
anomalies in particle physics and in the study of quantum Hall effects in condensed matter physics.
But that was about it. The algebraic topology used was also quite elementary from mathematician’s
perspective: everything used on the physics side was developed 1940s, say. So algebraic topology
is not usually (and does not have to be) covered in a typical physics curriculum, or textbooks on
mathematical methods for physicists.

But that changed in the last 15 years. Topological insulators and superconductors became a hot
topic, and soon we learned that they are classified by K and KO theory [SRFL08, Kit09, RSFL09].
And they are classification of non-interacting phases. The study of interacting phases, of a class
often known as symmetry protected topological (SPT) phases, or as invertible phases, pursued
e.g. in [FK09, CGLW11, GW12, MFCV14] soon gave rise to the realization that the classification
would be done by bordism groups [KTTW14] or by more general cohomology theories [Kit15].
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This expectation was confirmed later by [FH16, Yon18], where it was shown that the classification
of the SPT phases is done by the Anderson (or Pontryagin) dual of the bordism group. This also
implicitly gave a general theory of anomalies on the particle physics side. To understand all this
requires a far more advanced algebraic topology than was necessary before (although still not very
modern from mathematicians’ point of view, since it only uses algebraic topology up to 1970 or
something).

To understand this fascinating development required me to learn bits and pieces of algebraic
topology from various sources. But there is no single place where most of the relevant materials
for physicists are gathered. This set of lectures is my attempt to provide such a place.

1.2 What is algebraic topology? Is it any good?
Topology is a subfield of math where people study spaces. Spaces of course appear in physics. The
four-dimensional spacetime we live in and study via general relativity is a mathematical space. The
space of configurations of a rigid body is also a space. Similarly, the order parameter of a condensed
matter system is a space. The space of all possible gapped condensed-matter Hamiltonians defined
on a lattice is also a space. So, methods to study spaces (i.e. topology) should be useful to us.

In algebraic topology, we study spaces by associating algebraic objects to them. Given a space
X , some of the algebraic objects associated are:

• Homotopy groups: πn(X) is the group obtained by considering maps Sn → X , where Sn
is the n-dimensional sphere (in the convention that the ordinary sphere is S2).

• Bordism groups: Ωn(X) is the group obtained by considering maps Mn → X , where Mn

is a general smooth manifold of dimension n.

• Homology groups: Hn(X) is the group obtained by considering n-dimensional ‘cycles’
(essentially polyhedra) in X , where a cycle is a more general notion than spheres or mani-
folds.

Note that the ‘source spaces’ in the descriptions above has the inclusion relation

{spheres} ⊂ {manifolds} ⊂ {cycles} (1.1)

and somehow the difficulty of the computation decreases as the source spaces become more gen-
eral, so that the homotopy groups are the most difficult to compute and the homology groups are
the easiest.

Homotopy groups are useful to describe topological solitons, and bordism groups play impor-
tant roles in the study of topological phases and of anomalies of quantum field theories. We will
also encounter K-theory K(X), whose difficulty of computation and of definition lies between
homotopy and homotopy and is similar to that of bordism groups, which is useful in the study of
non-interacting topological phases and of properties of fermion fields in quantum field theories.
Homology groups are not as directly relevant for physics at this point of our discussion, but as the
easiest to compute, obtaining them is a first step in the computation of other algebraic objects.
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Another topic is the study of fiber bundlesE over a spaceX . This is a spaceE with a projection
E → X such that, locally around each point x ∈ X , E looks like U × F where x ∈ U ⊂ X is
a neighborhood of X and F is a fixed space called the fiber. Topology of fiber bundles are often
distinguished by the help of characteristic classes, again a topic of algebraic topology. This appears
in many places in physics. Three examples:

• Gauge fields (such as the Maxwell field or the Yang-Mills field, describing the electromag-
netism or the strong force) mare mathematically described by connections on fiber bundles,
where the base space X is our spacetime. The topology of this fiber bundle gives rise to
Dirac monopoles and instantons, specified by the characteristic classes known as the 1st and
2nd Chern classes of the bundle, respectively.

• Consider a crystalline system in a condensed matter setting. The band structure of the system
determines a fiber bundle (of Hilbert spaces) over the Brillouin zone. Its topology under-
lie many of the topological properties of the system. For example, for a 2 + 1 dimensional
system, the 1st Chern class of this bundle (which is an integer) gives the quantized Hall con-
ductance, as the famous analysis of Thouless, Kohmoto, Nightingale, and den Nijs showed
[TKNdN82].

• A parameterized family of quantum states can also be considered as a fiber bundle over
the parameter space, where the fiber can be either the Hilbert space of wavefunctions or
the space of density matrices. The topology of this fiber bundle gives rise to the notion of
Berry phase. We will also see that there are cases such that there can be a continuous family
of density matrices which is never realized as a continuous family of statistical mixture of
wavefunctions. Again this issue is detected by a characteristic class, known as the Dixmier-
Douady class.

Characteristic classes of fiber bundles often take values in cohomology groups of the base space
X , which also explains the usefulness of (co)homology groups in physics.

The aim of this lecture series is to provide a minimal amount of information so that you can un-
derstand the content of the paragraphs above. This will, unfortunately, require the whole semester.

1.3 Mathematical rigor in the course
This is not a course for (prospective) mathematicians. For me, math is like a collection of useful
apps (on your Mac/PC or mobile devices). Here is a comparison chart:

math app
definition short usage of the app
theorem app itself
proof source code of the app

Reading the source code of an open source app can be fun and instructive, but not necessarily
required if you only want to use the app. Similarly, even reading the short usage of the app (say in
an app store) can be too much if you want to use the app just once, for example. In this course, we
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will not be going into the source code of the apps, but I do intend tell you what kind of apps are
available and give at least short usages of the apps involved.

I should say that papers and textbooks in theoretical physics are not as neatly packaged as those
in math. In math, you can skip the proofs but still use the theorems to compute what we need. In
contract, in papers on physics, we freely go back and forth between assumptions, derivations and
conclusions, and we are almost always required to read the whole paper to understand what is going
on and to use it for our own purposes. Not only that, in math, the proofs are usually reliable, so
you can just use the theorems without worrying too much. In physics, the statements often relies
on unwritten assumptions, so we need utmost caution when we want to use results in other papers.
Maybe we physicists have something to learn from mathematicians in this regard...

1.4 Aside: some rare use of ‘useless’ math subfields in physics
Before proceeding to the main part of the lectures, I’d like to mention some meager connections
to physics of ‘useless’ subfields of math I mentioned in Sec. 1.1.

Number theory: Modular functions appear and are used in the study of two-dimensional confor-
mal field theory (CFT) and in string theory. Modular functions also play very important roles in
number theory. For example there is an introductory book on number theory by Mieda [三24]
published this year, where exactly the same functions I often see in string theory and in two-
dimensional CFT appears throughout the book. Whether string theory is physics is debatable,
but I think 2d CFT definitely is. So there is at least a small connection between number theory and
physics. Is it an accident? Or is there a deeper relation? I should say that there is even a journal
called Number Theory and Physics.

Algebraic geometry: In algebraic geometry people study the shapes of spaces determined by
polynomial equations. In physics the shapes of spaces are usually determined by differential equa-
tions. Is there a place where polynomial equations naturally appear in physics? If you are kind
enough to consider string theory physics, then the answer is yes. In string theory the spacetime
is ten dimensional. To describe our four-dimensional world, we need to assume that the extra
10− 4 = 6 dimensions are compactified. The real world is not supersymmetric, but if we assume
supersymmetry as a way to acquaint ourselves with the system, then the compactified part of the
space is described by a six-dimensional Calabi-Yau manifold. There is a mathematical theorem
saying that Calabi-Yau manifolds are always described by polynomial equations.

Mathematical logic / set theory: In condensed matter systems, a standard toy model is a spin
chain: we have sites labeled by an integer i = −3,−2,−1, 0, 1, 2, 3, . . . and at each site we have a
qubit |±⟩i. We consider a translation-invariant Hamiltonian consisting of local interactions, such
as the standard Ising model:

H =
∑
i

[a(σX)i + b(σZ)i(σZ)i+1]. (1.2)
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This class of systems is known to exhibit various interesting phenomena, and countless person-
hours have been spent in understanding it.

One basic question is whether the ground state is gapped or not. In the case of the Ising model
above, it is gapped when |a| ≠ |b| and it is gapless (and flows to a conformal field theory) when
|a| = |b|. One can ask: can there be a computer algorithm which determines whether a given local,
translationally-invariant Hamiltonian leads to a gapped ground state or not? Clearly theoretical
physicists are not clever enough to do this, but can we imagine a day in the far future where such
a thing is possible?

The answer is no [CPGW15a, CPGW15b, BCLPG18]. The point is that, by a very clever
construction explained in the references cited, one can write down a Hamiltonian for any computer
program (or more precisely a Turing machine) such that the ground state on a finite chain of L sites
is gapped if the computer program stops in L steps, and not gapped otherwise. Therefore, if there
is an algorithm which can decide whether a given Hamiltonian leads to a gapped ground state on an
infinite chain, the same algorithm can determine whether a given Turing machine stops or not. But
a very basic fundamental theorem of computational science says that there is no such algorithm
determining whether a given Turing machine stops or not. So this is impossible.

Similarly, it is easy to write down a program which stops if and only if the current standard
axioms of set theory is inconsistent: we simply enumerate all possible sequences of alphabets.
Many of them are garbage, but some of them describes a proof of a mathematical theorem, and any
possible proof of any mathematical theorem eventually appears along the enumeration process. We
let the program stops if it finds a proof of 0 = 1, which happens if and only if the current standard
axioms of set theory is inconsistent. We can encode this program as a spin chain Hamiltonian.
Then this Hamiltonian has a gapped ground state if and only if the current standard axioms of
set theory is inconsistent. Then Gödel’s second incompleteness theorem says that one can neither
prove nor disprove that this Hamiltonian leads to a gapped ground state or not.

There are other works of similar nature inspired by this work. For example, in [SM20a,
SM20b], it was shown that there is no algorithm which tells a given quantum state thermalizes
or not. I also constructed an example in supersymmetric quantum field theory (SQFT): there can
not be an algorithm which tells whether a given 2d SQFT has a supersymmetric vacuum or not
[Tac22].

All this was quite fascinating to me, but clearly this is not a very deep application of mathe-
matical logic / set theory / computational science. This is because the main mathematical facts
used (Gödel’s incompleteness theorems, or the undecidability of the halting problem of Turing
machines) are both fundamental but very old.

2 Manifolds
As already explained, algebraic topology provides us methods to study spaces by attaching alge-
braic objects to them. But before doing that, we need to know various examples of spaces to be
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studied about.2 For this purpose, we introduce manifolds in this section. In the next section, we
introduce fiber bundles, which are a kind of twisted products of manifolds. Algebraic topology per
se starts in Sec. 4.

2.1 Definition of manifolds
We have two intuitions about spaces. One is such that each point is locally like Rn. Another is
such that it is made up from pasting small triangles (for surfaces) or tetrahedra (for 3-dimensional
objects) and analogous constructions in higher dimensions. We use both ideas to study spaces, but
our primary method for now is the former. Let’s start with some definitions.

Definition 2.1. A (topological) manifold M of dimension n is such that for each point p ∈M

there is a neighborhood U ⊂ M of p and a neighborhood U ⊂ Rn of 0 such that there is a
bijective continuous map f : U → U .

Example 2.2. Rn is an n-dimensional topological manifold.

Similarly,

Definition 2.3. A smooth manifold M of dimension n is such that for each point p ∈M there
is a neighborhood U ⊂M of p and a neighborhood U ⊂ Rn of 0 such that there is a bijective
smooth map f : U → U .

Example 2.4. Rn is also a smooth manifold of dimension n.

In physics U ’s are often called coordinate patches. We only consider manifolds ‘good enough’
such that there is a set of coordinate patches Ui covering the whole manifoldM , such that for each
point p ∈ M there is only a finite number of coordinate patches containing p. In such cases we
can think of manifolds as being built from pasting together the coordinate patches U i ⊂ Rn in the
following way (see Fig. 1).

Suppose Ui ∩ Uj is nonempty. Let

U i,j := fi(Ui ∩ Uj) ⊂ U i, (2.1)
U j,i := fj(Uj ∩ Ui) ⊂ U j. (2.2)

2A good mathematician might be able to work abstractly without any examples, by a rigorous mathematical think-
ing process. But we’re not mathematicians, and we do need examples. There’s even a danger for mathematicians, as
the following apocryphal tale shows: https://mathoverflow.net/a/53127. Not so long a story short, it’s about a math
PhD thesis defense where the student proved many fantastic theorems about objects satisfying certain axioms. One
of the professors in the audience asked if there actually was any such object. It turned out there was none, and the
theorems were all vacuously true.
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Figure 1: Coordinate patches of a manifold

Then we have the map
fi,j : U i,j → U j,i (2.3)

defined by
fi,j := fj ◦ (fi)−1. (2.4)

This allows us to ‘paste together’ U i ⊂ Rn and U j ⊂ Rn by identifying their subsets U i,j and U j,i

using fi,j .
A smooth manifold is such that fij are smooth; a topological manifold is such that fij are just

required to be continuous. A smooth manifold is automatically a topological manifold. A bijective
smooth map f : M → M ′ between two smooth manifolds M and M ′ is called a diffeomorphism;
a bijective continuous map f : M → M ′ between two topological manifolds M and M ′ is called
a homeomorphism. In physics we typically consider smooth manifolds, but I decided to include a
bit of discussions about topological manifolds as I thought the subtle concrete differences between
smooth manifolds and topological manifolds can be interesting to some of you.

Theorem 2.5. When a manifold M is compact, we can choose a finite number of coordinate
patches Ui to cover M .

Before going further, let us also introduce manifolds with boundaries:

Definition 2.6. A manifold with boundary is defined similarly, but we allow the neighborhood
U to be in a half-space Rn−1 × R≥0. The union of the inverse images of the boundary of
U ∩ (Rn−1 × {0}) under f is called the boundary of M and is denoted by ∂M .
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Example 2.7. The half-space Rn−1 × R≥0 is a manifold with boundary.

Definition 2.8. A compact manifold without boundary is called a closed manifold.

2.2 Manifolds via equations
So far we only saw trivial examples. We need better examples.

2.2.1 Generalities

A common way to construct manifolds is to take a subset of Rn defined by a number of equations:

f1(x1, x2, . . . , xn) = 0, (2.5)
f2(x1, x2, . . . , xn) = 0, (2.6)

... (2.7)
fm(x1, x2, . . . , xn) = 0. (2.8)

If the choice of f1,2,...,m are sufficiently nice, the set of points satisfying these equations is a manifold
of dimension n−m.

A typical bad example is the subset of R2 defined by xy = 0: around (x, y) = (0, 0), two lines
intersect, and therefore the neighborhood of (0, 0) is not of the right form.

2.2.2 Spheres and disks/balls

Example 2.9. The n-dimensional sphere Sn is defined by

x21 + x22 + · · ·+ x2n+1 = 1. (2.9)

Note that Sn is embedded in Rn+1, but it is a manifold of dimension n.

Example 2.10. The n-dimensional disk Dn is defined by

x21 + x22 + · · ·+ x2n ≤ 1. (2.10)

This is a manifold with boundary, and the boundary is Sn−1. Dn also called the n-dimensional
ball and denoted by Bn.

Example 2.11. D1 is a segment [−1, 1] and its boundary S0 consists of two points {−1, 1}.

Calling two points, S0, a 0-dimensional sphere sounds silly, but it is just a name. But this
illustrates an important point: you are not supposed to judge mathematical concepts by their names.
Rather, you are supposed to understand them by internalizing their definitions into your heart.
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Example 2.12. We can try considering points of constant Lorentz-invariant distance from the
origin in Rd−1,1:

x21 + x22 + · · ·+ x2d−1 − x20 = K, (2.11)

where K is a non-zero constant. This is a hyperboloid, and is a manifold of dimension d− 1.

When K > 0, it is connected; this is the hypersurface of spacelike-separated points of distance√
|K| from the origin in the Minkowski spacetime. When K < 0, it consists of two components,

one in the future x0 > 0 and another in the past x0 < 0. They are the hypersurfaces of time-like
separated points of temporal distance

√
|K| from the origin. When K = 0, the equation above

defines the lightcone, which is singular at the origin and is not a manifold.

2.2.3 Group manifolds

We have various group manifolds, defined in a similar manner.
Let Mn(R) be the set of n× n real matrices.

Example 2.13. The orthogonal group O(n) is defined by

O(n) = {M ∈Mn(R) |MTM = 1}. (2.12)

The special orthogonal group SO(n) is defined by

SO(n) = {M ∈ O(n) | detM = 1}. (2.13)

Similarly let Mn(C) be the set of n× n complex matrices.

Example 2.14. The unitary group U(n) is defined by

U(n) = {M ∈Mn(C) |M †M = 1}. (2.14)

The special unitary group SU(n) is defined by

SU(n) = {M ∈ U(n) | detM = 1}. (2.15)

Proposition 2.15. S1 = U(1) = SO(2).

This can be seen by parameterizing S1 by θ ∈ [0, 2π). U(1) is a one-by-one unitary matrix, i.e. a
complex number z with |z| = 1. Therefore z = eiθ. SO(2) is a two-by-two orthogonal matrix
with determinant 1, which has the form(

cos θ − sin θ

sin θ cos θ

)
. (2.16)
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Proposition 2.16. S3 = SU(2).

This can be seen by noticing that any SU(2) matrix has the form(
z −w
w z

)
(2.17)

with |z|2 + |w|2 = 1. As C2 ≃ R4, we see that this defines an S3. This fact can also be shown
using quaternions H, introduced by Hamilton in 1843.

Definition 2.17. H is a four-dimensional algebra over R with a basis 1, i, j, k satisfying

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. (2.18)

A general element is of the form q = a + bi + cj + dk with a, b, c, d ∈ R. The conjugate of
q = a+ bi+ cj + dk is q = a− bi− cj − dk. We can check that q1q2 = q2q1.

The norm of q is |q|2 = qq = qq = a2 + b2 + c2 + d2. This is nonzero unless q = 0. This
means that any nonzero element q ̸= 0 has a multiplicative inverse q−1 = q/|q|2. An algebra with
this property is called a division algebra.

Fact 2.18. The only finite-dimensional division algebras over R are R, C, and H.

Note also that |q1q2|2 = |q1|2|q2|2. This means that the set {q ∈ H | |q| = 1} of unit quaternions
forms a group. As H ≃ R4, this is a three-dimensional sphere S3. Considering H ≃ C2, we can
convince ourselves that this is also SU(2). More generally:

Example 2.19. The unitary symplectic group Sp(n) is defined by

Sp(n) = {M ∈Mn(H) |M †M = 1}. (2.19)

In particular, Sp(1) = SU(2) = S3. Note there is no distinct ‘special unitary symplectic group’.
To explain Sp(m) a bit more geometrically, consider Hn as the space of column vectors of

quaternions. We consider ‘linear’ maps M : Hn → Hn in the sense that

M(vq) = (Mv)q, v ∈ Hn, q ∈ H. (2.20)

(Note that the placement of q on the right is important, as the multiplication is non-commutative
in H.) Denote the basis vectors by e1, e2, . . . , en. Then such an M is specified by

Mei =
∑
j

Mijej. (2.21)

The condition M †M = 1 is the condition that it preserves the norm |v| of v ∈ Hn defined by

|v|2 :=
∑
i

|vi|2. (2.22)
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Fact 2.20. The only cases whenSn is a group areS0 = O(1) = {1,−1}, S1 = SO(2) = U(1)

and S3 = SU(2) = Sp(1).

Before moving on, we also introduce the notations:

Definition 2.21. We use the notationGL(n,K) for the group of invertible n×nmatrices over
a field K.

2.2.4 Aside: time reversal and R, C, H

Let me make a side remark concerning the natural role of H in quantum mechanics. Let’s consider
a quantum mechanical system with finite-dimensional Hilbert space H. The time reversal operator
T is anti-unitary, in that

Tz = zT. (2.23)

Assuming that T2 = c with a constant c, let’s show c = ±1. We evaluate T3 in two orders:

T(T2) = Tc = cT, (T2)T = cT. (2.24)

Therefore c = c. As the unitarity of T2 requires |c| = 1, we find c = ±1.

The case c = +1: This case, any vector v ∈ H can be decomposed into its real and imaginary
parts:

v = vre + vimi (2.25)

where
vre :=

1 + T

2
v, vim :=

1− T

2i
v. (2.26)

Note that Tvre = vre and Tvim = vim. So, the T -invariant part of H is a real vector space. Denoting
it by HR, we see that if HR = Rn, H = Cn. Unitary matrices acting on H commuting with T are
orthogonal matrices acting on HR. So, time-reversal-invariant unitary operators on H form the
group O(n).

The case c = −1: In this case, we note that i, j := T, k := iT satisfy the defining relation (2.18)
of H. (More precisely, we can equip the space H of quantum states with an action of H from the
right, via vi := iv and vj := Tv.)

Therefore, H = Hm for some m. When H = Cn, this forces n = 2m to be even. This is
known as Kramers degeneracy.

A unitary operator commuting with T is a norm-preserving map on Hm which commutes with
the quaternion action from the right. Therefore it belongs to Sp(m).
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Summary: U(n), SO(n), and Sp(n/2) are the groups of norm-preserving linear operators on a
quantum system H = Cn with n states with the following conditions:

• U(n): no time reversal,

• SO(n): time reversal with T2 = +1,

• Sp(n/2): time reversal with T2 = −1; n is forced to be even.

2.3 Manifolds via combinations
Let’s come back to the examples of manifolds.

Notation 2.22. Given two manifolds M and N of dimensions m and n, we write its product
as M ×N . It is a manifold of dimension m+ n.

Notation 2.23. Given two manifolds M and N of the same dimension n, we write its disjoint
union as M ⊔N . It is a manifold of dimension n.

Note that S1×S1 is two-dimensional and the surface of a donut, while S1⊔S1 consists of two
circles and is one-dimensional.

Example 2.24. The n-dimensional torus is

T n = S1 × S1 × · · · × S1︸ ︷︷ ︸
n times

. (2.27)

Example 2.25. S1 × [−1, 1] is a cylinder. Its boundary is S1 ⊔ S1.

Another construction is the following:

Notation 2.26. Given two connected manifolds M , N of dimension n, pick points p ∈M and
q ∈ N . remove small open balls Bn(p) and Bn(q) from M and N , and paste the common
Sn−1 boundary. The result is the connected sum M#N .

For example, the connected sum

T 2#T 2# · · ·#T 2︸ ︷︷ ︸
g copies

(2.28)

is the surface of a multi-donut (whatever that is). More professionally, it is called a genus-g surface.
S2 is defined to have genus 0.
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Fact 2.27. Any two-dimensional compact connected oriented manifold is S2 or the surface of
a multi-donut with g holes.

2.4 Manifolds via quotients
2.4.1 Generalities

Another method to define manifolds is to take the quotient of a manifold by a group action. Let us
explain it more fully.

Definition 2.28. A group action of a group G on a manifold M is a map

M ×G→M, (p, g) 7→ pq (2.29)

such that
pe = p, (pg)h = p(gh) (2.30)

for all g, h ∈ G and p ∈M . Here e is the identity in G. We often abbreviate this situation by
writing M ↶ G.

More precisely, this is known as a right action ofG. We can similarly define a left action ofG,
so that we have G ×M → M satisfying g(hp) = (gh)p instead. We write G ↶ M in this case.
In either case, we usually want the action to be smooth or at least continuous, depending on the
context.

Representations of groups on vector spaces are special cases:

Definition 2.29. A representation ρ of a group G on a K-vector space V is a group action
(from the left) ofG on V , commuting with the scalar multiplication by K (from the right). This
means that for each g ∈ G, we have linear maps ρ(g) : V → V such that ρ(gh) = ρ(g)ρ(h).
We often abbreviate this situation by writing ρ : G↷ V .

Let us now define the quotients:

Definition 2.30. For p, q ∈ M , let p ∼ q if there is a g ∈ G such that pg = q. The quotient
space M/G is the set M/ ∼ of equivalence classes under this relation.

M/G is not always a manifold. For example, consider R3 with the action of Z2 generated by

(x, y, z) 7→ (−x,−y,−z). (2.31)

The origin is singular, and the quotient space R3/Z2 is not a manifold. (It still belongs to a larger
class of spaces called orbifolds.) Actually, the quotient of a vector space by a group via its repre-
sentation is almost never a manifold. It is complicated to state the conditions under which M/G

is a manifold, so we will not do so in this lecture series.
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2.4.2 Projective spaces

We now define the real, complex and quaternionic projective spaces RPn, CPn and HPn uni-
formly.

Example 2.31. For K = R,C,H, consider the action of K \ {0} on Kn+1 \ {0} by scalar
multiplication, (from the right when K = H). The projective space KPn is then defined as

KPn = (Kn+1 \ {0})/(K \ {0}). (2.32)

These are of dimension n, 2n, and 4n respectively.

More directly, we consider elements

(x1, x2, . . . , xn+1) ∈ Kn+1 (2.33)

such that not all of xi is zero. Then we make the identification

(x1, x2, . . . , xn+1) ∼ (x0, x1, . . . , xn)c (2.34)

for nonzero c ∈ K. A point on KPn, which is an equivalence class under (2.34), is often denoted
by

[x1 : x2 : · · · : xn+1]. (2.35)

It is instructive to give explicit coordinate patches. Let Ui be the points on CPn with xi ̸= 0.
Note that when xi ̸= 0, we have

(x1, x2, . . . , xn+1) ∼ (x1/xi, x2/xi, . . . , xi/xi = 1, . . . , xn+1/xi). (2.36)

In other words, we can introduce coordinates onUi by defining yk := xk/xi for k ̸= i; equivalently,
we constructed a map fi : Ui → U i ≃ Kn.

Let us consider another patch Uj containing points with xj ̸= 0. We introduce coordinates
zk := xk/xj for k ̸= j; this gives the map fj : Uj → U j ≃ Kn.

Ui and Uj overlap when xi ̸= 0 and xj ̸= 0. We then need to find the coordinate transformation
between fi(Ui ∩ Uj) ⊂ U i and fj(Ui ∩ Uj) ⊂ U j , realizing the identification of

(y1, y2, . . . , yn+1) with yi = 1, yj ̸= 0 (2.37)

and
(z1, z2, . . . , zn+1) with zj = 1, zi ̸= 0. (2.38)

This is done by setting zk = yk/yj , where yi was defined to be = 1.
From this description we see

RP1 = S1, CP1 = S2, HP1 = S4. (2.39)

Indeed, in this case we have two patches

U1 = {[1 : y] | y ∈ K}, U2 = {[z : 1] | z ∈ K}. (2.40)
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where z = y−1 in the overlapU1∩U2. U1 is the northern hemisphere,U2 is the southern hemisphere,
and they are patched to form a sphere in the appropriate dimensions.

Another way to look at KPn is the following. To pick a representative under the identification
(2.34), we first fix

∑
i |xi|2 = 1. As Kn+1 = Rp(n+1) where p = 1, 2, 4 for K = R,C,H, we have

Sn, S2n+1, S4n+3 at this point.
The identification (2.34) still acts within this sphere if |c| = 1. Depending on K = R,C,H,

the group of such c is O(1) = {±1} = S0, U(1) = S1, Sp(1) = SU(2) = S3, respectively.
Therefore, we have

Proposition 2.32. RPn = Sn/O(1), CPn = S2n+1/U(1), HPn = S4n+3/Sp(1).

Remark 2.33. Before proceeding, we note that CPn parameterize physically-distinct pure states in
an (n+ 1)-dimensional Hilbert space. Indeed, two nonzero ket vectors |ψ⟩ and |ψ′⟩ represent the
same physical state when there is a complex number c such that |ψ′⟩ = c |ψ⟩. This is exactly the
condition (2.34). ⌟

2.4.3 Homogeneous spaces

Generalities: Another large class of quotient spaces are the homogeneous spaces.

Definition 2.34. Given a subgroup H ⊂ G, introduce the equivalence relation g1 ∼ g2 if
there exists an h ∈ G such that g1 = g2h. The quotient of G by this relation is denoted by
G/H , and is called a homogeneous space.

A common way homogeneous spaces appear in physics is via symmetry breaking. Say we
have a configuration space M (typically a vector space) acted on by a symmetry group G from
the left: M ∋ m 7→ gm ∈ M for g ∈ G. Suppose we have a potential (or a free energy)
V :M → R invariant under the G action, i.e. V (gm) = V (m). Suppose further that the potential
has a minimum at m0 ∈M . From the G-invariance, all points of the form gm0 are also minimum
of V . When the potential is generic, the space of the minimum of the potential is given by the orbit
Gm0. Can we say more about the structure of this space?

Let H ⊂ G be the subgroup fixing m0, i.e. h ∈ H if and only if hm0 = m0. In such a
situation, we say that the symmetry is broken fromG toH .3 In this case g1m0 = g2m0 if and only
if g−1

2 g1 ∈ H , or equivalently g1 = g2h for some h ∈ H . Therefore, we haveGm0 = G/H , i.e. the
space of the potential minimum is a homogeneous space determined by the original symmetry G
and the unbroken symmetry H .

Note that mathematicians call the subgroup H as the stabilizer of m0, whereas physicists usu-
ally call it the unbroken subgroup.

Wine bottle potential: Let us give some examples. We start with two trivial examples. Let
G = SO(2) act on (x, y) ∈ R2 by rotations. A rotationally invariant potential V (x, y) has the

3Physicists often write this as G → H , but mathematically the map is in the opposite direction, H → G.
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form V (x, y) = f(r) for r2 = x2 + y2. When the minimum is at (x, y) = (0, 0), its orbit under
SO(2) is a single point, {(0, 0)}. In this case the unbroken subgroup H is the entirety of SO(2).
So, we have SO(2)/SO(2) = {point}, a zero dimensional manifold consisting of a single point.
It is often abbreviated as pt in algebraic topology, so SO(2)/SO(2) = pt.

When the minimum is at (x, y) = (r0, 0) with r0 ̸= 0, its orbit under SO(2) is the circle of
radius r0. In this case the unbroken subgroup H is {e}, and SO(2)/{e} = SO(2), which is a
circle. For an illustration, see Fig. 2.

Figure 2: Two choices of SO(2)-invariant potential functions V (x, y), with minimum either
at the origin or at the circle of radius r0.

Generalized wine bottles: Let us generalize. Let SO(n) act on Rn by rotations. A rotationally
invariant potential V : Rn → R has the form V (x1, . . . , xn) = f(r) where r2 = x21 + · · ·+ x2n.
When f(r) has a minimum at r0 > 0, the space of the potential minimum is Sn−1 given by x21 +
· · ·+ x2n = r20.

At m0 = (r0, 0, . . . , 0), the subgroup of SO(n) fixing m0 is SO(n− 1). Therefore, the space
of the potential minimum is SO(n)/SO(n− 1) = Sn−1. Summarizing, we have found

Proposition 2.35. SO(n)/SO(n− 1) ≃ Sn−1.

Let U(n) act on Cn by unitary transformations. An invariant potential Cn → R has the form
V (z1, . . . , zn) = f(r) where r2 = |z1|2 + · · · + |zn|2. When f(r) has a minimum at r0 > 0, the
space of the potential minimum is S2n−1 given by |z1|2 + · · ·+ |zn|2 = r20.

At m0 = (r0, 0, . . . , 0), the subgroup of U(n) fixing m0 is U(n − 1). Therefore, the space of
the potential minimum is U(n)/U(n− 1) = S2n−1.

Proposition 2.36. U(n)/U(n− 1) ≃ S2n−1.

Let Sp(n) act on Hn in a standard manner. By following the same logic as above, we get
Sp(n)/Sp(n− 1) = S4n−1, and we found that:
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Proposition 2.37. Sp(n)/Sp(n− 1) ≃ S4n−1.

Observables in quantum mechanics: Let us discuss a different but common example we see
in quantum mechanics. Consider an n-state system with the Hilbert space H = Cn. The unitary
group U(n) acts on it. On the observables, g ∈ U(n) acts via

A 7→ gAg†. (2.41)

Therefore, the subgroup U(1) ⊂ U(n) consisting of scalar multiplications acts trivially:

cAc† = A, (2.42)

when |c| = 1. What acts effectively on the space of observables is the quotient group U(n)/U(1).
We note that SU(n) ⊂ U(n) also acts on observables. In this case, a scalar multiplication c

with |c| = 1 is in SU(n) if and only if cn = 1. The complex numbers {c | cn = 1} form a group
isomorphic to Zn, and we found Zn ⊂ SU(n), and the quotient SU(n)/Zn acts on the space of
observables.

As anyU(n)matrixU is of the form c′U ′ for c′ ∈ U(1) andU ′ ∈ SU(n), we haveU(n)/U(1) =
SU(n)/Zn. This common quotient group is known as the projective unitary group, and denoted
by PU(n). Summarizing,

Example 2.38. The common quotient U(n)/U(1) = SU(n)/Zn is called the projective uni-
tary group and is denoted by PU(n).

For those who take wavefunctions as supreme, the natural symmetry group is U(n), whereas
for those who take density matrices and/or observables as supreme, the natural symmetry group is
PU(n). This difference can produce subtle topological effects, as we will see during this lecture
series.

Chiral symmetry breaking in QCD: As our next example, let us consider the chiral sym-
metry breaking in QCD. For simplicity let us consider the two-flavor case. The symmetry G is
SU(2)× SU(2), which acts on C2 ⊗ C2, where two C2 factors are the standard two-dimensional
representations of SU(2). A more convenient way to think about this action is to regard C2 ⊗ C2

as the space of complex two-by-two matrices M2(C), and to let (g, g′) ∈ SU(2) × SU(2) to act
on m ∈M2(bC) via

m 7→ gmg′−1. (2.43)

Say that m takes the value m = 12×2. The unbroken subgroup H is formed by {(g, g)} ⊂
SU(2)× SU(2), which is isomorphic to SU(2) and is called the diagonal subgroup. The orbit of
12×2 is simply the matrices of the form gg′, i.e. the subspace SU(2) ⊂M2(C). We thus found:

Proposition 2.39. We have SU(2)× SU(2)/SU(2)diagonal = SU(2).
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Figure 3: Phase diagram of 3He (taken from [Vol09, Fig.7.1]).

Superfluid 3He: Our final example is the superfluid 3He; its theory can be learned e.g. in [VW13,
Vol09]. It has a phase diagram as given in Fig. 3. A 3He atom is a fermion with spin 1/2, which
can form a Cooper pair at low temperature. There are two superfluid phases with zero magnetic
field, known as the A phase and the B phase. The order parameter (the expectation value of the
Cooper pair) takes values in C3 ⊗C3, where the first factor is for the spin angular momentum and
the second factor is for the orbital angular momentum, both with spin 1. Denote the basis vectors
of the first C3 by e1,2,3 and those of the second by f1,2,3. The symmetry group G of the free energy
(neglecting a small spin-orbit coupling) is given by two separate SO(3) actions on e1,2,3 and f1,2,3,
together with a common U(1) phase rotation ei ⊗ fj 7→ c ei ⊗ fj . Therefore, we have

G = SO(3)× SO(3)× U(1) (2.44)

as the symmetry of the free energy.

Example 2.40. In the superfluid phases of 3He, the order parameter takes the value

• e1 ⊗ (f2 + if3) in the A phase,

•
∑

i ei ⊗ fi in the B phase.

Denoting the subgroup preserved by these order parameters byHA, B, the space of the potential
minimum is given by G/HA, G/HB, respectively.
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Question 2.41. Describe HA and HB as explicitly as possible.

You will see that the pattern of symmetry breaking is very similar to the breaking of the chiral
symmetry in QCD.

With magnetic field, there is also a phase known as the A1 phase. The magnetic field reduces
the symmetry of the free energy to SO(2)×SO(3)×U(1) and the order parameter takes the value
(e2 + ie3)⊗ (f2 + if3).

We have one final question before moving on:

Question 2.42. Projective spaces are homogeneous spaces. Could you describe them as such?

2.5 Non-orientable surfaces
Let us now discuss some non-orientable manifolds.

Example 2.43. Consider S1× [−1, 1], parameterized by θ ∼ θ+2π and x ∈ [−1, 1]. We can
consider the Z2 action (θ, x) 7→ (θ + π,−x). The quotient space is called the Möbius strip.
This is non-orientable, and the boundary is a single circle S1.

As a non-orientable closed manifold, we have RP2 we introduced above. To see this, recall
RP2 = S2/Z2, where the Z2 action identifies the antipodal points. Any point on the southern
hemisphere is identified with some point on the northern hemisphere. Then RP2 can be identified
with the northern hemisphere whose boundary, i.e. the equator, has an extra identification θ ∼
θ + π.

Let us have a closer look at the neighborhood of the equator. We can parameterize it by the
longitude θ together with the latitude ϕ ∈ (−ϵ, ϵ). The antipodal identification is (θ, ϕ) ∼ (θ +

π,−ϕ). This is the same as the Möbius strip, which is non-orientable. In string theory, this local
structure around the equator is called a crosscap (叉帽). Another way to say this is that RP2

is obtained by pasting a northern hemisphere (i.e. a disk) to a Möbius strip along the boundary.
Summarizing,

Proposition 2.44. RP2 is non-orientable.

Another non-orientable surface can be constructed by the following quotient:

Example 2.45. Consider T 2 parameterized by θ and ϕ with the identification θ ∼ θ+2π and
ϕ ∼ ϕ + 2π, and take a further identification as above: (θ, ϕ) ∼ (θ + π,−ϕ). The result is
known as the Klein bottle.

Locally aroundϕ = 0 andϕ = π, we have two Möbius strips. So the resulting surface is obtained by
pasting two Möbius strips along the boundary. Equivalently, it is obtained by taking the connected
sum RP2#RP2.
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We can consider many other non-orientable surfaces by taking a repeated connected sum:

RP2#RP2# · · ·#RP2︸ ︷︷ ︸
h copies

#T 2#T 2# · · ·#T 2︸ ︷︷ ︸
g copies

(2.45)

where we take h > 0 and g ≥ 0. In fact, many of them are actually homeomorphic to each other.

Fact 2.46. Any compact connected non-orientable 2d surface is homeomorphic to

RP2#T 2#T 2# · · ·#T 2︸ ︷︷ ︸
g copies

(2.46)

or the Klein bottle RP2#RP2.

It is a fun exercise to show that RP2#RP2#RP2 is homeomorphic to RP2#T 2.

2.6 Aside: some other fun manifolds
2.6.1 The de-singularization of C2/Z2

Let’s consider C2 parameterized by (z, w), and consider the Z2 action (z, w) 7→ (−z,−w). The
quotient space C2/Z2 is singular at the origin. We can parameterize the same space in a different
way: Let (s, t, u) := (z2, zw, w2). Then the Z2 action is trivial on (s, t, u), but we have the
relation su = t2. From (s, t, u) satisfying su = t2, we can uniquely reconstruct (z, w) ≃ −(z, w).
So C2/Z2 can be identified with the subspace

X = {(s, t, u) ∈ C3 | su = t2}. (2.47)

We can desingularize X = C2/Z2 in the following way.
We add the variables (x1, x2) ∈ C2 \ {0}, with the identification (x1, x2) ∼ a(x1, x2) for

a ∈ C \ {0}, i.e. we introduce CP1 ≃ S2. Recall that its points are denoted by [x1 : x2]. We now
add a further constraint

(z, w) = c(x1, x2) for some c ∈ C, (2.48)
or equivalently

(s, t, u) = c′(x21, x1x2, x
2
2) for some c′ ∈ C. (2.49)

Denote the total space by X̃: it is a subspace of C3 × CP1 parameterized by (s, t, u, [x1 : x2])

under the constraints su = t2 and (2.49). This space comes with two projections maps, π1 : X̃ →
X = C2/Z2 given by taking (s, t, u) and π2 : X → CP1 given by taking [x1 : x2].

Note that π1 is one-to-one except at the origin, (z, w) = (0, 0). It is because the relation (2.49)
uniquely determines [x1 : x2] = [z : w]. At the origin, (z, w) = (0, 0), the inverse image is the
entirety of CP1. So, X̃ can be thought of inserting CP1 at the origin of X = C2/Z2.

X̃ is actually a smooth manifold. To see this, we consider the second projection π2 : X̃ → CP1.
Given a point [x1 : x2] ∈ CP1, the inverse image of π2 is simply c′(x21, x1x2, x22) ∈ C for c′ ∈ C.
So it is isomorphic to a copy of C. So X̃ can be visualized as a copy of C attached smoothly at
each point of CP1, and is a smooth manifold. This is an example of a fiber bundle we discuss in
the next section.
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2.6.2 A K3 manifold

The manifold X̃ introduced above was non-compact. It can be used to construct a rather important
compact manifold of dimension 4. We start from T 4 parameterized by θi ∈ R with the identifica-
tion θi ∼ θi + 2π, for i = 1, 2, 3, 4. We consider the Z2 action given by

(θ1, θ2, θ3, θ4) 7→ −(θ1, θ2, θ3, θ4). (2.50)

Note that we have θ ∼ −θ under the identification θ ∼ θ+2π if and only if θ = 0, π. The quotient
space T 4/Z2 is therefore singular at 24 = 16 points when θi = 0, π for i = 1, 2, 3, 4. Around
each point, it locally has the form R4/Z2 = C2/Z2 studied above. Then, we can insert 16 copies
of CP1 at these 16 points to desingularize the space. The result is a smooth compact manifold of
dimension 4, and is an example of a class of manifold called K3.4

2.7 Aside: some curious facts about manifolds
2.7.1 Smooth vs. topological manifolds

Consider the following equation in C5:

z21 + z22 + z23 + z34 + z6k−1
5 = 0. (2.51)

Except at the origin, it is a smooth manifold of complex dimension 4, i.e. of real dimension 8. We
can take the intersection with the unit sphere S9 = {

∑
|zi|2 = 1} in C5. This results in a smooth

compact manifold Mk of dimension 7. It is known that Mk are all homeomorphic to the standard
S7, but they are not diffeomorphic to it unless k is a multiple of 28. In fact, there are exactly 28
ways to make S7 into a smooth manifold, and the construction above exhausts them. This goes
back to Milnor in 1956; a very readable account is given e.g. in [Mee17]. These manifolds are
called exotic spheres, but they are not very exotic, as the explicit equation above shows!

There are also cases where a topological manifold does not admit any smooth structure. That
there are such manifolds in four dimensions was realized by Freedman [Fre82] in 1982. An exam-
ple is called as the E8 manifold. Again the construction with coordinate patches with continuous
maps between them is explicit; what was difficult was to show that there cannot be any smooth
structure. Next year in 1983, Donaldson [Don83] introduced a new method to study smooth four-
dimensional manifolds using gauge theory, with many spectacular results. One result which was
soon found is that R4 also has a smooth structure which is not diffeomorphic to the standard one.
(For example, in one of such exotic smooth structures, any smoothly embedded S3 in it resides in
a compact region around the origin. So, there can’t be an arbitrarily large S3 in it.)

2.7.2 Triangulation of manifolds

Two-dimensional surfaces can be triangulated. We can ask the same question in higher dimensions,
where we replace triangles by simplices. (A simplex in dimension n has n+ 1 vertices, etc.) Can

4The name K3 was introduced by the mathematician A. Weil, after the three mathematicians Kummer, Kähler, and
Kodaira who studied it, and also the mountain K2 in the Himalayas. The construction given here is due to Kummer.
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manifolds be triangulated? It is known that smooth manifolds can be triangulated. How about
topological manifolds?

Well, the four-dimensional E8 manifold above cannot be triangulated. The situation in dimen-
sions more than five was more subtle. It was shown by Matumoto [Mat78] in 1978 and Galewski-
Stern [GS80] in 1980 that, all topological manifolds of dimension n ≥ 5 can be triangulated if
there exists a three-manifold satisfying certain properties. If no such three-dimensional manifold
exists, then for every dimension n ≥ 5 there are topological manifolds which cannot be triangu-
lated. Non-existence of such a three-manifold was finally proved by Manolescu [Man13] in 2013.
This work used a mathematical version of Seiberg-Witten theory, which originated in the study
of supersymmetric gauge theory in theoretical physics by Seiberg and Witten in the mid-1990s,
who showed how confinement happens in a supersymmetric version of QCD. This mathematical
Seiberg-Witten theory can be considered as an easier version of Donaldson’s theory referred to
above, and has been developed vigorously by mathematicians since its introduction.

2.7.3 Some comments

So we have hierarchy of structures on manifolds:

{topological manifolds} ⊃ {triangulated manifolds}
⊃ {PL manifolds} ⊃ {smooth manifolds} (2.52)

where I added another stage, known as piecewise-linear (PL) manifolds, which can be found more
often discussed in the math literature than triangulated manifolds.5 There are various differences
at each stage, as we have seen above.

Why do we/I care about these things? I don’t really know. But let me give some excuses.

• Firstly, it’s simply interesting, at least to me.

• Secondly, it is particularly interesting that gauge-theoretic (and therefore physics-inspired)
methods were used to study these issues.

• Thirdly, I found the following difference between hep-th and cond-mat people: In hep-th,
we often consider smooth manifolds as given (as in general relativity), whereas in cond-mat,
manifolds only appear as long-range approximation of a more fundamental lattice structure.
In theoretical condensed-matter physics, a general manifold is often studied assuming that
it is equipped with a triangulation. Therefore, I think that it might be of some use to be
aware of the distinction between these two approaches to manifolds. For example, it seems
possible to write down the Hamiltonian of a strange symmetry-protected topological phase
which is defined on triangulated manifolds such that it detects non-smooth but triangulable
manifolds, using a characteristic class known as the Kirby-Siebenmann class. This results
in a model in a rather high dimensionality meaningless in our actual world, though.

5PL manifolds are triangulated manifolds such that for each vertex v, the link of v (the polyhedron formed by
simplices immediately surrounding v) is piece-wise-linear isomorphic to Sn−1.
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3 Fiber bundles
After having seen some explcit examples of manifolds, let us move on to the study of fiber bundles,
which are a kind of twisted products of manifolds.

3.1 Definition
Definition 3.1. A fiber bundle is the data of a map p : E → B where E and B are manifolds,
such that there is a fixed manifoldF so that for each b ∈ B we have a neighborhood b ∈ U ⊂ B

and a bijective map f : p−1(U) → U × F that is compatible with the projection, i.e. the
following diagram

p−1(U)
f−→ U × F

↓ ↓
U = U

(3.1)

commutes, where the down arrows are projections. F , E and B are called the fiber, total
space, and base space, respectively. The map f above is called a local trivialization.

In other words, a fiber bundle over B with fiber F can be built by first covering B by open sets
Ui, taking the product Ui × F for each i, and we glue them over the overlaps Uij := Ui ∩ Uj via
maps fij as follows:

Ui × F ⊃ Uij × F
fi,j−−→ Uij × F ⊂ Uj × F

↓ ↓ ↓ ↓
Ui ⊃ Uij = Uij ⊂ Uj

(3.2)

where all the down arrows are the projections forgetting the fiber direction.

Notation 3.2. As a shorthand, we often refer to a fiber bundle as

F
ι−→ E

p−→ B. (3.3)

Here, ι is the inclusion of the fiber over a point b in the base B.

In algebraic topology, there is a more general concept called a fibration, which is denoted
similarly: F → E → B. A fiber bundle is a fibration, but a fibration is not necessarily a fiber
bundle.

Definition 3.3. Two fiber bundles F → E
p−→ B and F → E ′ p′−→ B with the same fiber are

said to be equivalent if there is a bijection f : E → E ′ compatible with the projections, i.e. the
following diagram commutes:

E
f−→ E ′

↓ ↓
B = B

(3.4)
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where the down arrows are projections p and p′.

Example 3.4. The product E = B × F is a fiber bundle over B with fiber F .

Figure 4: A cylinder and a Möbius strip.

Example 3.5. A cylinder S1 × [−1, 1] is a fiber bundle over S1 with fiber [−1, 1].

Example 3.6. A Möbius strip is a fiber bundle over S1, where the fiber is the segment [−1, 1].

See Fig. 4 for my terrible drawings.
A cylinder and a Möbius strip are inequivalent, although the fiber and the base of both cases

are the same. One way to see this is to note that the boundary of the cylinder is S1 ⊔ S1, while
the boundary of the Möbius strip is S1. Developing more general methods to distinguish different
fiber bundles with the same fiber and the same base is one of the goals of the study of fiber bundles.

3.2 Principal G-bundles
3.2.1 Generalities

Proposition 3.7. Suppose G acts on a manifold M . We further suppose that this action is
free, i.e. for each m ∈ M the only g ∈ G such that mg = m is g = e. Then the projection
p : M → M/G is a fiber bundle with fiber G. In other words, we have a fiber bundle
G→M →M/G.

In this description it can be said that we are giving the total space M more importance than
the base M/G. If we consider the base B = M/G, as the primary object, we get to the following
viewpoint:
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Definition 3.8. A fiber bundle p : P → B with fiber G is called a principal G-bundle if P is
equipped with an action of G from the right, such that for each b ∈ B we have U ⊂ B so that
we have the following identification compatible with the G action:

p−1(U) ≃ U ×G

↓ ↓
U = U

. (3.5)

Now, the total space P is built as before by gluing Ui ×G and Uj ×G over U := Ui ∩ Uj as

Ui ×G ⊃ U ×G
fij−→ U ×G ⊂ Uj ×G

↓ ↓ ↓ ↓
Ui ⊃ U = U ⊂ Uj

(3.6)

where fij has to be compatible with the right action of G. Let us make fij more explicit.
For this we need to use the following tautological lemma:

Lemma 3.9. A map f : G→ G compatible with the right G action is given by a left multipli-
cation by an element g ∈ G, f(h) = gh.

Indeed, we need to have f(h1h2) = f(h1)h2. Therefore f(h) = f(eh) = f(e)h. Defining
g := f(e), we have f(h) = gh. This completes the proof.

Using this lemma at each point b ∈ U , we find that fij : U ×G→ U ×G is given explicitly by

fij : (b, g) 7→ (b, gij(b)g) (3.7)

by a function gij : U → G.
When is a principal G-bundle P → B equivalent to the trivial bundle B × G → B? By

definition this means that there is a bijective map h : P → B×G compatible with the projections
and theG action from the right. On each patch Ui, h is given by f ′

i : p
−1(Ui) → Ui×G compatible

with the G action and the projection. Using the above lemma again, it is determined by a map
g′i : Ui → G via f ′

i(b, g) = (b, g′i(b)g). Furthermore, these maps g′i must be compatible with the
patching procedure, i.e. the following diagram must commute:

G
gij //

g′i
��

G

g′j
��

G id // G

, (3.8)

i.e. gij = (g′j)
−1g′i. Summarizing, we found:

Proposition 3.10. A principal G-bundle P → B given in terms of (3.7) is equivalent to the
trivial principal G-bundle B × G → B if and only if there are maps gi : Ui → G such that
gij = (gj)

−1gi.
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3.2.2 Examples

Now many of the examples we saw in Sec. 2.4 can be rephrased as principal bundles. In particular,
Proposition (2.32) means the following:

Example 3.11. Sn → RPn is a principal O(1) = Z2-bundle.

Example 3.12. S2n+1 → CPn is a principal U(1) = S1-bundle.

Example 3.13. S4n+3 → HPn is a principal Sp(1) = SU(2) = S3-bundle.

Furthermore, we saw that RP1 = S0, CP1 = S2, HP1 = S3 in (2.39). This means that we
have the following fiber bundles:

• R2 ⊃ S1 → RP1 = S1 is an S0 bundle,

• C2 ⊃ S3 → CP1 = S2 is an S1 bundle,

• H2 ⊃ S7 → HP1 = S4 is an S3 bundle.

These are known as Hopf fibrations. These bundles are nontrivial and are different from a
product. For example, in the second case, the total space is S3, which is different from S2 × S1,
the total space of a trivial S1 fiber bundle over S2. (Note that we haven’t actually learned how to
distinguish S3 and S1 × S2. This we will do later.)
Remark 3.14. The first example is a 2:1 map, already drawn in Fig. 4 as a map from the boundary
S1 of the Möbius strip to the base S1. ⌟
Remark 3.15. The second example can be given a different description. Regard S3 as parameter-
izing norm-one states in a qubit:

|ψ⟩ =
(
u

v

)
, (|u|2 + |v|2 = 1). (3.9)

Now form the expectation values of Pauli matrices:

x := ⟨ψ|σX |ψ⟩ = uv + vu, (3.10)
y := ⟨ψ|σY |ψ⟩ = −iuv + ivu, (3.11)
z := ⟨ψ|σZ |ψ⟩ = |u|2 − |v|2. (3.12)

It is straightforward to check that x2 + y2 + z2 = 1. Therefore the map

(u, v) 7→ (x, y, z) (3.13)
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defines a map
S3 → S2. (3.14)

That the fiber of this map is an S1 is clear from the fact that the expectation values are invariant
under the change |ψ⟩ 7→ c |ψ⟩ where |c| = 1. The sphere S2 parameterized by (x, y, z) is often
referred to as the Bloch sphere of the qubit.6 We can also give a more explicit parameterization of
the map above:

(cos(θ/2)eiψ, sin(θ/2)ei(ϕ+ψ)) 7→ (sin θ cosϕ, sin θ sinϕ, cos θ). (3.15)

This shows that the fiber above a point on S2 is parameterized by ψ.
We can stereographically project points on S3 to R3 via

(a, b, c, d) 7→ 1

1− a
(b, c, d), (3.16)

see Fig. 5. Using this, we can draw the fibers of each point on S2 as circles within R3. In Fig. 6, I
drew the fibers of (cos 2πk/8, sin 2πk/8, 0) for k = 0, 1, . . . , 7 in this manner. ⌟

Figure 5: Stereographical projection from S3 to R3

Note that all the three fibrations above have the form Sn → Sm → Sm−n. One wonders if
there are other examples of this form. Actually we have:

Fact 3.16. These three Hopf fibrations, together with a final one S7 → S15 → S8 exhaust
such fibrations Sn → Sm → Sm−n.

The last one, related to octonions, is not a principal fiber bundle, since S7 is not a group.
We can also use the fact that Hopf fibrations are nontrivial to show that the fibrations given

in Examples 3.11, 3.12, 3.13 are all nontrivial. Let us show this in the case of RPn. For this, we
consider the following commutative diagram:

Z2 → Sn → RPn

= ∪ ∪
Z2 → S1 → RP1

. (3.17)

6The history behind this terminology is quite interesting. It originates in [ACGT72], a paper about quantum optics,
where the authors refer to a work of Felix Bloch on nuclear magnetic resonance [Blo46], although this particular paper
by Bloch does not study at all the Bloch sphere as we know it. This was then adopted by the quantum information
community, which then became a standard terminology more generally, due to the increasing popularity of qubits. (I
used https://physics.stackexchange.com/questions/636913/ as a source.)
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Figure 6: Fibers of the Hopf fibration, drawn after a stereographic projection.

Here, S1 ⊂ Sn is obtained by restricting most of the coordinates to be zero. We already saw that
the second line is a nontrivial fibration. As the first line contains the second line, the first line is
also nontrivial. Summarizing, we have:

Proposition 3.17. The fibrations Z2 → Sn → RPn, S1 → S2n+1 → CPn, S3 → S4n+3 →
HPn are all nontrivial.

The homogeneous spaces, introduced in Definition 2.34 with many examples below it, also
give rise to principal bundles.

Proposition 3.18. G is a principal H-bundle over G/H , i.e. we have a fiber bundle H →
G→ G/H .

Let us give an example not directly treated in Section 2.4.3. Consider g ∈ SU(2) acting on
C2. Note that 2 × 2 traceless Hermitean matrices are paramaterized by R3, by xσx + yσy + zσz.
We let g ∈ SU(2) acts on this space via

Rg : (x, y, z) 7→ (x′, y′, z′) (3.18)

where
g(xσx + yσy + zσz)g

† = x′σx + y′σy + z′σz. (3.19)

An function V : R3 → R invariant under this SU(2) action has the form V (x, y, z) = f(r)

where r2 = x2 + y2 + z2. Suppose f(r) has a minimum at r0 > 0. The space of the potential
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minimum is x2+ y2+ z2 = r20, which is a sphere S2. Takem0 = (0, 0, r0), corresponding to r0σz.
The elements of SU(2) ≃ S3 fixing this point have the form eiθσz for some θ, and is isomorphic
to U(1) ≃ S1. In this way we again found

S1 → S3 → S2. (3.20)

This symmetry breaking pattern was first introduced by Georgi and Glashow in the context of the
electroweak theory [GG72]. Although it does not match the experimental results, it still serves as
a model simpler than the reality (the Standard Model), where we can practice our techniques. It
will play an important role in our analysis of monopoles later, too.

Note that we have defined a map SU(2) → SO(3) by g 7→ Rg where Rg was given in (3.18)
and (3.19). This is a homomorphism, and the kernel is {±1}. In other words we have found:

Example 3.19. There is a fiber bundle {±1} → SU(2) → SO(3).

Recalling that SU(2) ≃ S3, we also see that

Proposition 3.20. SO(3) ≃ RP3.

Note that this is simply an example of the fibrationZ2 → Sn → RPn for n = 3, which therefore
is nontrivial, as we already saw in Proposition 3.17.

3.3 Vector bundles
Another large class of bundles is given by the vector bundles, where the fiber is a vector space.

Definition 3.21. Pick the field of scalars K to be either R, C or H. A vector bundle is a fiber
bundle E → B with fiber V , where V is a vector space, such that two local trivializations
over Ui ⊂ B and Uj ⊂ B are related in the following manner on the overlap U := Ui ∩ Uj:

Ui × V ⊃ U × V
f−→ U × V ⊂ Uj × V

↓ ↓ ↓ ↓
Ui ⊃ U = U ⊂ Uj

(3.21)

where f is given by
f : (b, v) 7→ (b, g(b)v) (3.22)

where g(b) : V → V is a linear map smoothly depending on b ∈ U . The dimension of V is
called the rank of the vector bundle.

R-vector bundles, C-vector bundles, and H-vector bundles are also called real, complex, and
quaternionic vector bundles, respectively.

In physics it is also common to have an inner product on the fibers V of a vector bundle, so that
the transition functions g(b) are not just linear maps but inO(n), U(n), or Sp(n), respectively. We
will come back to this point later.
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Definition 3.22. A section of a vector bundle p : E → B is a map ψ : B → E such that p ◦ψ
is the identity map on B.

More informally, ψ(b) for b ∈ B takes values in the fiber V over b. Sections of vector bundles
appear in physics usually in one of the two ways:

• As fields, where the base space B is spacetime and the fiber V is the possible values the
fields can take. This appears ubiquitously in hep-th, in the gauge theory setting. The metric
tensor in general relativity is also a section of a vector bundle.

• As wavefunctions of a quantum mechanical system, where the system can be separated into
the degrees of freedom along the base space B and additional degrees of freedom param-
eterized by the fiber V which is the Hilbert space of a quantum subsystem. This arise, for
example, in the Born-Oppenheimer approximation, where B is for the slow motion of some
degrees of freedom (such as the position of the nuclei) and V is for the fast motion of other
degrees of freedom (such as electrons). It can also arise in the study of crystalline materials,
where B is the Brillouin zone and V is the spaces of quantum states at fixed wave number.

Definition 3.23. A vector bundle whose fiber is one dimensional over K is called a K-line
bundle. Here K is either R, C or H.

Most often, a line bundle refers to a complex line bundle, i.e. a vector bundle whose fiber is a
one-dimenisonal complex vector space.7

When we have two vector spaces V and W , we can form the direct sum V ⊕W or the tensor
product V ⊗W . These operations can be lifted to vector bundles, by performing them fiberwise.

Definition 3.24. Given two vector bundles E → B and E ′ → B with fibers V andW , we can
form the direct sum E ⊕ E ′ over B with fiber V ⊕W , or the tensor product bundle E ⊗ E ′

over B with fiber V ⊗W .

Given a vector space V , the space of linear functions V → K is denoted by V ∗ and is also a
vector space. Doing this fiberwise, we have:

Definition 3.25. Given a vector bundle E → B with fiber V , we can form the dual bundle
E∗ → B whose fiber is V ∗.

Similarly, for a complex vector bundle, we can do:

Definition 3.26. Given a complex vector bundleE → B with fiber V , we can form the complex
conjugate bundle E → B whose fiber is V .

Another interesting operation one can do is the following: Let V be a complex vector space
with a Hermitian inner product. Let Herm(V ) be the space of Hermitian operators on V , which is
a real vector space.

7I think mathematicians are crazy in that they call the space of complex numbers a ‘line’.
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Definition 3.27. Given a complex vector bundle E → B with fiber V , we can form the bundle
of Hermitian operators Herm(E) → B with fiber Herm(V ).

This is the operation which, given a family of Hilbert spaces parameterized over a parameter space
B, produces the family of spaces of observables acting on each Hilbert space, over the same pa-
rameter space B.

A somewhat different operation one can perform fiberwise is to take the unit sphere Sph(V ) =

Skn−1 ⊂ V at each fiber, where n is the dimension of V and k = 1, 2, 4 for K = R,C,H.

Definition 3.28. Given a vector bundle E → B with fiber V , we can form the sphere bundle
Sph(E) → B whose fiber is Sph(V ).

We can also consider taking a vector subspace V2 ⊂ V1 at each fiber:

Definition 3.29. A subbundle of a vector bundle E1 → B with fiber V1 is a vector bundle
E2 → B with fiber V2 such that on each local trivialization we have

(p2)
−1(B) ≃ U × V2 ⊂ U × V1 ≃ (p1)

−1(B)

↓ ↓ ↓ ↓
U = U = U = U

(3.23)

Let us consider a basic but interesting example. Consider the unit sphere S2, parameterized
by (x, y, z) with x2 + y2 + z2 = 1. We consider a trivial vector bundle S2 × H over S2, where
H = C2 is a qubit. Let us consider the Hamiltonian

H := −(xσx + yσy + zσz) (3.24)

parameterized over S2. As H2 = 1, the eigenvalues of H are ±1. Let V (x, y, z) ⊂ H be the
eigenspace of the lowest energy, i.e. the −1 eigenspace. This determines a subbundle E → S2 of
the trivial bundle S2 ×H, where the fiber at (x, y, z) is V (x, y, z). This is a complex line bundle.

To have a more explicit description of this bundle, let us recall the map (3.13) from S3 to S2;
we write (x, y, z) in terms of (u, v). We can easily check that

H

(
u

v

)
= −

(
|u|2 − |v|2 2vu

2uv −|u|2 + |v|2
)(

u

v

)
= −

(
u

v

)
. (3.25)

We have shown that
V (x, y, z) = {c

(
u

v

)
| c ∈ C} ⊂ H. (3.26)

We can now take the unit sphere bundle Sph(E) → S2. This simply sends (u, v) with |u|2+ |v|2 =
1 to (x, y, z) via (3.13), so this is the Hopf fibration S1 → S3 → S2. Summarizing:
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Example 3.30. The unit sphere bundle of the complex line bundle over S2, obtained by taking
the lowest energy states of the Hamiltonian (3.24), is the Hopf fibration S1 → S3 → S2.

3.4 Relating vector bundles and principal G-bundles
We described the transition functions of a vector bundle in Eq. (3.22). On a completely general
complex vector bundle E → B, the transition functions g(b) are in GL(n,C), where n is the rank
of the vector bundle, i.e. the dimension of the fiber. But we often consider the situation where
the fibers of the vector bundle are equipped with a Hermitian inner product. In such a case, the
transition functions are inU(n). Then we can consider a principalU(n)-bundle P → B associated
to the vector bundle, defined via (3.7). The fiber is now U(n) instead of Cn.

In high-energy physics we often encounter the situation where g(b) is in a subgroupG of U(n);
then we can consider the principal G-bundle associated to the vector bundle in the same way. The
fiber is now G instead of Cn.

Definition 3.31. A K-vector bundle whose transition functions g(b) are in a subgroup G of
GL(n,K) is called to have the structure group G. The principal G-bundle given by the same
transition functions are called the principal G-bundle associated to the vector bundle.

There is an inverse operation to this. Take a principal G-bundle over B with the transition
function over U := Ui ∩ Uj given by a map g : U → G as described in (3.7). Pick a linear action
ρ : G ↷ V of G on a vector space V . Then we can form a vector bundle over B with fiber V by
declaring that its transition functions between Ui × V and Uj × V are given by ρ(g), i.e. we have

Ui × V ⊃ U × V
f−→ U × V ⊂ Uj × V

↓ ↓ ↓ ↓
Ui ⊃ U = U ⊂ Uj

(3.27)

where f is given by
f : (b, v) 7→ (b, ρ(g(b))v). (3.28)

Definition 3.32. The vector bundle V → E → B constructed as above is called an associated
vector bundle to the principal G-bundle G → P → B, determined by the representation ρ.
We call G the structure group of E → B.

As an example, take a principal U(1) bundle U(1) → E → B.

Ui × U(1) ⊃ U × U(1)
f−→ U × U(1) ⊂ Uj × U(1)

↓ ↓ ↓ ↓
Ui ⊃ U = U ⊂ Uj

(3.29)

where f is given by
f : (b, h) 7→ (b, g(b)h) (3.30)
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where b ∈ B, h ∈ U(1) (i.e. |h| = 1) and g : U → U(1). Take the standard representation of
U(1) on C given by multiplication, i.e. the one where g ∈ U(1) acts on z ∈ C by gz. Then the
associated vector bundle C → E ′ → B has the structure

Ui × C ⊃ U × C f ′−→ U × C ⊂ Uj × C
↓ ↓ ↓ ↓
Ui ⊃ U = U ⊂ Uj

(3.31)

where f is given by
f ′ : (b, z) 7→ (b, g(b)z) (3.32)

where z ∈ C. It is easy to see that E → B is the unit sphere bundle of E ′ → B. Summarizing,
we found:

Proposition 3.33. Given a principal U(1)-bundle U(1) → E → B, consider the associated
vector bundle C → E ′ → B coming from the standard representation U(1) ↷ C. Then
E → B is the unit sphere bundle of E ′ → B.

We saw in Example 3.30 that the unit sphere bundle of the complex line bundle of the lowest
energy states of the Hamiltonian (3.24) over S2 is the Hopf fibration S1 → S3 → S2. Therefore,
conversely, the associated line bundle to the Hopf fibration S1 → S3 → S2 in the standard rep-
resentation U(1) ↷ C is the complex line bundle of the lowest energy states of the Hamiltonian
(3.24).

An alternative construction of the associated vector bundle without using patches is as follows.

Proposition 3.34. Given a principalG-bundleG→ P → B and a representation ρ : G↷ V ,
the associated vector bundle V → E → B is given by E = (P × V )/G, where the action of
G on P × V is given by g(p, v) = (pg−1, ρ(g)v).

The proof is straightforward and is left as an exercise.

3.5 Tangent and cotangent bundles
3.5.1 Definitions

So far we considered vector bundles as an additional structure on a given base B. There are also
vector bundles canonically associated to a manifold M .

Take two patchesU andU ′ on a manifold with a nontrivial overlapU∩U ′. and with f : U → Rn

and f ′ : U ′ → Rn respectively. For a point p ∈ U ∩U ′ in the overlap, let f(p) = (x1, . . . , xn) and
f ′(p) = (x′1, . . . , x′n). Here we placed the indices on the superscripts, following the convention
in general relativity. We now consider U × Rn, where the basis vectors for the Rn factor are the
symbols

∂

∂x1
, . . . ,

∂

∂xn
. (3.33)
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Similarly, we consider U ′ × Rn where the Rn factor has the basis vectors

∂

∂x′1
, . . . ,

∂

∂x′n
. (3.34)

We let these two vasis vectors to be related as usual:

∂

∂x′i
=

∑
j

∂xj

∂x′i
∂

∂xj
. (3.35)

In other words, on the overlap U ∩ U ′, the transition function U × Rn → U ′ × Rn is given by

(p,
∑
i

ci
∂

∂xi
) 7→ (p,

∑
i,j

ci
∂xj

∂x′i
∂

∂xj
). (3.36)

Definition 3.35. For a smooth manifold M of dimension n, the real n-dimensional bundle
constructed as above is called the tangent bundle and is denoted by TM .

Definition 3.36. The dual bundle of the tangent bundle is called the cotangent bundle and is
denoted by T ∗M .

More explicitly, consider patches U ⊂ M and U ′ ⊂ M as above, with f(p) = (x1, . . . , xn) ∈ Rn

and f ′(p) = (x′1, . . . , x′n) ∈ Rn, respectively. Then the cotangent bundle T ∗M has the local
trivialization U × Rn and U ′ × Rn with the basis vectors on the Rn part given by dxi and dx′i,
respectively. These two sets of basis vectors are related by

dx′i =
∑
j

∂x′i

∂xj
dxj., (3.37)

compare Eq. 3.35.
Consider a function ϕ :M → R on anM -dimensional manifoldM . Where does the derivative

∇f of ϕ live? Take a local patch f : U → U ⊂ Rn with U ⊂ M , with coordinates (x1, . . . , xn).
Consider the object

dϕ :=
∑
i

∂ϕ

∂xi
dxi. (3.38)

Using the relation (3.37), we can check that df : U → U×Rn on each patch U consistently defines
a section of the cotangent bundle dϕ :M → T ∗M .

Definition 3.37. dϕ defined above is called the exterior derivative of ϕ, and is a section of
T ∗M .

We can easily check the following:
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Proposition 3.38. d(fg) = (df)g + f(dg).

3.5.2 The metric

So far we have not introduced a metric. Let us do so now:

Definition 3.39. A Riemannian metric on a manifold M is an additional structure on the
tangent bundle TM which gives a smoothly-varying inner product on each fiber.

Unit sphere bundle: With a metric, we can consider the unit sphere bundle Sph(TM).

Example 3.40. LetM = S2 and consider its tangent bundle TS2. This is a real 2-dimensional
bundle. Give a standard round metric on S2, and take the unit sphere bundle Sph(TS2) of its
tangent bundle. This is an S1 bundle over S2.

We have already encountered two S1 bundles over S2, namely the trivial product and the Hopf
fibration. Is Sph(TS2) one of these two? The answer is no. We are going to develop general
methods to answer such questions later, but here is a special argument applicable to this particular
case.

Example 3.41. Sph(TS2) ≃ SO(3).

Proof outline: To see this, note that SO(3) naturally acts on TS2 by rotation; if you are unsure,
realize TS2 as a subspace of (v⃗, w⃗)R3×R3 with the constraint v⃗ · v⃗ = 1, w⃗ · v⃗ = 0. Clearly SO(3)
acts on it by simultaneous rotation of v⃗ and w⃗.

Now pick a point v⃗0 ∈ S2 and a point on the fiber over it with unit length, i.e. a point w⃗0 such
that w⃗0 · w⃗0 = 1 and w⃗0 · v⃗0 = 0. What is the orbit of this point (v⃗0, w⃗0) ∈ TS2?

As we saw in Sec. 2.4.3, the orbit is of the form SO(3)/H , whereH is the subgroup fixing this
point. Now, v⃗0 is fixed by SO(2) ⊂ SO(3), but this SO(2) rotates w⃗0. Therefore H = {e}, and
the orbit is SO(3) itself. Clearly this orbit is Sph(TS2), and we are done. □

Note that, at this point, we learned of the existence of three different S1 bundles over S2:

• The trivial one, S1 → S1 × S2 → S2,

• The Hopf bundle, S1 → S3 → S2,

• the bundle S1 → Sph(TS2) → S2.

Reduction of the structure group to O(n) or O(n− 1, 1): We now consider a different use of
the metric. With a Riemannian metric, we can form an orthogonal basis of the tangent space at
each point. Take U × Rn with the basis vectors ∂/∂xi as before. We pick an orthonormal basis

ea =
∑

eia
∂

∂xi
, (a = 1, . . . , n) (3.39)
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with respect to the inner product on the tangent space given by the metric, where eia is an n × n

matrix depending on p ∈ U . In other words, we have

⟨ea, eb⟩ = δab. (3.40)

In general relativity eia are known as tetrads or vierbeins in four dimensions, and fielbeins in general
dimensions. On U ′ × Rn we pick a similar orthonormal basis e′a given by

e′a =
∑

e′a
i ∂

∂x′i
, (a = 1, . . . , n) (3.41)

and we have the following relation on the overlap p ∈ U ∩ U ′:

e′a
i =

∑
b

M b
aeb (3.42)

where M b
a is an orthogonal matrix depending on p, i.e. M is a map from U ∩ U ′ to O(n). Then

the tangent bundle has the structure group O(n).
In physics we also often encounter the situation when the tangent bundle is equipped with a

Lorentzian inner product. In such cases the orthonormal basis ea above satisfies

⟨ea, eb⟩ = ηab, where ηab = diag(1, . . . , 1,−1). (3.43)

Then the matrixM b
a is in the Lorentz groupO(n−1, 1), which is the structure group of the tangent

bundle.
Below, we will always consider the case when the tangent bundle is equipped either with a Rie-

mannian or a Lorentzian metric; furthermore, we consider the Riemannian case unless otherwise
mentioned.

3.6 Orientation and spin structure
We have seen so far that the tangent bundle TM of a manifold M of dimension n is a real vec-
tor bundle with structure group O(n). In other words, it is built by patching the fiber over the
intersection U := Ui ∩ Uj with the following structure:

Ui × Rn ⊃ U × Rn f−→ U × Rn ⊂ Uj × Rn

↓ ↓ ↓ ↓
Ui ⊃ U = U ⊂ Uj

(3.44)

where f has the form
f : (b, v) 7→ (b, g(b)v), g : U → O(n). (3.45)

Recall thatO(n) has a subgroup SO(n) consisting of the matrices with determinant 1, and has
the decomposition

O(n) = SO(n) ⊔ SO(n)e (3.46)

where e is an element of determinant −1. SO(n) contains n-dimensional rotations and preserves
the orientation of Rn.
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Definition 3.42. When g : U → O(n) above can be uniformly chosen to be in SO(n) over
any nonempty intersection U = Ui ∩ Uj of two patches, the tangent bundle TM is not just an
O(n)-bundle but an SO(n)-bundle. In such case we say that the manifold M is orientable.

On R3 we have two orientations of basis vectors. Similarly, when a manifold is orientable (and
is connected), there are actually two orientations of the manifold.

Let us move on to the spin structure, which is necessary if we want to consider spinors on a
manifold. Let us start by considering the familiar case of three dimensions. The rotations of R3

form the group SO(3). The double cover of SO(3) is the group SU(2):

{±1} → SU(2)
π−→ SO(3). (3.47)

The wavefunction of a spin 1/2 particle is in the standard two-dimensional representation ofSU(2).
But this is not a representation of SO(3). Famously, a 360◦ rotation acts by−1 on the wavefunction
of an electron; a 360◦ rotation is the identity of SO(3). Therefore this two-dimensional represen-
tation is not a representation of SO(3). This means that the data of gij : Uij → SO(3) on the
overlaps Uij = Ui ∩ Uj of the tangent bundle TM is not sufficient for us to consider electrons on
the manifold.

For this, we need to lift the maps gij to SO(3) uniformly to SU(2), i.e. find maps g′ij : Uij →
SU(2) such that π ◦g′ij = gij so that {g′ij} determine a principal SU(2)-bundle P →M . A choice
of such an principal SU(2) bundle is known as the spin structure, and then we can consider the
associated complex two-dimensional vector bundle S → M given by the standard representation
of SU(2), by the construction

Ui × C2 ⊃ U × C2 f ′−→ U × C2 ⊂ Uj × C2

↓ ↓ ↓ ↓
Ui ⊃ U = U ⊂ Uj

(3.48)

where f has the form

f : (b, v) 7→ (b, g′(b)v), g : U → SU(2). (3.49)

This S is the spinor bundle, and the wavefunction of an electron is a section of this bundle.
In three dimensions we have the following fact:

Fact 3.43. Any oriented three-dimensional manifold has a spin structure.

At the end of the lecture series, I hope that you will understand the outline of the proof of this fact.
To discuss spin structures in other dimensions, we need some preparations.

Fact 3.44. There are nontrivial double covers of SO(n) for n ≥ 2 of the form

{±1} → Spin(n) → SO(n) (3.50)
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and double covers of SO(n− 1, 1) for n ≥ 3 of the form

{±1} → Spin(n− 1, 1) → SO(n− 1, 1). (3.51)

Fact 3.45. Spin(2k) has two spinor representations, each with complex dimensions 2k.
Spin(2k + 1) has one spinor representation, which is of complex dimensions 2k.

We will give their uniform explicit descriptions later. For low dimensions we have the following
alternative ways to describe them:

• Spin(2) ≃ U(1). Two spinor representations are the standard representation and its complex
conjugate,

• Spin(3) ≃ SU(2). The spinor representation is the standard two-dimensional representa-
tion,

• Spin(4) ≃ SU(2) × SU(2). Two spinor representations are the standard two-dimensional
representations of the two factors,

• Spin(5) ≃ Sp(2). The spinor representation is the standard representation of Sp(2) on
H2 ≃ C4,

• Spin(6) ≃ SU(4). Two spinor representations are the standard four-dimensional represen-
tation and its conjugate;

We also have

• Spin(2, 1) ≃ SL(2,R). The spinor representation is the standard two-dimensional repre-
sentation (regarded as complex matrices),

• Spin(3, 1) ≃ SL(2,C). Two spinor representations are the standard representation and its
complex conjugate.

Fact 3.46. CP2 is not spin, i.e. does not have a spin structure.

Therefore you cannot consider electrons on CP2, a four dimensional space.8

8Actually, this is true as long as we do not couple electrons to electromagnetism. With electromagnetism, we can
consider something called a spin-c structure, which exists on CP2. This will require a nonzero Maxwell field on CP2.
Therefore it is still true that electrons cannot exist on CP2 if the electromagnetic field is zero.
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3.7 Bundles and the Standard Model
After all these preparations, it is a good place to tell you the matter content of the Standard Model of
Particle Physics. The Standard Model contains three types of constituents, gauge fields, fermions
(quarks and leptons), and the Higgs boson. Mathematically, a gauge field for a gauge group G
is described by a connection of a principal G-bundle G → P → M ; we haven’t discussed this
important concept, but to do so will require us to study differential forms first. This we will do
in Sec. 5. Here we just mention that the Standard Model has gauge fields = connections for G =

SU(3)× SU(2)× U(1).9
In contrast, fermions and the Higgs field can already be described by the mathematical con-

structions we have already introduced so far. This is exactly what we are going to do now.
We start from a four-dimensional smooth manifoldM , equipped with a Lorentzian metric. We

further assume that M is oriented and has a spin structure. In this case the structure group of
M is Spin(3, 1) ≃ SL(2,C). SL(2,C) has a standard two-dimensional representation C2. The
associated vector bundle is the spinor bundle S →M .

As we already mentioned, we have a principal bundle G → P → M , where G = SU(3) ×
SU(2)×U(1) is the gauge group of the Standard Model. We have a certain representation ρboson of
G on a vector space Vboson, and ρfermion of G on a vector space Vfermion. We can form the associated
vector bundles

Vboson → Vboson →M (3.52)

and
Vfermions → Vfermions →M. (3.53)

Then the Higgs field and the fermions are the section of the vector bundle

Vboson ⊕ (Vfermions ⊗ S) →M, (3.54)

where S →M is the spin bundle.
To finalize our description, we need to specify Vfermion and Vboson. For this purpose, we introduce

the following representations of U(1), SU(2) and SU(3):

• Vq is the representation of U(1) such that g ∈ U(1) acts as z 7→ g6qz. q is the U(1) hyper-
charge of the fermion.

• 2 is the standard two-dimensional representation of SU(2).

• 3 is the standard three-dimensional representation of SU(3), and 3 is its complex conjugate.

Then we have
Vboson = 2⊗ V+1/2 (3.55)

for the Higgs boson, and
Vfermion = C3 ⊗ Vsingle generation (3.56)

9In the last couple of years, theorists started to wonder whether the gauge group might be some quotient of SU(3)×
SU(2)× U(1). See e.g. [Ton17] and the references which cite it.
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where C3 part is to describe the three generations, and Vsingle generation is given by

3 ⊗ 2 ⊗ V+1/6 (the quark doublet QL)

⊕ 3 ⊗ V−2/3 (the up-type antiquark uR)

⊕ 3 ⊗ V+1/3 (the down-type antiquark dR)

⊕ 2 ⊗ V−1/2 (the lepton doublet ℓL)

⊕ ⊗ V+1 (the charged anti-lepton eR)

⊕ C (the right-handed neutrino νR).

(3.57)

Why does the nature use this particular representation? I have no idea.

4 Basic homotopy theory

4.1 Definition of homotopy groups
Let us move on to algebraic topology proper.

Definition 4.1. Two maps f, g : X → Y between topological spaces are called homotopic if
there is a continuous map F : X × [0, 1] → Y such that F (x, 0) = f(x) and F (x, 1) = g(x)

for all x ∈ X . F is called a homotopy between f and g.

Take s ∈ [0, 1]. Then Fs(x) := F (x, s) is a map X → Y . The condittions above means that
F0 = f and F1 = g. Therefore Fs provides a continuous deformation from f to g.

In Sec. 2.7 I made a fuss about the distinction between smooth and continuous maps, or smooth
and topological manifolds. In homotopy theory of smooth manifolds, we usually do not need to
worry about this distinction, since we have the following

Fact 4.2. Any continuous map between smooth manifolds is homotopic to a smooth map.

Of course it does matter if we want to study the smooth vs. continuous issue itself.
Let us move on.

Proposition 4.3. Being homotopic is an equivalence relation.

Definition 4.4. Equivalence classes of maps under homotopy are called homotopy classes.
We denote by [X, Y ] the set of homotopy classes of maps X → Y .

In a careful exposition of homotopy theory the following notion is essential:

Definition 4.5. A pair (X, p) of a topological space X and a point p ∈ X is called a pointed
space. p is called the base point.

We often write ‘a pointed space X’ as a shorthand for ‘a pointed space (X, p)’. In addition,
when X is connected, the choice of p ∈ X does not usually matter. For that purpose we often use
the notation ∗ for the base point in that case.
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Figure 7: f ∈ [Sn, X]∗ as a map from [0, 1]n toX . The shaded regions are mapped to the base
point ∗ ∈ X .

Definition 4.6. A map f : (X, p) → (Y, q) between pointed spaces is called a pointed map if
f(p) = q.

We can define homotopy of pointed maps in the same way as homotopy of maps.

Definition 4.7. For pointed spacesX and Y , We denote by [X, Y ]∗ the set of homotopy classes
of pointed maps X → Y .

We regard Sn as a pointed space by taking the north pole as the base point. In the following
we set n ≥ 1. Now, for a pointed space (X, ∗), consider f ∈ [Sn, X]∗. Such an f determines a
map from an n-dimensional cube to X

f : [0, 1]n → X (4.1)

so that a neighborhood of the boundary of the cube is mapped to the base point ∗ ∈ X , see Fig. 7.
We can define a group operation on [Sn, X]∗ as follows. Take f, g ∈ [Sn, X]∗. Regard them

as maps f, g : [0, 1]n → X . We then define fg : [0, 1]n → X by

(fg)(x1, . . . , xn) =

{
f(2x1, x2, . . . , xn) for x1 ∈ [0, 1/2],

g(2x1 − 1, x2, . . . , xn) for x1 ∈ [1/2, 1],
(4.2)

see Fig. 8.
We also define f−1 by

f−1(x1, . . . , xn) = f(1− x1, x2, . . . , xn) (4.3)

As the identity element, we use e : Sn → X which maps the entire Sn to the base point ∗ ∈ X .
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Figure 8: The group operation fg on [Sn, X]∗. The shaded regions are mapped to the base
point ∗ ∈ X .

Proposition 4.8. The set [Sn, X]∗ for n ≥ 1with the group operation defined above is a group.

Definition 4.9. The group [Sn, X]∗ for n ≥ 1 is called the n-th homotopy group of X , and is
denoted by πn(X).

For n = 1, π1(X) is also called as the fundamental group of X . It is the group of closed paths
from the base point to the base point, where the group law is obtained by concatenation.

Example 4.10. πn(pt) = 0, where pt is a single point.

Example 4.11. πn(Rk) = 0.

Example 4.12. π1(S1) = [S1, S1]∗ = Z.

This is because f : S1 → S1 is determined by how many times the image of f winds around
S1 when we go around the source S1 once. This number is called the winding number in physics
literature. Mathematicians call it the degree of the map. See Fig. 9 for an illustration.

As shown there, a way to make this concept more precise is to pick a generic point p in the
target S1, and consider its preimage f−1(p). This consists in general of a finite number of points
in the source S1. We can count the number of points weighted by the local orientation of f at
each point. This can be shown to be independent of the choice of p in the target S1, and gives a
definition of the winding number. In Fig. 9, the preimage of p consists of one point, giving +1 for
the winding number; the preimage of q, in contrast, consists of three points, with local orientations
+1, −1, +1 respectively, again giving +1− 1 + 1 = +1 for the winding number.
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Figure 9: The winding number of a map f : S1 → S1.

Example 4.13. For a genus-g surface Σg,

π1(Σg) = ⟨A1, B1, A2, B2, . . . , Ag, Bg |
A1B1A

−1
1 B−1

1 A2B2A
−1
2 B−1

2 · · ·AgBgA
−1
g B−1

g ⟩. (4.4)

HereAi andBi aret the closed paths starting and ending at the base point, going around the i-th hole
in two ways, see Fig. 10. The notation on the right hand side, ⟨a, b, . . . | relation1, relation2, . . . , ⟩
is called a presentation of a group.

Figure 10: Generators of π1(Σ2).

This is an Abelian group when g = 1, i.e. for Σ1 = T 2. Explicitly, π1(T 2) = Z2. But this is a
non-Abelian discrete group for g ≥ 2.

In contrast, we have:

Proposition 4.14. The group πn(X) is Abelian for n ≥ 2.

For a proof, see Fig. 11. The point is that we can continuously move the nontrivial part of maps
f and g across each other, using the large region in [0, 1]n where f and g are both mapped to the
base point. This is possible only when n ≥ 2.

It is also sometimes useful to define the following:

Definition 4.15. We define π0(X) to be [S0, X]∗. This is the set of connected components of
X .
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Figure 11: Commutativity of the group operation in πn(X) for n ≥ 2.

Indeed, S0 = {∗, p} where ∗ is the basepoint. Then f : S0 → X is determined by f(p) ∈ X .
We regard f up to homotopy. This means that f is determined by the connected component of X
which f(p) is in.

We summarize the considerations so far:

• π0(X) is a set.

• π1(X) is a group, known also as the fundamental group of X .

• πn≥2(X) is an Abelian group.

It turns out to be useful to introduce the following notion:

Definition 4.16. A space X is called connected if π0(X) = 0, and simply connected if
π0,1(X) = 0. More generally, a space X is called n-connected if π0,...,n(X) = 0.

In particular, 0-connected means connected and 1-connected means simply-connected.

4.2 Basic properties of homotopy groups

Definition 4.17. For a map f : X → Y and a : Sn → X, we have a map f ◦ a : Sn → Y .
This determines a map πn(X) → πn(Y ), which can be easily seen to be homomorphism.

Proposition 4.18. If two maps f, g : X → Y are homotopic, the corresponding homomor-
phisms f∗, g∗ : πn(X) → πn(Y ) are the same.

In particular, if f : X → X is homotopic to identify, f∗ : πn(X) → πn(X) is an isomorphism.
This motivates the following definition:

Definition 4.19. Two spaces X and Y are called homotopy equivalent if there are maps f :

X → Y and g : Y → X such that f ◦ g is homotopic to idY and g ◦ f is homotopic to idX .

Then we have the following:
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Proposition 4.20. If f : X → Y gives a homotopy equivalence, then f∗πn(X) → πn(Y ) is
an isomorphism.

When X and Y are homeomorphic, i.e. if there is a 1:1 continuous map f : X → Y , taking
g = f−1 we see that X and Y are homotopy equivalent. But X and Y being homotopy equivalent
is much looser.

Example 4.21. A disk D2 = {|x|2 + |y|2 ≤ 1} is homotopy equivalent to a point.

Indeed, let f : D2 → {(0, 0)} be the obvious map, and g : {(0, 0)} → D2 be the inclusion. f ◦ g
is identity. So we need to show that g ◦ f is homotopic to the identity. For this we just consider
fs((x, y)) = s(x, y) for s ∈ [0, 1], and we are done. Similarly,

Example 4.22. A disk Dn in any dimension is homotopy equivalent to a point.

So, if we can compute πn(X) and πn(Y ) for some n and show πn(X) ̸= πn(Y ), then X
and Y are not equivalent under this very loose equivalence relation. In particular, X and Y are
not homeomorphic and not diffeomorphic. This is how the homotopy groups πn(X) helps in
distinguishing spaces. But we have not yet learned how to compute homotopy groups. And this is
surprisingly hard!

To get some ideas, let us enumerate some more properties:

Proposition 4.23. πn(X × Y ) = πn(X)× πn(Y ).

This allows the computation of homotopy groups of product manifolds to those of the factors.

Proposition 4.24. If X is a manifold, then πn(X) is a finitely generated group.

In particular, πn(X) cannot be a continuous group such as U(N).
The structure of finitely generated Abelian groups are well-known:

Fact 4.25. Finitely generated Abelian group A is of the form

A = Zn ⊕ Zm1 ⊕ · · · ⊕ Zmk
. (4.5)

Definition 4.26. In the above decomposition, Zn is called the free part of A, and Zm1 ⊕ · · · ⊕
Zmk

is called the torsion part of A.

So πn(X) for a manifold X with n ≥ 2 is always of the form (4.5).

4.3 Facts on πn(Sm)

Let us have a look at concrete examples of homotopy groups. As a starter, let us consider the
homotopy groups of spheres themselves, πn(Sm) = [Sn, Sm]∗.
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Figure 12: A generic map Sn → Sm with n < m has a point p ∈ Sm not mapped from Sn.

Theorem 4.27. πn(Sm) = 0 if n < m.

Roughly, a generic map Sn → Sm with n < m has a point p ∈ Sm not mapped from Sn. We can
‘push’ the image of maps from that point to the base point. So every map is homotopic to the map
to the basepoint, see Fig. 12.

Theorem 4.28. πn(Sn) = Z.

This can be shown by considering the higher-dimensional version of the winding number. For a
map f : Sn → Sn, the resulting integer is known as its degree in mathematics.

A more interesting one is the following:

Theorem 4.29. π3(S2) = Z. Furthermore, the Hopf fibration S3 → S2 corresponds to the
generator of Z.

Given a map f : S3 → S2, the corresponding integer is obtained as follows. Pick a generic
point p on S2. Its inverse image f−1(p) is a collection of circles C1, . . . , Cn in S3. Take another
point q on S2. Its inverse image f−1(q) is another collection of circles C ′

1, . . . , C
′
m in S3. We now

consider ∑
i,j

Lk(Ci, C
′
j), (4.6)

where the linking number Lk of two circles is defined in the standard way.10 One can show that this
is independent under continuous deformations of f . This is one definition of the Hopf invariant of
f . See Fig. 13 for an illustration of the definition.

We drew the actual fibers of the Hopf fibration S1 → S3 → S2 in Fig. 6. By inspection, we
see that two fibers have the linking number 1. Therefore, the Hopf fibration S3 → S2 has the Hopf
invariant 1.

10This appears in the integrated form of the equation of electromagnetism. Namely, if a current I flows in a loop
C, then the integral of the magnetic field around C ′ is proportional to the linking number of C and C ′.
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Figure 13: A definition of the Hopf invariant of a map f : S3 → S2 is given by considering
the linking number of the inverse images of two points in S2.

We can similarly define linking numbers of two Sn−1’s within S2n−1 for n > 2, where the
previous case corresponds to n = 2. Then, for a map f : S2n−1 → Sn, the inverse image of a
generic point in Sn is a (n − 1)-dimensional space, and then we can define a higher-dimensional
Hopf invariant of f as in (4.6). Now, it is known that

Lk(A,B) = (−1)n Lk(B,A) (4.7)

in general, which implies that the expression (4.6) gives zero when n is odd. As we see below in
Proposition 4.33, it is relatively easy to construct a map S2n−1 → Sn with Hopf invariant 2 when
n is even, and therefore

Theorem 4.30. π4m−1(S
2m) contains a Z summand.

Also, by an explicit computation we can show that

Proposition 4.31. The Hopf fibrationsS3 → S2, S7 → S4, S15 → S8, all have Hopf invariant
one.

and in fact

Theorem 4.32. There is a map f : S2n−1 → Sn with Hopf invariant one only whenn = 2, 4, 8.

This is a deep result in algebraic topology, known as the Hopf invariant one problem, and the
efforts to solve this question inspired many developments in the field. We also have

Proposition 4.33. For all other n = 2m, the minimal Hopf invariant for a map f : S4n−1 →
S2m is two.

Proof outline: This can be shown by constructing an example with Hopf invariant two using the
Whitehead product. Here we do not have the time to give a general theory, so let us simply give
the final constructed map.
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For now let n be an integer, without assuming that it is even. First, realize S2n−1 as

(Sn−1 ×Dn) ∪ (Dn × Sn−1), (4.8)

where we identify the common boundary Sn−1 × Sn−1 with an appropriate orientation. We then
define the map f : S2n−1 → Sn as follows, using the map g : Dn → Sn collapsing the boundary
to the basepoint:

f(p) =

{
g(b) if p = (a, b) ∈ Sn−1 ×Dn,

g(a) if p = (a, b) ∈ Dn × Sn−1.
(4.9)

Then the inverse image f−1(s) of s ∈ Sn−1 for a generic point s away from the basepoint is

f−1(s) = ({s} × Sn−1) ∪ (Sn−1 × {s}), (4.10)

Now, we have

Lk({s} × Sn−1, {t} × Sn−1) = 0, (4.11)
Lk({s} × Sn−1, Sn−1 × {t}) = 1, (4.12)

Using this we can compute

Lk(f−1(s), f−1(t)) =

{
2 (even n),
0 (odd n)

(4.13)

where we used (4.7). □
Another interesting fact is that

Theorem 4.34. The only free part of πn(Sm) is πn(Sn) ≃ Z and the single Z summand of
π2n−1(S

n) discussed above. Otherwise the homotopy groups of spheres are all torsion.

With these basic properties covered, let us have a look at the homotopy groups of spheres
πn+k(S

n) for small n and k, which are tabulated in Table 1. The data are taken from岩波数学
辞典 [日07, 付録, 公式 7, V], which also has an English translation [Itô87]. There we showed
πd(S

d) ≃ Z in red, and the Z summand of π2m−1(S
m) in blue.

We clearly see more patterns in the table. This comes from the following general fact. Let us
start with a definition.

Definition 4.35. Given a pointed space (X, ∗), we define the reduced suspension ΣX ofX as

ΣX =
X × [0, 1]

X × {0, 1} ∪ {∗} × [0, 1]
. (4.14)

See Fig. 14 for an illustration.
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k 0 1 2 3 4 5 6 7 8 9

S1 Z 0 0 0 0 0 0 0 0 0

S2 Z Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2

S3 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 (Z2)
2

S4 Z Z2 Z2 Z× Z12 (Z2)
2 (Z2)

2 Z24 × Z3 Z15 Z2 (Z2)
3

S5 Z Z2 Z2 Z24 Z2 Z2 Z2 Z30 Z2 (Z2)
3

S6 Z Z2 Z2 Z24 0 Z Z2 Z60 Z24 × Z2 (Z2)
3

S7 Z Z2 Z2 Z24 0 0 Z2 Z120 (Z2)
3 (Z2)

4

S8 Z Z2 Z2 Z24 0 0 Z2 Z× Z120 (Z2)
4 (Z2)

5

S9 Z Z2 Z2 Z24 0 0 Z2 Z240 (Z2)
3 (Z2)

4

S10 Z Z2 Z2 Z24 0 0 Z2 Z240 (Z2)
2 Z× (Z2)

3

S11 Z Z2 Z2 Z24 0 0 Z2 Z240 (Z2)
2 (Z2)

3

S12 Z Z2 Z2 Z24 0 0 Z2 Z240 (Z2)
2 (Z2)

3

Table 1: Table of πn+k(Sn)

Proposition 4.36. ΣSn ≃ Sn+1.

Definition 4.37. Given f : X → Y , we define Σf : ΣX → ΣY by

(Σf)([x, t]) = ([f(x), t]), (4.15)

where we denoted a point in ΣX by [x, t] for x ∈ X and t ∈ [0, 1]. This determines a map

[X, Y ]∗ → [ΣX,ΣY ]∗. (4.16)

In particular, when applied to X = Sn and ΣX = Sn+1, we have

Figure 14: The reduced suspension ΣX of a space X . In the figure, we collapse all the points
colored in red to a single point, which we take to be the basepoint.
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Proposition 4.38. πn(Y ) → πn+1(ΣY ) is a homomorphism of groups.

Furthermore, there is the Freudenthal suspension theorem:

Theorem 4.39. Suppose Y is (n − 1)-connected, i.e. πi<n(Y ) = 0. Then the suspension
homomorphism πk(Y ) → πk+1(ΣY ) is an isomorphism for k < 2n − 1 and a surjection for
k = 2n− 1.

More explicitly, πk≥n(ΣY ) = 0, πk(Y ) = πk+1(ΣY ) for k = 0, 1, . . . , 2n − 1, and π2n(Y ) →
π2n+1(ΣY ) is surjective.

As Sn is clearly (n− 1)-connected, we see in particular

Proposition 4.40. πn+k(Sn) → π(n+1)+k(S
n+1) is an isomorphism for k < n − 1 and a

surjection for k = n− 1.

This explains the grayed area in Table 1.
The homotopy groups of spheres in the grayed area are known as the stable homotopy groups

of spheres. More precisely, mathematicians define the following:

Definition 4.41. We call
πst
k := lim

n→∞
πn+k(S

n) (4.17)

as the k-th stable homotopy group of spheres, or simply the k-th stem.

In contrast, the homotopy groups in the ungrayed area are known as unstable groups. The stable
homotopy groups of spheres are much easier to compute than the unstable groups. Still, the stable
homotopy groups are not quite understood. Indeed, computing them is a major goal in algebraic
topology; currently it is known up to k ≤ 83 [IWX20].

In this field, there is a famous principle known as the ‘Mahowald uncertainty principle’ [IWX23,
Sec. 3], which says that there is no single method which allows us to compute all the stable ho-
motopy groups of spheres! A more precise formulation is that any spectral sequence converging
to πst

∗ whose E2 page has an algebraic description has infinitely many differentials and therefore
is infinitely far from the real answer. I hope to cover as much background materials in this lecture
series so that the reader can at least understand this statement.

Before moving on to the next section, let us discuss a particular homotopy group of spheres in
the stable range which is relevant to the Standard Model of particle physics:

Example 4.42. π4(S3) = Z2.

Using the Freudenthal suspension theorem, we know that its generator S4 → S3 is the suspension
Σp of the Hopf fibration p : S3 → S2. But it is difficult to see that this map Σp generates a Z2,
and that there is no other generator.
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Remark 4.43. The way it appears in four-dimensional physics is the following. The weak force
is described by a SU(2) gauge theory, and therefore we have an SU(2) principal bundle over our
spacetime. Take a patch R4 of the spacetime. Then we can consider a gauge transformation

g : R4 → SU(2). (4.18)

Let us say we don’t perform any gauge transformation in the far region. Then we essentially have
a map

g : S4 → SU(2) ≃ S3. (4.19)

Now, we have various fermions in our world. Those charged under the weak force are always in
the doublet representation of SU(2). A single doublet is described by a section of 2⊗ S →M in
the notation of Sec. 3.7; V → M is the associated vector bundle for a representation ρ : G ↷ V

and a principal G-bundle P →M , and S →M is the spin bundle.
Now, the partition functionZsingle doublet of a fermion in a singlet doublet representation ofSU(2)

is known to behave under a gauge transformation (4.19) as

Zsingle doublet → (−1)sZsingle doublet. (4.20)

where s = [g] ∈ π4(S
3) ≃ Z2 ≃ {0, 1}; this was found originally in [Wit82]. This means that an

SU(2) gauge theory with a single doublet is inconsistent, for example.
Now, in a single generation (3.57), there are 3 + 1 = 4 doublets of SU(2). Therefore, the

sign (4.20) always becomes (−1)4s = +1, making the theory consistent. This for example means
that you cannot just change the number of colors SU(3) to SU(4), keeping everything else in the
Standard Model fixed. ⌟

4.4 Long exact sequence of homotopy groups of fiber bundles
4.4.1 Statement

Computing homotopy groups is hard. One useful technique is the long exact sequence of homotopy
groups associated to fiber bundles F → E → B. This relates the homotopy groups π∗(F ), π∗(E),
and π∗(B). This often allows us to determine one if we know the other two. We start from the
following definition:

Definition 4.44. A sequence of groups and homomorphisms between them,

· · · fi−2−→ Gi−1
fi−1−→ Gi

fi−→ Gi+1
fi+1−→ · · · (4.21)

is called an exact sequence of groups if it is exact at each group, i.e. fi−1 ◦ fi = 0 and
furthermore

Im fi = Ker fi+1 ⊂ Gi (4.22)

for all i.
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Definition 4.45. A short exact sequence of groups is an exact sequence of groups of the fol-
lowing form:

1 → A→ B → C → 1. (4.23)

In this case B is called the extension of C by A.

Note that for Abelian groups we often use the notation 0 instead of 1 to denote a trivial group.
Given A and C, B is not uniquely determined. For example, assuming all groups involved to

be Abelian, consider the short exact sequence

0 → Z2 → A→ Z2 → 0. (4.24)

Then A can be Z2 × Z2 or Z4. In the latter case, the homomorphisms are given by

0 → {0, 1} ×2−→ {0, 1, 2, 3} mod 2−−−−→ {0, 1} → 0. (4.25)

But there are cases when the extension is unique. The most obvious but still useful cases are:

Example 4.46. An exact sequence 1 → A→ B → 1 means that A ≃ B.

Proposition 4.47. An exact sequence of groups

· · · fi−2−→ Gi−1
fi−1−→ Gi

fi−→ Gi+1
fi+1−→ · · · (4.26)

gives rise to short exact sequences of groups

0 → Gi−1/Ker fi−1 → Gi → Im fi → 0. (4.27)

This means that, given a long exact sequence of groups, we have a lot of information to deter-
mine the groups involved. Let us come back to algebraic topology.

Theorem 4.48. Given a fiber bundle

F
ι−→ E

p−→ B, (4.28)

we have the following long exact sequence of homotopy groups:

· · · ∂−→ πn+1(F )
ι∗−→ πn+1(E)

p∗−→ πn+1(B)
∂−→ πn(F )

ι∗−→ πn(E)
p∗−→ πn(B)

∂−→ · · · · · ·
∂−→ π1(F )

ι∗−→ π1(E)
p∗−→ π1(B)

∂−→ π0(F )
ι∗−→ π0(E)

p∗−→ π0(B),

(4.29)
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where the last three objects are not really groups but sets, but the condition (4.22) still holds,
and the map ∂ is constructed below in Definition 4.55.

4.4.2 Use cases

Let us have a look at some of the basic use cases. This shows that you can use a theorem without
understanding its proof, and without even understanding the construction of the important map ∂
in the statement! This is the mindset “math as a set of mobile apps” I am advocating.

Consider the fiber bundle Z → R → S1. As πn(Rk) = 0, the long exact sequence simply gives

0 = πn(R) → πn(S
1) → πn−1(Z) → πn−1(R) = 0 (4.30)

meaning that
πn(S

1) = πn−1(Z). (4.31)

As π0(Z) = Z and πn≥1(Z) = 0, we conclude

Example 4.49. πn(S1) =

{
Z (n = 1),

0 (n ̸= 1).

Suppose Γ acts on Sn freely, with n ≥ 2. We have the fiber bundle Γ → Sn → Sn/Γ. Then
we have the long exact sequence, a part of which is

π1(S
n) → π1(S

n/Γ) → π0(Γ) → π0(S
n) (4.32)

which is
0 → π1(S

n/Γ) → Γ → 0 (4.33)

meaning that π1(Sn/Γ) = Γ. Recall RPn = Sn/Z2. Therefore we have

π1(RPn) = Z2. (4.34)

Recall further that SO(3) = Z2. Then we have

Example 4.50. π1(SO(3)) = Z2.

Next, let us apply the long exact sequence of homotopy groups to the Hopf fibration S1 →
S3 → S2. We learned above that πk(S1) = 0 when k > 1. Therefore the long exact sequences
gives

0 = πk(S
1) → πk(S

3) → πk(S
2) → πk−1(S

1) = 0 (4.35)

when k ≥ 3, meaning that
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Proposition 4.51. πk(S3) = πk(S
2) for k ≥ 3.

This in particular shows that π3(S2) = Z, the basic fact we already mentioned, and also explains
the pattern in Table 1 in the two columns for S2 and S3.

As another example, consider the computation ofπ1(SO(n)). We just saw above that π1(SO(3)) =
Z2. We learned in Proposition 2.35 that there is a fiber bundle

SO(n− 1) → SO(n) → Sn−1. (4.36)

Then the long exact sequence gives

π2(S
n−1) → π1(SO(n− 1)) → π1(SO(n)) → π1(S

n−1). (4.37)

For n > 3 we have π2(Sn−1) = π1(S
n−1) = 0, and therefore π1(SO(n − 1)) = π1(SO(n)).

Inductively, we have found

Example 4.52. π1(SO(n)) = Z2 for n ≥ 3.

A different part of the same long exact sequnece for n = 3 gives

π2(SO(2))︸ ︷︷ ︸
=0

→ π2(SO(3)) → π2(S
2)︸ ︷︷ ︸

Z

∂−→ π1(SO(2))︸ ︷︷ ︸
Z

→ π1(SO(3))︸ ︷︷ ︸ = Z2π1(S
2) = 0. (4.38)

This forces ∂ : Z → Z to be a multiplication by 2, which then means that π2(SO(3)) = 0.
Aside 4.53. Before proceeding, let us see that the fact π1(SO(n)) = Z2 can be used to show that
there is a nontrivial homomorphism π4(S

3) → Z2. For this, pick a map f : S4 → S3, and assume
that it is smooth. As in the discussion of the Hopf invariant, let us take the inverse image of a
generic point p on S3, which is a disjoint union of circles. For each circle S1, pick a diskD2 filling
it. In this manner, we can attach a coordinate frame (say A) at each point of S1, by restricting
D2 × R4 (with a fixed coordinate frame in R4) on its boundary.

We also attach a (possibly different) coordinate frame at each point of S1 in the following
manner. The point p on S3 has a natural coordinate frame in R3. Pulling this back to S1 ⊂ S4

gives a coordinate frame to the transverse slice R3 at each point of S1. Together with the direction
tangent to S1, this gives another set of coordinate frame (say B). The two coordinate frames A
and B are related by a four-dimensional rotation g : S1 → SO(4), which determines a class
π1(SO(4)) = Z2 = {±1}.

Recall that the inverse image f−1(p) consists of a disjoint union of circles. We compute a
sign {±1} for each circle as described above, and multiply them. This way we have a sign ±1

constructed from a smooth map f : S4 → S3. It can be shown that this is independent of various
choices made, and of continuous changes of f . This defines a homomorphism π4(S

3) → Z2.
We can explictly compute this sign for the map f : S4 → S3 obtained from the suspension of

the Hopf map S3 → S2, and it turns out to be −1. This means that π4(S3) is nontrivial, and has
Z2 as a quotient.
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For those who know more about the algebraic topology, what is done here is the following: S4

has a unique spin structure, and therefore TS4 restricted to S1 has a natural spin structure. The
pull-back from a fixed point in S3 also gives a spin structure on the normal bundle of S1. Therefore
we have a spin structure on S1, which has two choices ±1. We now multiply this number for all
the circles in f−1(p). ⌟

As a final example, consider the computation of π4(Sp(n)). We learned in Proposition 2.37
that there is a fiber bundle

Sp(n− 1) → Sp(n) → S4n−1. (4.39)
Then the long exact sequence gives

π5(S
4n−1) → π4(Sp(n− 1)) → π4(Sp(n)) → π4(S

4n−1). (4.40)

For n ≥ 2, 4n− 1 ≥ 7, and therefore

0 → π4(Sp(n− 1)) → π4(Sp(n)) → 0, (4.41)

i.e. π4(Sp(n− 1)) = π4(Sp(n)). As π4(Sp(1)) = Z2, we inductively find that

Example 4.54. π4(Sp(n)) = Z2.

This suggests the existence of the mod-2 SU(2) = Sp(1) anomaly of Witten carries on to higher
Sp(n) gauge theories, and it indeed turns out to be the case.

4.4.3 Idea of the proof

The idea of the proof of this important theorem is as follows. Consider first the part

πn(F )
ι∗−→ πn(E)

p∗−→ πn(B). (4.42)

That p∗ ◦ ι∗ = 0 is clear. But not only that, we need to show that Im ι∗ = Ker p∗, So, assume
that f : Sn → E is such that F = p ◦ f : Sn → B is homotopic to a trivial map. So there is a
deformation Fs for s ∈ [0, 1] such that F0 = F and F1 is the constant map. At each step Fs, we
can find fs : Sn → E such that p ◦ fs = Fs. As p ◦ f0 = F0 is a constant map to the base, f0 is
actually a map to a fiber, done.

Next, consider the part
πn+1(B)

∂−→ πn(F )
ι∗−→ πn(E). (4.43)

For this we need to define the map ∂ to start with.

Definition 4.55. ∂ : πn+1(B) → πn(F ) is defined as follows. Given a map f : Sn+1 → B,
we regard it instead as a parameterized map

f : Sn × [0, 1] → B (4.44)

such that
f(−, 0) : Sn → B, f(−, 1) : Sn → B (4.45)
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Figure 15: The connecting map ∂

are constant maps to points a, b ∈ B, respectively. We now consider the continuous map

f̃ : Sn × [0, 1] → E (4.46)

such that p ◦ f̃ = f and that
f̃(−, 0) : Sn → E (4.47)

is a constant map to the basepoint ∗ ∈ E above a ∈ B. Now, the image of

f̃(−, 1) : Sn → E (4.48)

contained in the fiber F above b ∈ B, so we can define

∂[f ] := [f̃(−, 1)] ∈ πn(F ). (4.49)

See Fig 15 for an illustration. With this definition, the property Im ∂ = Ker ι∗ is fairly tautological.
Finally, consider the part

πn+1(E)
p∗−→ πn+1(B)

∂−→ πn(F ). (4.50)

Again, the property Im p∗ = Ker ∂ is fairly tautological.
To get a better idea of the connecting map, it is instructive to compute the process explicitly in

the case of the Hopf fibration. For example, consider the following step:

0 = π2(S
3) → π2(S

2)
∂−→ π1(S

1) → π1(S
3) = 0. (4.51)

Consider the identity map f : S2 → S2 and let us compute ∂f . Let us use the polar coordinate
(sin θ cosϕ, sin θ sinϕ, cos θ) for S2. Then we can regard θ ∈ [0, π] as s ∈ [0, 1] used in the
definition above, so f(ϕ, θ) = (ϕ, θ).
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Now, recall the following description (3.15) of the Hopf map S3 → S2:

(cos(θ/2)eiψ, sin(θ/2)ei(ϕ+ψ)) 7→ (sin θ cosϕ, sin θ sinϕ, cos θ). (4.52)

Then we can take
g(ϕ, θ) := (cos(θ/2), sin(θ/2)eiϕ). (4.53)

We indeed see that
(∂f)(ϕ) := g(ϕ, π) = (0, eiϕ) (4.54)

which indeed wraps once around the fiber over (0, 0, 1).

4.5 Homotopy groups of Lie groups
To use the long exact sequence of homotopy groups, we need to know some homotopy groups to
start with. We already gave a table of πn(Sm) for some values of n,m. Here we discuss homotopy
groups of Lie groups.

πn(U(1)): Let us start with U(1). As U(1) = S1, we already know πn(U(1)).

π0(G): Let us then discuss non-Abelian Lie groups G. For groups, π0(G), the set of connected
components, itself is a group. For example,O(n) has two components, the one with det = +1 and
another with det = −1. Then π0(O(n)) = Z2. For the rest of this subsection, we only consider
connected Lie groups, for which π0(G) = 1.

π1(G): Let us next consider π1(G).

Fact 4.56. Γ is always known to be an Abelian group. Furthermore, it is known that there
always is a group G̃ with π1(G̃) = 0 together with a subgroup Γ ⊂ G̃ such that

G = G̃/Γ. (4.55)

Such G̃ is known as the universal cover of G.

Let us check that π1(G̃/Γ) = Γ. For this we consider the long exact sequence of homotopy groups
associated to the fiber bundle Γ → G̃→ G, which is

π1(G̃) → π1(G) → π0(Γ) → π0(G̃). (4.56)

As π1(G̃) = π0(G̃) = 0, we see π1(G) ≃ π0(Γ) ≃ Γ.
The case we typically counter is G = SO(n), for which π1(SO(n)) = Z2 for n ≥ 3, as we

already saw in Example 4.52. The corresponding universal cover is the Spin group Spin(n); so
we have

Z2 → Spin(n) → SO(n). (4.57)
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π2,3,4(G): Consider compact Lie groupsG such that it is connected (i.e. π0(G) = 0) and simply-
connected (i.e. π1(G) = 0). It is known that such groups are always a product of copies of R
and

SU(n ≥ 2), Spin(n ≥ 6), Sp(n ≥ 2), F4, G2, E6, E7, E8. (4.58)

Spin(3) = SU(2), Spin(4) = SU(2)2, Spin(5) = Sp(2), Spin(6) = SU(4) and Sp(1) =

SU(2) were excluded from the list, as they are redundant.
The groups in (4.58) are called compact simple simply-connected Lie groups.

Fact 4.57. π2(G) = 0 and π3(G) = Z for groups G in (4.58).

Fact 4.58. π4(G) for groups G in (4.58) are either Z2 for G = Sp(n) or 0 otherwise.

πn≥5(G): We tabulate in Table 2 the homotopy groups of simply connected Lie groups πn(G)
for 3 ≤ n ≤ 11. The data are taken from [日07,付録,公式 7, VII]. (The same set of tables should
also be contained in the English translation [Itô87].)

We note that the long exact sequences of homotopy groups applied to

Spin(n− 1) → Spin(n) → Sn−1,

SU(n− 1) → SU(n) → S2n−1,

Sp(n− 1) → Sp(n) → S4n−1

(4.59)

lead to

πd(Spin(n− 1)) ≃ πd(Spin(n)), (4.60)
πd(SU(n− 1)) ≃ πd(SU(n)), (4.61)
πd(Sp(n− 1)) ≃ πd(Sp(n)) (4.62)

when d < n− 2, d < 2n− 2, d < 4n− 2, respectively. This is consistent with the data in Table 2,
and allows us to define πd(Spin(∞)), πd(SU(∞)), and πd(Sp(∞)) consistently.

4.6 Principal bundles over spheres
Let us use homotopy groups to classify principal bundles over spheres.

4.6.1 Generalities

We start from a general construction.
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G \ d 2 3 4 5 6 7 8 9 10 11

Sp(1) 0 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2

Sp(2) 0 Z Z2 Z2 0 Z 0 0 Z120 Z2

Sp(3) 0 Z Z2 Z2 0 Z 0 0 0 Z
SU(3) 0 Z 0 Z Z6 0 Z12 Z3 Z30 Z4

SU(4) 0 Z 0 Z 0 Z Z24 Z2 Z120 × Z2 Z4

SU(5) 0 Z 0 Z 0 Z 0 Z Z120 0

SU(6) 0 Z 0 Z 0 Z 0 Z 0 Z
Spin(7) 0 Z 0 0 0 Z (Z2)

2 (Z2)
2 Z8 Z× Z2

Spin(8) 0 Z 0 0 0 Z2 (Z2)
3 (Z2)

3 Z24 × Z8 Z× Z2

Spin(9) 0 Z 0 0 0 Z (Z2)
2 (Z2)

2 Z8 Z× Z2

Spin(10) 0 Z 0 0 0 Z Z2 Z× Z2 Z4 Z
Spin(11) 0 Z 0 0 0 Z Z2 Z2 Z2 Z
Spin(12) 0 Z 0 0 0 Z Z2 Z2 0 Z× Z
Spin(13) 0 Z 0 0 0 Z Z2 Z2 0 Z

G2 0 Z 0 0 Z3 0 Z2 Z6 0 Z× Z2

F4 0 Z 0 0 0 0 Z2 Z2 0 Z× Z2

E6 0 Z 0 0 0 0 0 Z 0 Z
E7 0 Z 0 0 0 0 0 0 0 Z
E8 0 Z 0 0 0 0 0 0 0 0

Table 2: Homotopy groups of simply-connected simple Lie groups πd(G), 2 ≤ d ≤ 11.

Definition 4.59. Given a bundle F → E
p−→ B and a map f : X → B, the pull-back bundle

p′ : f ∗(E) → X is defined as

f ∗(E) = {(x, e) ∈ X × E | f(x) = p(e)}, (4.63)

where p′((x, e)) = x.

We can explicitly introduce local trivializations of f ∗(E) in terms of those of E. Say we are given
a covering of B by open sets Ui and a local trivialization fi : p−1(Ui) → Ui × F of E. Denote
fi(e) = (p(e), Fi(e)). We cover X via Vi := f−1(Ui) and define local trivializations by mapping

(x, e) ∈ p′−1(Vi) (4.64)

to
(x, Fi(e)) ∈ Vi × F. (4.65)
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Theorem 4.60. Given a bundle F → E → B and two maps f, g : X → B which are
homotopic to each other, the pull-back bundles f ∗(E) and g∗(E) are equivalent as bundles.

Recall that the equivalence of bundles were defined in Definition 3.3. The proof of this important
theorem is worth looking at, but alas we do not have the time.

Proposition 4.61. Let U be a contractible space. Then any bundle over U is trivial.

This follows easily from the previous theorem. Indeed, pick a point p ∈ U . Then the identity
map id : U → U is homotopic to a constant map f : U → U sending all points to p. Therefore
E = id∗(E) is equivalent to f ∗(E) = U × F , which is trivial.

Let us now consider principal G-bundles G → P → Sn. We cover Sn by the northern and
southern hemispheres U+ and U−, where we take both regions to overlap slightly around the equa-
tor. We can trivialize the bundle over each hemisphere, so the bundle P is given by gluing U+×G

and U− ×G over the overlap via a function g : U+ ∩ U− → G. As U+ ∩ U− is contractible to the
equator Sn−1, the bundle is determined by a map Sn−1 → G. As two homotopic maps determine
equivalent bundles, we found that

Proposition 4.62. Principal G-bundles over Sn are classified by πn−1(G).

4.6.2 Examples

We have two standard examples. We start with U(1) bundles over S2. This is classified by
π1(U(1)) = π1(S

1) = Z.
In physics, a U(1) bundle is required to study electromagnetism in topologically nontrivial

cases. We will learn later that this integer is the magnetic charge, or equivalently the monopole
flux through S2. For this, we need to introduce the concept of the connection, or equivalently the
gauge field. This will then lead to a differential-geometric expression for this number, given as the
integral of the magnetic field over S2.

That the magnetic charge is quantized was first discovered by Dirac [Dir31].11 Here we used a
geometric argument and therefore the unit of the magnetic charge was dimensionless and was set to
1. Later, we will see how to connect this unit to your favorite system of units of electromagnetism.
Summarizing,

Example 4.63. U(1) bundles over S2 is classified by π1(U(1)) = Z. This corresponds to the
magnetic flux in physics.

Next we considerG-bundles over S3, whereG is a simple simply-connected compact Lie group
G such as SU(2). For these, π3(G) = Z as we learned above.

In physics, more commonly we consider principal bundles P → R4 over a flat R4, which we
take to be a good approximation of our world. We further assume that we are given a trivialization

11It is interesting that this was done in the same year when Hopf introduced his Hopf invariant and the Hopf fibration,
S1 → S3 → S2 in [Hop31], which was also about a nontrivial U(1) bundle over S2.
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around infinity, i.e. if we remove a finite region U ⊂ R4 where something interesting is going on,
nothing is going on the rest U ′ = R4 \ U of the spacetime, and we are given a local trivialization
U ′ × G there. Then, we can effectively consider the region U ′ as a single point, and regard our
bundle as coming from a principal G-bundle P → S4 via a pullback, see Fig. 16. Then the
topology of the G-bundle is specified by an integer π3(G) = Z. This number is known as the
instanton number in physics. Again, we will have a differential-geoemtric interpretation of this
number later.

Figure 16: Principal bundle overR4 with a trivialization around infinity is given by a pull-back
from S4

Note that the assumption that the bundle is trivial around infinity came from physics, and is
not a mathematical necessity. With other assumptions around infinity, corresponding to different
physics settings, we will have other classifications. It is also to be mentioned that the classification
of bundles over T 4 is a much more difficult one.

In any case, our summary is that:

Example 4.64. For a simple simply-connected compact Lie groupG such as SU(2), principal
G-bundles overS4 are classified by π3(G) = Z. It is known in physics as the instanton number.

4.6.3 Long exact sequences of homotopy groups revisited

The result of this subsection can be used to have a different perspective of the long exact sequence
of homotopy groups.

Let us first discuss the connecting homomorphism ∂. Recall that we have a principalH-bundle
H → G→ G/H . Pick a class [f ] ∈ πn(G/H). We now have a map f : Sn → G/H . We can use
this to pull-back the H-bundle G → G/H to Sn, resulting in a principal H-bundle f ∗(G) → Sn.
According to the classification of principal bundles over spheres, this should be classified by a
class in πn−1(H). In this way we have constructed a map πn(G/H) → πn−1(H). Showing that
this equals the connecting homomorphism ∂ given in Definition 4.55 is basically expanding various
definitions involved, and nothing more. Summarizing, we found:
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Proposition 4.65. Given a map f : Sn → G/H , the principal G-bundle f ∗(G) → Sn

obtained by pulling back G→ G/H is classified by the class ∂[f ] ∈ πn−1(H).

4.7 Topological solitons and homotopy groups
Let us now come to the most traditional use of algebraic topology in physics, namely the study of
topological solitons.

4.7.1 Solitons without core, also known as textures

Suppose that we have a field on our space(time) taking values in a target space X , i.e. we have a
map

f : RD → X. (4.66)

We often consider a situation where we have an (approximate) translation invariance along some
of the directions. Then the nontriviality of the field configuration is captured by a map

f : Rd → X. (4.67)

In such cases the field configuration is constant along d′ = D − d directions. Let us call d the
codimension of the configuration. See Fig. 17. In such cases it is meaningful to discuss its energy
(or tension) per unit volume in the d′ direction. For simplicity we take d′ = 0, as it does not make
any difference in the analysis here, and we simply call the energy per unit volume as the energy.

Figure 17: A codimension-2 object in R3 is string-like.

Now, in order not to cost an infinite amount of energy in the asymptotically far region, most of
the region of Rd needs to map to very close to a point in the target space X . We take this point the
basepoint of X , and then such a map is given essentially by a map from Sd. See Fig. 18.

Such a configuration then determines a homotopy class [f ] ∈ πd(X). If [f ] is nonzero, it cannot
be removed by a continuous process, and therefore it provides a topologically conserved charge,
and a configuration with such a topologically conserved charge is called a topological soliton.
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Figure 18: A smooth, finite-energy, codimension-d configuration is given by a map Sd → X .

Example 4.66. With codimension-3 and the target spaceS3, we have a Skyrmion whose charge
is given by π3(S3) = Z.

This was first introduced by Skyrme12 [Sky61, Sky62] in the context of a nucleon as a soliton
in the meson field.

Example 4.67. With codimension-2 and the target space S2, we have a baby Skyrmion whose
charge is given by π2(S2) = Z. A baby Skyrmion is often simply called Skyrmion.

A quick internet search gives me tons of experimental realizations of Skyrmions, but most of
them seem to be about baby Skyrmions.

Example 4.68. With codimension-3 and the target space S2, we have a Hopfion, whose charge
is given by π3(S2) = Z.

Again a quick internet search gives me some experimental realizations of Hopfions. Another
notable point is that a Hopfion charge is more subtle than a Skyrmion charge; if you are interested,

12In Japan the word Skyrmion is sometimes pronounced as [skirmion] but I think [sk@:mion] is the more correct
one; after all, T. H. R. Skyrme was a British person, and I consider [skirmion] a hypercorrection. As for the Ising
model, I think we should use [i:ziN] instead of [aiziN], since E. Ising is a German. Speaking of pronunciation of
names common in our field, the pronunciation of Källen in Källen-Lehmann spectral representation is also tricky. I
often heard high-energy physicists above my generation to pronounce it as [tSælen] or something like that. Källen
was Swedish, Källen’s grandchild was doing string theory, and I met him a couple of times. He told me the correct
pronunciation, which sounded to me along the line of [Sælien], which was quite different from what the Wikipedia
page about the standard Swedish pronunciation.
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you should consult a very recent paper [CT22],13 which pointed out that the Hopfion charge is
associated to a non-invertible symmetry, a hot topic in recent years.

4.7.2 Solitons with core, better known as topological defects

Generalities: Next let us have a look at what can be called with solitons with core. Consider a
situation where we have a codimension-d configuration with a map to the target space X , where
X is the space of order parmeters, say. Here we consider a situation illustrated in Fig. 19, where
we have a map outside of a core region U ⊂ Rd. So we have a map

f : R \ U → X. (4.68)

Figure 19: A codimension-d configuration with ‘core’, given by a map Sd−1 → X .

In this case the nontriviality of such a map is measured by the homotopy class [f ] ∈ πd−1(X)

of the map f : Sd−1 → X . Note the difference to the topological charge measured by πd(X) of a
smooth codimension-d soliton we discussed above.

Note that if [f ] is nontrivial, it can never be continued smoothly into the entirety of U . Indeed,
if so, the resulting map Dd → X provides the homotopy to show [f ] is trivial.

When [f ] is nontrivial, then, we can’t extend the map f continuously to the entirety ofU . Inside
the region U , we assume that some additional physics than simply having an order-parameter field
parameterized by X is going on. This can easily happen in physics: usually the space X appears
only as a low-energy approximation. It is then that in the region U the low-energy approximation
breaks down.

Note also that if [f ] is nontrivial, the position dependence of f usually costs an infinite amount
energy in the asymptotically far region. But there are physics situations where this problem might
not matter:

• One is that the experimental setup is finite, so the infinite energy in infinitely large Rd might
not matter;

• Another is that when X = G/H and G is associated to a gauge field, a nontrivial G-gauge
transformation in the asymptotically far region can remove the position dependence and
therefore the associated infinite amount of energy.

In this lecture we therefore neglect these energetic consideration.
13I am mentioning this because I was the proud committee chair of the PhD defense of the junior author of this

paper.
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Figure 20: A vortex configuration. In the asymptotic region, the field values are at the bottom
of the potential. In the core region, the field values come to the origin of the field space.

Vortices: An example illustrating the discussion above is when X = S1. The space S1 of order
parameters appears as the space of potential minimum of a wine-bottle potential, as we saw in
Sec. 2.4.3. In this case we can consider a field configuration illustrated in Fig. 20. In the asymp-
totically far region, we let the field value to go around the potential minimum S1, as we go around
the core once. In the core region, this S1 in the field space R2 needs to shrink. This is associated to
the additional potential energy, but it is restricted in a finite core region in the space, and therefore
this costs only a finite amount of energy. Note that the symmetry is broken from G = U(1) = S1

to the trivial group H = {e} at the far region, but the full symmetry is realized at least at a point
in the core region, where the entire symmetry G = U(1) is unbroken. In this manner, at the core
of the topological soliton, the symmetry is forced to be restored.

This vortex configuration was first introduced by Abrikosov [Abr57] in the context of supercon-
ductivity in condensed matter physics, and by Nielsen and Olsen [NO73] in high energy physics.
By now these vortices are experimentally observed, see Fig. 21. Summarizing,

Example 4.69. A codimension-2 topological soliton with a core for the parameter spaceX =

U(1), characterized by π1(U(1)) = Z, is known as the Abrikosov/Nielsen-Olsen vortex.

Aside 4.70. Another application of the same line of ideas give a proof of the fundamental theorem
of algebra. Consider a degree-n polynomial P (z) with complex coefficients,

P (z) = zn + c1z
n−1 + · · ·+ cn. (4.69)

Suppose that P (z) does not have any zero. Then, we can always write P (z) = |P (z)|eiθ(z) unam-
biguously, defining a map

θ : C → S1. (4.70)
Let us restrict θ to a circle z = reiϕ of radius r within C. Clearly, it has winding number zero
when r is very small, since P (z) ∼ cn, while it has winding number n when r is very large, since
P (z) ∼ zn. As the winding number should be constant when r is continuously varied, this cannot
happen. Therefore P (z) has at least one zero, say at z = z0. Therefore P (z) = (z − z0)Q(z).

If you prefer a physics analogy, say that P (z) gives a field configuration. Then, away from
cores, we have a map to S1. At large r, the winding number is n. Therefore, there should be at
least one core, when P (z) vanishes. ⌟
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signature of short-range ordering. In addition, we have unexpectedly
found groups of closely spaced vortices which show an appearance of
interacting currents. These groups are also examined and discussed.

Methods
A scanning SQUID microscope consisting of a m-SQUID magnetometer with a 3 mm
3 5 mm pickup loop is raster scanned at a distance of approximately 5 mm from the
YBCO sample surface at an angle of 30u. The SSM measurements were performed in a
crystat equipped with a m-metal shield with an approximate shielding factor of 25.
This reduces the Earth’s magnetic field to a constant background field during cooling
and scanning. The vertical component of this background field was measured to be
approximately 2 mT by a Bartington Mag-03MS three-axis magnetic field sensor,
with other components negligibly small, and this background field value was con-
firmed as 2.73 mT by preliminary scanning SQUID measurements on our samples.
That is the field of 22.73 mT was found to reduce the number of observed vortices to a
minimum, this was also found to be the field value at which the vortex direction
reversed. The root-mean-square (RMS) variation of the background field was found
to be less than 30 nT by antiferromagnetic scanning SQUID microscopy. All sub-
sequent field values stated in this paper are given after compensating for this back-
ground field.

All measurements were taken at a temperature of 4.2 K in the field-cooled state,
with applied fields in the range 0.1 mT , Ba , 5.5 mT perpendicular to the film’s
surface.

Local current distribution in the samples was calculated from the magnetic field
data using a program15 based on an inverse Biot-Savart procedure16,17. The arrange-
ment of vortices was further analysed by autocorrelation and Delaunay triangulation
based on vortex positions.

The YBa2Cu3O7 2 x thin films used in this work have been grown by pulsed laser
deposition18,19 with the thickness of ,200 nm. The critical temperature (Tc) of the
films has been measured by magnetisation measurements to be 90.0 6 0.5 K. The

surface of the films has been observed by atomic force microscopy, showing an
average grain size of about 200 nm.

Scanning squid microscopy
Figure 1 shows the local magnetic field data obtained by the scanning
SQUID microscope. The brightness of each point in the image shows
the magnetic field strength at the corresponding point above the
sample. Vortices are seen as round dark spots over the right-hand
side of the images. An identifiable position at the edge of the film was
chosen for scanning to ensure that repeat scans were taken at the
same position on the film. This edge is seen at the left side of the
images.

Since the SQUID magnetometer scans at a constant height of
5 mm above the sample, the magnetic features observed are those
of the stray field. In this paper the term ‘‘stray field’’ refers to the
observed magnetic field at the scan height as opposed to the field
directly at the film’s surface, and ‘‘stray current’’ refers to the current
in the film as calculated from the stray field. This distance from the
sample surface increases the apparent size of the vortices in Fig. 1.
The vortices also appear slightly asymmetrical in Fig. 1 due to the tilt
of the SQUID pick-up loop with respect to the field direction.

Figure 2 shows the current distribution in the sample calculated
from the magnetic field data of figure 1. The brightness of each point
in the image is proportional to the magnitude of current at the
corresponding point in the sample. The dark spots seen throughout
the sample and the bright regions around them are the current-free
vortex cores and the circulating current of the vortices, respectively.

The distance between the midpoints of neighbouring vortices has
been determined from the field maps in Fig. 1. At Ba^6:93 mT, the
average intervortex spacing is 32 mm, with a significant spread in
nearest neighbour distances as expected in glassy distributions.
However, there were a disproportionately large number of vortices
with nearest neighbour distances in the range of , 15 mm. The
groups of these closely spaced vortices in Fig. 2 are mapped to have
overlapping stray supercurrents that are continuous around the peri-
meter of the whole group. However, in this strongly diluted vortex
regime the magnetic field penetration depth (l)20 and the individual
vortex depinning radius in YBCO films are of the order of 0.5 mm21,22,
being too small to have any profound effect at such large intervortex
distance within the group21,22. Thus, the supercurrent overlap is
probably due to the spread of stray fields at the SQUID scanning
height23.

Figure 1 | Images of vortices in 200 nm thick YBCO film taken by
Scanning SQUID Microscopy after field cooling at 6.93 mT to 4 K. (b) is
taken after heating above Tc and re-cooling. The sample edge at the left
side of the images is used as a reference for scan location.

Figure 2 | Supercurrents calculated from the field map in Fig. 1(a). Some
closely-spaced vortex groups are highlighted by the circles.

www.nature.com/scientificreports
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Figure 21: A scanning SQUID-microscope view of the vortices in a superconducting material.
Taken from [WPW+15].

Coming back to physics interpretations of algebraic topology, let us further identify this G =

U(1) is identified with the electromagnetic U(1). In this case, we can show that the core region
contains a unit magnetic flux in the following manner; we will give a more traditional approach
using the vector potential later. To measure the magnetic flux topologically, let us try to put this
configuration on an S2, and use the result in Sec. 4.6. We first put this configuration on a large
D2, which we consider to be the northern hemisphere. We have a region B around the equator L
where we have a product bundle B × S1. For the sake of generality, let us say that the field value
goes around S1 N times, when we go around the equator once.

We also introduce another D2, which we use as the southern hemisphere. On it, we consider a
trivial bundle D2 × S1 and a constant section. To paste the two hemispheres so that the sections
match, we need to use a U(1) gauge transformation g : S1 → S1 which also goes around S1 N

times. This means that on the resulting S2, the U(1) bundle is characterized by N ∈ π1(S
1) ≃ Z,

and therefore has the magnetic charge N . See Fig. 22 for an illustration.

Instanton particles: Although not directly relevant to nature, at least at the mathematical level
we can replace π1(U(1)) = Z with π3(SU(2)), and consider a codimension-4 particle in a (4+1)-
dimensional system:

Example 4.71. A codimension-4 topological soliton with a core for the parameter spaceX =

SU(2) can be considered.

For example, a D0-brane within a stack of D4-branes has such a realization, where Dp-brane is a
(p+ 1)-dimensional solitonic objects in string theory.
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Figure 22: To measure the magnetic flux, we can put a vortex configuration on S2. This
requires a nontrivial gauge transformation around the equator.

Note that our argument in Sec. 4.6.3 shows that the core of this soliton has the instanton
charge 1, again characterized by the same π3(SU(2)) = Z. For this reason this is often called
an ‘instanton-particle’ in string theory.

Monopoles: Our final example is the following:

Example 4.72. A codimension-3 topological soliton with a core for the parameter spaceX =

S2 is known as ’t Hooft-Polyakov monopole.

This was first introduced by ’t Hooft [tH74] and Polyakov [Pol74]. When we regardS2 = SU(2)/U(1)

and consider a gauge theory setup where we have a larger groupSU(2) broken toU(1), and identify
U(1) as the electromagnetic gauge group, it has a magnetic charge on S2, whose charge is charac-
terized by Proposition 4.65 via the image of π2(SU(2)/U(1)) to π1(U(1)) in the part of the long
exact sequence of homotopy groups associated to the bundle U(1) → SU(2) → SU(2)/U(1):

π2(SU(2)/U(1)) → π1(U(1)) → π1(SU(2)) → π1(SU(2)/U(1)) (4.71)

which is
Z → Z → 0 → 0. (4.72)

The exactness forces the first map to be the identity. Therefore, the minimal ’t Hooft-Polyakov
monopole characterized by 1 ∈ π2(S

2) = Z has the unit magnetic charge 1 ∈ π1(U(1)).
In contrast, if we regard S2 = SO(3)/SO(2) and identify SO(2) as the electromagnetic gauge

group, the magnetic charge is characterized by the same token by studying

π2(SU(2)/U(1)) → π1(SO(2)) → π1(SO(3)) → π1(SU(2)/U(1)) (4.73)
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which is
Z → Z → Z2 → 0. (4.74)

The exactness forces the first map to be a multiplication by 2. Therefore, the minimal ’t Hooft-
Polyakov monopole characterized by 1 ∈ π2(S

2) = Z has the magnetic charge 2 ∈ π1(SO(2)),
which has twice the minimal value.

This subtle difference of the magnetic charge of the ’t Hooft-Polyakov monopole by a factor
of two between an SU(2) gauge theory and an SO(3) gauge theory plays an important role in the
modern study of topological properties of gauge theories. See e.g. [AST13].

4.7.3 Some suggested questions

Question 4.73. The superfluid Helium 3 A-phase and B-phase have various topological soli-
tons characterized by πd(G/HA) and πd(G/HB) we discussed in Example 2.40. Learn about
it.

The description of πd(G/HA) is a good exercise of the long exact sequence we learned above. I
am not familiar with the status of experimental verification of these predicted topological solitons.

Question 4.74. Look for an experimental paper on a topological soliton, either with or without
core, and study it.

There are tons of papers of this kind. Find one, have a look, and discuss the content!

Question 4.75. Note that πd(X) can correspond to a codimension-d texture (i.e. a topological
soliton without core) and also to a codimension-(d+ 1) topological defect (i.e. a topological
soliton with core). In general they can coexist, but I do not know any concrete examples. Are
there any nice examples, preferably with some experimental realization?
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