
1 4d QFT.

A “4d QFT with G symmetry” Q is a pair Q = (V , Z) where

• V is a Z/2 filtered C-vector space

V0 ⊂ V1/2 ⊂ V1 ⊂ · · · ⊂ V (1.1)

such that each filtered piece Vi is a finite-dimensional representation of so(4)×G.

• V has a lot of noncommutative, nonassociative products.

• For each principal G-bundle W → X with connection on a compact spin real 4-

dimensional manifold X without boundary with finite-volume Riemannian metric with

k marked points x1, . . . , xk, there is a multi-linear map

Z(W ;x1, . . . , xk) : V⊗k → C (1.2)

satisfying various conditions, such as continuity under the change of the metric, the

marked points, the G-connection, etc. The object Z(W ;x1, . . . , xk)(v1 ⊗ · · · ⊗ vk) is

often denoted as

〈v1(x1)v2(x2) · · · vk(xk)〉 (1.3)

in the physics literature.

• When X has a boundary ∂X 6= ∅, one instead has

Z(W ;x1, . . . , xk) : V⊗k → H(∂X) (1.4)

where H(Y ) is a vector space such that

H(Y1 × Y2) = H(Y1)⊗H(Y2) (1.5)

and

H(Ȳ ) = H(Y )∗ (1.6)

where M̄ is M with reversed orientation. Eq (1.2) is a special case where ∂X = ∅
and H(∅) = C.

• These assignments H and Z are functorial. E.g., if there is a isometric equivariant

map between W1 → X1 and W2 → X2, Z(W1) ∈ H(∂X1) and Z(W2) ∈ H(∂X2) can

be naturally identified.

• Furthermore, if W → X is obtained by gluing W1 → X1 and W2 → X2 along a

component M of the boundaries M ⊂ ∂X1, M̄ ⊂ ∂X2, we should have

Z(W ;x1, . . . , xk; y1, . . . , yl) = Z(W1;x1, . . . , xk)Z(W2; y1, . . . , yl) (1.7)

where the product on the RHS uses the pairing (1.6).
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1.1 QFT on infinite-volume spaces

So far the space X is assumed to be of finite volume. If X has infinite volume, or a boundary

component Y ⊂ ∂X has infinite volume, one needs to specify a vacuum p ∈M , where M is

called the moduli space of the vacuum of the QFT Q, to have Z and H:

Z(W ; p;x1, . . . , xk) : V⊗k → H(∂X; p). (1.8)

In other words, Z and H are defined for

• a finite volume X or a finite volume ∂X,

• a pair (X, p) when X has infinite volume, or (∂X, p) when ∂X has infinite volume.

One important property is that the algebra of C-valued continuous functions on M is a

subspace of V .

1.2 Unitary QFT.

A unitary QFT has further properties that

• There is a real structure ∗ : V → V (called the CPT conjugation map)

• and a Hilbert space structure on H(Y ) such that

Ψ = Z(W ;x1, . . . , xk)(v1, . . . , vk) ∈ H(Y ) (1.9)

and

Ψ̄ = Z(W̄ ;x1, . . . , xk)(v
∗
1, . . . , v

∗
k) ∈ H(Ȳ ) (1.10)

where W̄ → X̄ is W → X with reversed orientation satisfies

〈Ψ̄Ψ〉 ≥ 0. (1.11)

This is called the reflection positivity.

1.3 Renormalization group.

There is a natural action of the multiplicative group R>0 on a QFT:

Q 7→ µtQ, t ∈ R>0 (1.12)

where we define V(µtQ) = V(Q) and

Z(µtQ)(W ;x1, . . . , xk) = Z(Q)(µtW ;x1, . . . , xk) (1.13)

where µtW is defined so that if the base of W → X has is a Riemannian manifold (X, g)

with metric g, µtW → µtX has the base with a metric given by (X, tg). This action of R>0

is called the renormalization group.

A QFT is called scale invariant if µtQ ' Q.

If there’s a limit µ+∞Q = limt→+∞ µtQ in a suitable sense, it’s called the infrared (IR)

limit of Q.

2



2 4d N = 2 supersymmetric QFT.

2.1 Basics

A “4d N = 2 supersymmetric QFT with G symmetry” Q is a particular kind of 4d QFT

with G× SU(2) symmetry, with various extra axioms. A few important consequences are

• There’s a linear map δ : Vi → Vi+1/2 with δ2 = 0.

• A distinguished subspace Msusy ⊂ M is called the moduli space of supersymmetric

vacuum, and has a complex structure. The algebra of holomorphic functions on Msusy

is isomorphic to H(V , δ)so(4).

• Msusy contains two distinctive subspaces, called the Higgs and the Coulomb branches

Msusy ⊃MCoulomb ∪MHiggs (2.1)

• if the metric of Y is flat, there is δ : H(Y ) → H(Y ) with δ2 = 0. Its cohomology

group H(H(Y ), δ) is called the BPS states.

• For each simple factor G0 ⊂ G, one has a positive real number kG0 .

2.2 Topological twisting

Given a 4d N = 2 supersymmetric QFT Q = (V(Q), Z(Q)), one can construct a 4d QFT

T (Q) = (V(T (Q)), Z(T (Q))) via the following procedure :

Z(T (Q))(X) = Z(Q)(K) (2.2)

where K → X is a principal SU(2) bundle obtained from the tangent bundle TX by

decomposing its affine connection in Spin(4) into one of the subgroups SU(2)×SU(2). This

T (Q) is known to be independent of the continuous defomation of the metric of X. This is

used by Witten to give a QFT interpretation to the Donaldson invariant.

2.3 Basic ways of constructing 4d N = 2 supersymmetric QFT.

2.3.1 Hypermultiplets

For a pseudo-real representation V of G, one has a 4d N = 2 supersymmetric QFT with

G-symmetry H(V ), called a half-hypermultiplet in the representation V . When V = R⊕ R̄,

H(V ) is called a hypermultiplet in the representation R.

MCoulomb(H(V )) = {0}, MHiggs(H(V )) = V. (2.3)

For a simple factor G0 ⊂ G, kG0(H(V )) is given as follows. One first decomposes V (as a

complex representation) to irreps of G0:

V = ⊕iRi (2.4)
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then

kG0(H(V )) =
∑
i

c2(Ri) (2.5)

where c2 is the quadratic Casimir invariant of the representation, normalized so that c2(gC) =

h∨(G0).

When V is zero-dimensional, one has a trivial theory triv = H({0}).

2.3.2 Gauging.

Given a 4d supersymmetric QFT Q with G×F symmetry where G is a simple Lie group and

kG(Q) ≤ 2h∨(G), one can construct a one-parameter family of 4d supersymmetric QFTs

with F symmetry

(Q///G)τ (2.6)

where τ is a complex number in the upper half plane. For a theory of this form, F is

known as the flavor symmetry, and G is known as the gauge symmetry. τ is known as the

complexified gauge coupling.

We have

MCoulomb(Q///G) = MCoulomb(Q)× SpecC[gC]GC (2.7)

and

MHiggs(Q///G) = MHiggs(Q)///G. (2.8)

Note that C[gC]GC ⊂ V(Q///G). Denote the degree-2 generator of C[gC]GC by d2. Con-

sider the function

fX(x, y) = Z((Q///G)τ )(X;x, y)(d2, d2
∗) ∈ C. (2.9)

When ` = |x− y| is very small, it is known to behave as

fX(x, y) ∼
(

1

(Im τ) + (2h∨(G)− kG(Q)) log(1/`)

)2
1

`4
(2.10)

Historically, the combination

b1 = 2h∨(G)− kG(Q) (2.11)

is known as the one-loop beta function. This can’t be negative, as it will violate the

reflection positivity when ` is very very small. When 2h∨(G) = kG(Q), the theory is called

superconformal.

As an example, consider G = SU(Nc), F = SU(Nf ), and V = A ⊗ B∗ ⊕ A∗ ⊗ B where

A ' CNc , B ' CNf are the defining representaitons of G and F . kG(H(V )) = 2Nf .

Therefore, when Nf ≤ 2Nc, one can consider the gauge theory

(H(V )///G)τ . (2.12)
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3 Duality

. The theory

Q(G)τ = (H(gC ⊕ gC)///G)τ (3.1)

is called the N = 4 super Yang-Mills theory with gauge group G. It is believed to satisfy

Q(G)τ = Q(G∨)−1/(nτ) (3.2)

where G∨ is the Langlands dual group, and n is the ratio of the squared lengths of the long

and short roots.

These nontrivial equality between QFTs are called dualities. Another famous example

is

(H(V2 ⊗R VS)/// SU(2))τ = (H(V2 ⊗R VV )/// SU(2))−1/τ = (H(V2 ⊗R VC)/// SU(2))1/(1−τ)
(3.3)

where V2 ' C2 is the defining representation of SU(2), and VS,V,C are three eight-dimensional

irreducible representations of Spin(8).

5


	4d QFT.
	QFT on infinite-volume spaces
	Unitary QFT.
	Renormalization group.

	4d N=2 supersymmetric QFT.
	Basics
	Topological twisting
	Basic ways of constructing 4d N=2 supersymmetric QFT.
	Hypermultiplets
	Gauging.


	Duality

