1 4d QFT.
A “4d QFT with G symmetry” @ is a pair @ = (V, Z) where
e Vis a Z/2 filtered C-vector space
VoCVipCViC---CV (1.1)
such that each filtered piece V; is a finite-dimensional representation of so(4) x G.
e ) has a lot of noncommutative, nonassociative products.

e For each principal G-bundle W — X with connection on a compact spin real 4-
dimensional manifold X without boundary with finite-volume Riemannian metric with
k marked points x1, ..., x, there is a multi-linear map

Z(Wixy,...,xp) : V" = C (1.2)

satisfying various conditions, such as continuity under the change of the metric, the
marked points, the G-connection, etc. The object Z(W;xy,...,x)(v1 ® -+ @ vy) 18
often denoted as

(v1(21)v(2) - - - v (1)) (1.3)

in the physics literature.
e When X has a boundary 0X # &, one instead has
ZWizy,...,xp)  VEF = H(0X) (1.4)

where H(Y') is a vector space such that

H(Y1 x Ya) = H(Y1) @ H(Y) (1.5)
and
H(Y) =H(Y)" (1.6)
where M is M with reversed orientation. Eq (1.2) is a special case where 0X = @
and H(@) = C.

e These assignments H and Z are functorial. E.g., if there is a isometric equivariant
map between Wy — X; and Wy — Xy, Z(W)) € H(0X;) and Z(W,) € H(0X3) can
be naturally identified.

e Furthermore, if W — X is obtained by gluing W; — X; and W, — X, along a
component M of the boundaries M C 0X;, M C 0X,, we should have

ZWiay, sy, u) = ZWisan, o) ZWas g, - u) (1.7)

where the product on the RHS uses the pairing (|1.6)).



1.1 QFT on infinite-volume spaces

So far the space X is assumed to be of finite volume. If X has infinite volume, or a boundary
component Y C 0X has infinite volume, one needs to specify a vacuum p € M, where M is
called the moduli space of the vacuum of the QFT (), to have Z and H:

ZWipixy, ..., x5) : VEF = H(OX;p). (1.8)
In other words, Z and H are defined for

e a finite volume X or a finite volume 0.X,

e a pair (X, p) when X has infinite volume, or (09X, p) when 0X has infinite volume.

One important property is that the algebra of C-valued continuous functions on M is a
subspace of V.

1.2 Unitary QFT.
A unitary QFT has further properties that

e There is a real structure * : V — V (called the CPT conjugation map)

e and a Hilbert space structure on H(Y') such that

U =Z(W;x1,...,x1)(v1,...,0,) € H(Y) (1.9)
and ) ) )
U =272W;x,...,25)(0],...,05) € H(Y) (1.10)
where W — X is W — X with reversed orientation satisfies
(UW) > 0. (1.11)

This is called the reflection positivity.

1.3 Renormalization group.

There is a natural action of the multiplicative group R<g on a QFT:

Q— mQ, teRyg (1.12)
where we define V(1) = V(Q) and

Z(uQ)Wiay, ... xp) = Z(Q) (W5 xq, ..., xg) (1.13)

where ;W is defined so that if the base of W — X has is a Riemannian manifold (X, g)
with metric g, 4, /W — 11, X has the base with a metric given by (X, tg). This action of Ry
is called the renormalization group.

A QFT is called scale invariant if Q) ~ Q).

If there’s a limit p4 0@ = lim;_, 1 Q) in a suitable sense, it’s called the infrared (IR)
limit of Q.



2 4d N =2 supersymmetric QFT.

2.1 Basics

A “4d N = 2 supersymmetric QFT with G symmetry” @ is a particular kind of 4d QFT
with G x SU(2) symmetry, with various extra axioms. A few important consequences are

e There’s a linear map 0 : V; — V41,2 with 5% =0.

e A distinguished subspace M., C M is called the moduli space of supersymmetric
vacuum, and has a complex structure. The algebra of holomorphic functions on Mgy,
is isomorphic to H(V,§)*®.

o M,y contains two distinctive subspaces, called the Higgs and the Coulomb branches

Msusy o MCoulomb U MHiggs (21)

e if the metric of Y is flat, there is 6 : H(Y) — H(Y) with 6* = 0. Its cohomology
group H(H(Y),9) is called the BPS states.

e For each simple factor Gy C G, one has a positive real number k¢, .

2.2 Topological twisting

Given a 4d N' = 2 supersymmetric QFT @ = (V(Q), Z(Q)), one can construct a 4d QFT
T(Q)=V(T(Q)), Z(T(Q))) via the following procedure :

Z(T(Q)(X) = Z(Q)(K) (2.2)

where K — X is a principal SU(2) bundle obtained from the tangent bundle TX by
decomposing its affine connection in Spin(4) into one of the subgroups SU(2) x SU(2). This
T(Q) is known to be independent of the continuous defomation of the metric of X. This is
used by Witten to give a QFT interpretation to the Donaldson invariant.

2.3 Basic ways of constructing 4d N = 2 supersymmetric QFT.
2.3.1 Hypermultiplets

For a pseudo-real representation V' of G, one has a 4d N = 2 supersymmetric QFT with
G-symmetry H(V), called a half-hypermultiplet in the representation V. When V = R® R,
H(V) is called a hypermultiplet in the representation R.

Mcouomb(H(V)) = {0}, Muiges(H(V)) = V. (2.3)

For a simple factor Gy C G, kg, (H(V)) is given as follows. One first decomposes V' (as a
complex representation) to irreps of Go:
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then

ko, (H(V)) = ZCQ(RZ-) (2.5)

where ¢ is the quadratic Casimir invariant of the representation, normalized so that c(gc) =
hY(Gy).

When V' is zero-dimensional, one has a trivial theory triv = H({0}).

2.3.2 Gauging.

Given a 4d supersymmetric QF T @) with G x F' symmetry where G is a simple Lie group and
ka(Q) < 2hY(G), one can construct a one-parameter family of 4d supersymmetric QFTs
with [’ symmetry

(@] G)~ (2.6)

where 7 is a complex number in the upper half plane. For a theory of this form, F' is
known as the flavor symmetry, and G is known as the gauge symmetry. 7 is known as the
complexified gauge coupling.
We have
Mcoutomb (Q///G) = Mcoutomn(Q) x Spec Clge]“* (2.7)
and
Mriges (Q/// G) = Muiges(Q) /// G- (2.8)

Note that C[gc]9c C V(Q///G). Denote the degree-2 generator of Clgc|“c by dy. Con-
sider the function

fx(,y) = Z2((Q))]G)=) (X5, y)(d2, d2”) € C. (2.9)

When ¢ = |z — y| is very small, it is known to behave as

1 29
Fx(,9) ~ <(Imf) @ (G) — helQ)) 1og<1/f>> A (2.10)

Historically, the combination

by = 2h"(G) — ka(Q) (2.11)

is known as the one-loop beta function. This can’t be negative, as it will violate the
reflection positivity when £ is very very small. When 2hY(G) = kg (Q), the theory is called
superconformal.

As an example, consider G = SU(N,), F = SU(Ny), and V = A® B* ¢ A* @ B where
A ~ CM, B ~ C are the defining representaitons of G and F. kg(H(V)) = 2Ny.
Therefore, when Ny < 2N, one can consider the gauge theory

(HMV) /G- (2.12)



3 Duality

. The theory
Q(G)- = (H(gc @ 9¢)///G)- (3.1)

is called the N/ = 4 super Yang-Mills theory with gauge group G. It is believed to satisfy
Q(G)T = Q(Gv)fl/(nf) (3-2)

where G is the Langlands dual group, and n is the ratio of the squared lengths of the long
and short roots.

These nontrivial equality between QFTs are called dualities. Another famous example
is

(H (V2 ®r Vs)///SUR))r = (H(V2 ©r W)/ SU(2)) -1/ = (H(Va @& Vo) /// SU2))1/a-r)
(3.3)
where V5 ~ C? is the defining representation of SU(2), and Vs ¢ are three eight-dimensional
irreducible representations of Spin(8).
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