1 4d QFT.

A "4d QFT with G symmetry" Q is a pair $Q = (\mathcal{V}, Z)$ where

• \mathcal{V} is a $\mathbb{Z}/2$ filtered \mathbb{C} -vector space

$$\mathcal{V}_0 \subset \mathcal{V}_{1/2} \subset \mathcal{V}_1 \subset \dots \subset \mathcal{V} \tag{1.1}$$

such that each filtered piece \mathcal{V}_i is a finite-dimensional representation of $\mathfrak{so}(4) \times G$.

- \mathcal{V} has a lot of noncommutative, nonassociative products.
- For each principal G-bundle $W \to X$ with connection on a compact spin real 4dimensional manifold X without boundary with finite-volume Riemannian metric with k marked points x_1, \ldots, x_k , there is a multi-linear map

$$Z(W; x_1, \dots, x_k): \mathcal{V}^{\otimes k} \to \mathbb{C}$$
(1.2)

satisfying various conditions, such as continuity under the change of the metric, the marked points, the *G*-connection, etc. The object $Z(W; x_1, \ldots, x_k)(v_1 \otimes \cdots \otimes v_k)$ is often denoted as

$$\langle v_1(x_1)v_2(x_2)\cdots v_k(x_k)\rangle\tag{1.3}$$

in the physics literature.

• When X has a boundary $\partial X \neq \emptyset$, one instead has

$$Z(W; x_1, \dots, x_k) : \mathcal{V}^{\otimes k} \to \mathcal{H}(\partial X)$$
(1.4)

where $\mathcal{H}(Y)$ is a vector space such that

$$\mathcal{H}(Y_1 \times Y_2) = \mathcal{H}(Y_1) \otimes \mathcal{H}(Y_2) \tag{1.5}$$

and

$$\mathcal{H}(\bar{Y}) = \mathcal{H}(Y)^* \tag{1.6}$$

where \overline{M} is M with reversed orientation. Eq (1.2) is a special case where $\partial X = \emptyset$ and $\mathcal{H}(\emptyset) = \mathbb{C}$.

- These assignments \mathcal{H} and Z are functorial. E.g., if there is a isometric equivariant map between $W_1 \to X_1$ and $W_2 \to X_2$, $Z(W_1) \in \mathcal{H}(\partial X_1)$ and $Z(W_2) \in \mathcal{H}(\partial X_2)$ can be naturally identified.
- Furthermore, if $W \to X$ is obtained by gluing $W_1 \to X_1$ and $W_2 \to X_2$ along a component M of the boundaries $M \subset \partial X_1$, $\overline{M} \subset \partial X_2$, we should have

$$Z(W; x_1, \dots, x_k; y_1, \dots, y_l) = Z(W_1; x_1, \dots, x_k) Z(W_2; y_1, \dots, y_l)$$
(1.7)

where the product on the RHS uses the pairing (1.6).

1.1 QFT on infinite-volume spaces

So far the space X is assumed to be of finite volume. If X has infinite volume, or a boundary component $Y \subset \partial X$ has infinite volume, one needs to specify a vacuum $p \in M$, where M is called the moduli space of the vacuum of the QFT Q, to have Z and \mathcal{H} :

$$Z(W; p; x_1, \dots, x_k) : \mathcal{V}^{\otimes k} \to \mathcal{H}(\partial X; p).$$
(1.8)

In other words, Z and \mathcal{H} are defined for

- a finite volume X or a finite volume ∂X ,
- a pair (X, p) when X has infinite volume, or $(\partial X, p)$ when ∂X has infinite volume.

One important property is that the algebra of \mathbb{C} -valued continuous functions on M is a subspace of \mathcal{V} .

1.2 Unitary QFT.

A unitary QFT has further properties that

- There is a real structure $*: \mathcal{V} \to \mathcal{V}$ (called the CPT conjugation map)
- and a Hilbert space structure on $\mathcal{H}(Y)$ such that

$$\Psi = Z(W; x_1, \dots, x_k)(v_1, \dots, v_k) \in \mathcal{H}(Y)$$
(1.9)

and

$$\bar{\Psi} = Z(\bar{W}; x_1, \dots, x_k)(v_1^*, \dots, v_k^*) \in \mathcal{H}(\bar{Y})$$
(1.10)

where $\overline{W} \to \overline{X}$ is $W \to X$ with reversed orientation satisfies

$$\langle \bar{\Psi}\Psi \rangle \ge 0. \tag{1.11}$$

This is called the reflection positivity.

1.3 Renormalization group.

There is a natural action of the multiplicative group $\mathbb{R}_{>0}$ on a QFT:

$$Q \mapsto \mu_t Q, \quad t \in \mathbb{R}_{>0} \tag{1.12}$$

where we define $\mathcal{V}(\mu_t Q) = \mathcal{V}(Q)$ and

$$Z(\mu_t Q)(W; x_1, \dots, x_k) = Z(Q)(\mu_t W; x_1, \dots, x_k)$$
(1.13)

where $\mu_t W$ is defined so that if the base of $W \to X$ has is a Riemannian manifold (X, g)with metric $g, \mu_t W \to \mu_t X$ has the base with a metric given by (X, tg). This action of $\mathbb{R}_{>0}$ is called the renormalization group.

A QFT is called scale invariant if $\mu_t Q \simeq Q$.

If there's a limit $\mu_{+\infty}Q = \lim_{t \to +\infty} \mu_t Q$ in a suitable sense, it's called the infrared (IR) limit of Q.

2 4d $\mathcal{N} = 2$ supersymmetric QFT.

2.1 Basics

A "4d $\mathcal{N} = 2$ supersymmetric QFT with G symmetry" Q is a particular kind of 4d QFT with $G \times SU(2)$ symmetry, with various extra axioms. A few important consequences are

- There's a linear map $\delta : \mathcal{V}_i \to \mathcal{V}_{i+1/2}$ with $\delta^2 = 0$.
- A distinguished subspace $M_{susy} \subset M$ is called the moduli space of supersymmetric vacuum, and has a complex structure. The algebra of holomorphic functions on M_{susy} is isomorphic to $H(\mathcal{V}, \delta)^{\mathfrak{so}(4)}$.
- $M_{\rm susy}$ contains two distinctive subspaces, called the Higgs and the Coulomb branches

$$M_{\rm susy} \supset M_{\rm Coulomb} \cup M_{\rm Higgs}$$
 (2.1)

- if the metric of Y is flat, there is $\delta : \mathcal{H}(Y) \to \mathcal{H}(Y)$ with $\delta^2 = 0$. Its cohomology group $H(\mathcal{H}(Y), \delta)$ is called the BPS states.
- For each simple factor $G_0 \subset G$, one has a positive real number k_{G_0} .

2.2 Topological twisting

Given a 4d $\mathcal{N} = 2$ supersymmetric QFT $Q = (\mathcal{V}(Q), Z(Q))$, one can construct a 4d QFT $T(Q) = (\mathcal{V}(T(Q)), Z(T(Q)))$ via the following procedure :

$$Z(T(Q))(X) = Z(Q)(K)$$
(2.2)

where $K \to X$ is a principal SU(2) bundle obtained from the tangent bundle TX by decomposing its affine connection in Spin(4) into one of the subgroups SU(2) × SU(2). This T(Q) is known to be independent of the continuous defomation of the metric of X. This is used by Witten to give a QFT interpretation to the Donaldson invariant.

2.3 Basic ways of constructing 4d $\mathcal{N} = 2$ supersymmetric QFT.

2.3.1 Hypermultiplets

For a pseudo-real representation V of G, one has a 4d $\mathcal{N} = 2$ supersymmetric QFT with G-symmetry H(V), called a half-hypermultiplet in the representation V. When $V = R \oplus \overline{R}$, H(V) is called a hypermultiplet in the representation R.

$$M_{\text{Coulomb}}(H(V)) = \{0\}, \quad M_{\text{Higgs}}(H(V)) = V.$$
 (2.3)

For a simple factor $G_0 \subset G$, $k_{G_0}(H(V))$ is given as follows. One first decomposes V (as a complex representation) to irreps of G_0 :

$$V = \oplus_i R_i \tag{2.4}$$

then

$$k_{G_0}(H(V)) = \sum_i c_2(R_i)$$
(2.5)

where c_2 is the quadratic Casimir invariant of the representation, normalized so that $c_2(\mathfrak{g}_{\mathbb{C}}) = h^{\vee}(G_0)$.

When V is zero-dimensional, one has a trivial theory triv = $H(\{0\})$.

2.3.2 Gauging.

Given a 4d supersymmetric QFT Q with $G \times F$ symmetry where G is a simple Lie group and $k_G(Q) \leq 2h^{\vee}(G)$, one can construct a one-parameter family of 4d supersymmetric QFTs with F symmetry

$$(Q///G)_{\tau} \tag{2.6}$$

where τ is a complex number in the upper half plane. For a theory of this form, F is known as the flavor symmetry, and G is known as the gauge symmetry. τ is known as the complexified gauge coupling.

We have

$$M_{\text{Coulomb}}(Q///G) = M_{\text{Coulomb}}(Q) \times \text{Spec} \mathbb{C}[\mathfrak{g}_{\mathbb{C}}]^{G_{\mathbb{C}}}$$
(2.7)

and

$$M_{\rm Higgs}(Q///G) = M_{\rm Higgs}(Q)///G.$$
 (2.8)

Note that $\mathbb{C}[\mathfrak{g}_{\mathbb{C}}]^{G_{\mathbb{C}}} \subset \mathcal{V}(Q///G)$. Denote the degree-2 generator of $\mathbb{C}[\mathfrak{g}_{\mathbb{C}}]^{G_{\mathbb{C}}}$ by d_2 . Consider the function

$$f_X(x,y) = Z((Q///G)_{\tau})(X;x,y)(d_2,d_2^*) \in \mathbb{C}.$$
(2.9)

When $\ell = |x - y|$ is very small, it is known to behave as

$$f_X(x,y) \sim \left(\frac{1}{(\operatorname{Im} \tau) + (2h^{\vee}(G) - k_G(Q))\log(1/\ell)}\right)^2 \frac{1}{\ell^4}$$
(2.10)

Historically, the combination

$$b_1 = 2h^{\vee}(G) - k_G(Q) \tag{2.11}$$

is known as the one-loop beta function. This can't be negative, as it will violate the reflection positivity when ℓ is very very small. When $2h^{\vee}(G) = k_G(Q)$, the theory is called superconformal.

As an example, consider $G = \mathrm{SU}(N_c)$, $F = \mathrm{SU}(N_f)$, and $V = A \otimes B^* \oplus A^* \otimes B$ where $A \simeq \mathbb{C}^{N_c}$, $B \simeq \mathbb{C}^{N_f}$ are the defining representations of G and F. $k_G(H(V)) = 2N_f$. Therefore, when $N_f \leq 2N_c$, one can consider the gauge theory

$$(H(V)///G)_{\tau}$$
. (2.12)

3 Duality

. The theory

$$\mathcal{Q}(G)_{\tau} = (H(\mathfrak{g}_{\mathbb{C}} \oplus \mathfrak{g}_{\mathbb{C}}) / / / G)_{\tau}$$
(3.1)

is called the $\mathcal{N} = 4$ super Yang-Mills theory with gauge group G. It is believed to satisfy

$$\mathcal{Q}(G)_{\tau} = \mathcal{Q}(G^{\vee})_{-1/(n\tau)} \tag{3.2}$$

where G^{\vee} is the Langlands dual group, and n is the ratio of the squared lengths of the long and short roots.

These nontrivial equality between QFTs are called dualities. Another famous example is

$$(H(V_2 \otimes_{\mathbb{R}} V_S) / / / \operatorname{SU}(2))_{\tau} = (H(V_2 \otimes_{\mathbb{R}} V_V) / / / \operatorname{SU}(2))_{-1/\tau} = (H(V_2 \otimes_{\mathbb{R}} V_C) / / / \operatorname{SU}(2))_{1/(1-\tau)}$$
(3.3)

where $V_2 \simeq \mathbb{C}^2$ is the defining representation of SU(2), and $V_{S,V,C}$ are three eight-dimensional irreducible representations of Spin(8).