
Term-end projects for “Algebraic topology for physicists”

for the autumn-inter semester, academic year 2024

Last update: Dec. 18, 2024

Please answer at least one of the questions below, write it as a term-end paper, and upload it to the
UTokyo LMS page of this lecture series. I haven’t decided the deadline yet, but it is probably around
the last week of January.

1 Hopf fibration

We discussed the Hopf fibration S1 → S3 → S2. S3 can be projected to R3 using a stereographic
projection. Objects in R3 can then be further projected to a computer screen and or drawn on a paper.

• Visualize the Hopf fibration itself, for example by drawing the inverse images of various points
on S2. If you create an animation or an interactive program, please upload it online and provide
a link to it in the term-end paper.

• (Optional) We also discussed the construction of the connecting homomorphism ∂ : π2(S
2) →

π1(S
1) associated to the Hopf fibration. Visualize this in a way which satisfies you.

2 Topological solitons, 1

By now there are tons of papers about experimental observations of topological solitons. Pick (at
least) one paper and give a summary, again to your heart’s content.

3 Topological solitons, 2

The order parameter of superfluid Helium-3 is a homogeneous space G/HA or G/HB , where

• G = SO(3)× SO(3)× U(1) , and

• HA and HB are subgroups depending on whether we are in the superfluid A-phase or the B-
phase,

as described during the lectures and in the lecture note.
Compute their homotopy groups π1 and π2. It is of course OK to refer to various textbooks, or

original papers!

4 Alternative “derivation” of the Dirac quantization law

We discussed the Dirac quantization law from a rather mathematical perspective. It is known that the
same condition can be derived from the following consideration. Put an electrically charged particle
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of charge e at p = (−1, 0, 0), and a magnetic monopole of charge m at q = (+1, 0, 0). The pattern
of the electric field and the magnetic field creates a nonzero Poynting vector, as seen below:

This creates an angular momentum around the axis connecting the points p and q. Demand that it
equals the minimal allowed value ℏ/2 in quantum mechanics. What do you find as the magnetic
charge m of the magnetic monopole?

(Optional) The derivation here is very different from the one given during the lectures. Are there
any relation?

5 Kitaev’s toric code and cohomology groups

During the lectures and in the lecture notes, we discussed how Kitaev’s toric code gives a Hamiltonian
whose ground state has basis states labeled by elements of H1(M ;Z2) as realized by simplicial or
cellular cohomology groups.

• Generalize this to H1(M ;A) for an arbitrary finite Abelian group A.

• (Optional) generalize this to Hp(M ;Z2) for a higher p.

• (Optional) generalize this to Hp(M ;A) for a higher p and an arbitrary finite Abelian A.

6 Some computation of (co)homology groups, 1

Let Σg be an oriented compact two-dimensional surface of genus g. Give it a simplicial or cellular
decomposition, and compute Hp(Σg;Z) and Hp(Σg;Z).

(Optional) How about the same question for non-orientable surfaces?

7 Some computation of (co)homology groups, 2

Realize S2n−1 as the unit sphere in Cn, parameterized by (z1, . . . , zn). Let Zk act on it via

(z1, . . . , zn) 7→ e2πi/k(z1, . . . , zn).

We have a quotient M = S2n−1/Zk. Compute its homology groups Hp(M ;Z) and Hp(M ;Z).
Hint: the cell decomposition and much more is explained in Hatcher’s textbook, Example 2.43.
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8 U(1) bundles with zero [F ] and nonzero c1

In the exercise above, you find that H2(M ;Z) = Zk for M = S2n−1/Zk. This means that it is
possible to have a U(1) bundle P over it such that its first Chern class c1(P ) is the generator 1 of this
Zk. As k · 1 = 0 ∈ Zk, kc1(P ) = 0. Correspondingly, k[F ] = 0 in the de Rham cohomology class,
but this simply means that [F ] = 0. This means that the curvature does not contain all the information
of the first Chern class.

Let us study a systematic construction of such U(1) bundles. We first consider a trivial U(1)

bundle over S2n−1, parameterized by
(z1, . . . , zn;w)

where w ∈ C parameterizes the fiber. We put a trivial connection, whose curvature is also trivial
F = 0. We now let Zk to act also on the fiber:

(z1, . . . , zn;w) 7→ e2πi/k(z1, . . . , zn;w).

Compute c1 of this bundle following the steps described below.

• Argue that this line bundle comes from a Zk bundle over M . As discussed in the lectures, it
determines an element in a ∈ H1(M ;Zk).

• Using a fine enough cover and the definition of c1(P ) in the lecture notes, show that

c1(P ) = β(a) ∈ H2(M ;Z)

where β is the Bockstein associated to 0 → Z ×k−−→→ Z → Zk → 0. (Hint: in the lecture notes
we used the sequence 0 → Z → R → U(1) → 0 instead.)

• Now that we established the formula above, we can compute the Bockstein in the cellular co-
homology, not in the Čech cohomology. Compute a and β(a) using a cell decomposition of
M = S2n−1/Zk, and show that β(a) is indeed 1 ∈ Zk.

9 Density matrices vs. wavefunctions for n-level systems

In the lectures, we learned how to decide when a family of 2×2 density matrices over some parameter
space M can be lifted to a family of qubits, i.e. a complex vector bundle C2 → E → M .

• Generalize the discussion there to n-level systems. That is, discuss when a family of n × n

density matrices over M can be lifted to a family of n-dimensional Hilbert spaces Cn → E →
M . Describe the characteristic class obstructing this.

• Discuss an example of a family of n× n density matrices over M for n = 3, which cannot be
lifted to a family of three-dimensional Hilbert spaces.
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