A Few Bumps on The M5

Strings '98

Based on

D. Freed, R. Minasian
G. Moore, JH

9803205

RM, GM, JH to appear

Thanks to R. Bott, E. Witten
Outline

1. The M5 anomaly problem
 EW 9610234

2. Bumps and Curves

3. Anomaly Cancellation

4. Applications
 A. Conformal anomaly of (2,0) theory
 B. Chern-Simons terms in gauged SUGRA
1. M5 Problem

M5 w/ w-vol. We breaks $SO(10,1) \rightarrow SO(5,1) \times SO(5)$

$TM \big|_W = TW_6 \oplus N$

Diffeos preserving W_6 act as

1. Diffeos of W_6

2. $SO(5)$ gauge transf. on connection on N

If M-theory is consistent these should be good symmetries, without anomalies
Anomalies in theory on W_6 are determined from an 8-form I_8 by descent:

$$I_8 = dI_f^{(0)}$$

$$\delta I_f^{(0)} = dI_6^{(11)}$$

Anomaly = $\int_{W_6} I_6^{(11)}$

For a charge 1 MS we have

$$I_8 = I_8^{\text{2,m.}} + I_8^{\text{inflow}} = \frac{p_2^{(IV)} \neq 0}{24}$$

From tensor mult of (2,0) theory

$$\delta \int_{M_{11}} C_3 \wedge I_8^{\text{in}} = \delta \int_{M_{11}} G_4 I_f^{(10) \text{ in}}$$

$$= \int_{M_{11}} G_4 dI_6^{(11) \text{ inf}} - \int_{M_{11}} dC_4 I_6^{(11) \text{ inf}}$$

$$= \int_{M_{11}} dS_{I_6^{(11) \text{ inf}}} - \int_{W_6} I_6^{(1) \text{ inf}}$$
2. Bumps + Curves

\[\Delta y = \delta_{\xi} \]

\[\frac{dy}{\pi G_4 / 2} \]

is too singular to allow a careful defn of D=11 SUGRA in MS backround

Given a surface \(W_6 \rightarrow M_{11} \) there is a standard framework to smooth out the source and capture its topological structure - Bott + Tu

* Remove a tubular nbhd of \(W_6 \)

\[\text{radius } \varepsilon \]

\[\left\{ \text{disk bundle } D_\varepsilon (W_6) \right\} \]

* Define bulk integrals

\[\int_{M_{11}} \rightarrow \lim_{\varepsilon \rightarrow 0} \int_{M_{11} - D_\varepsilon} \]

will use \(\mathcal{J}(M_{11} - D_\varepsilon) = S_6(W_6) \) (sphere bundle)
Smooth out source

\[d\mathcal{A}_y = d\mathcal{A}(r) \wedge \frac{e_y}{2} \]

radial dir. \hspace{1cm} conn. on normal bundle

\[\text{bump form} \]

\[E_{y/2} = \text{global angular form} \]

\[= \frac{1}{64\pi^2} E_{a_1 \ldots a_5} \left[\left(\partial \vec{y} \right)^{a_1} \ldots \left(\partial \vec{y} \right)^{a_5} - 2 F^{a_1 a_2} \partial \vec{y}^{a_3} \partial \vec{y}^{a_4} \partial \vec{y}^{a_5} + F^{a_1 a_2} F^{a_3 a_4} \partial \vec{y}^{a_5} \right] \]

\[\Theta^{\alpha \beta} \Theta^{\gamma} \Theta^{\delta} \]

curvature of isotropic angular coord.

\[E_{y/2} \text{ generalizes vol. form on } S^y \text{ in presence of sol(s) gauge fields so that } d\mathcal{A}_y = 0, \ e_y \text{ gauge cov., integral over } S^y \text{ fibres is one.} \]
3. Anomaly Cancellation

In absence of MS

\[S_{CS} = -\frac{1}{6} \int \mathcal{L}_3 \wedge \mathcal{B}_4 \wedge \mathcal{B}_4 \quad \text{with} \quad \mathcal{B}_4 = d\mathcal{C}_3 \]

w/ MS

\[dB_4 = dg \wedge \frac{e_2}{2} \Rightarrow \mathcal{B}_4 = \mathcal{D}_3 - dg \wedge e_3^{(0)}_{1/2} \]

like \(H_3 = dB_2 - W_3 \) in GS mechanism

\[\Rightarrow \delta \mathcal{L}_3 = -dg \wedge e_2^{(1)}_{1/2} \]

Modify C-S to

\[S_{CS}^I = \lim_{E \to 0} \int \frac{1}{6} (\mathcal{L}_3 - 6) \wedge d(\mathcal{L}_3 - 6) \wedge d(\mathcal{L}_3 - 6) \]

Now compute

\[\delta S_{CS} = -\frac{1}{6} \int_{\mathcal{S}_e} \frac{e_2^{(1)}}{2} \wedge \frac{e_4}{2} \wedge \frac{e_4}{2} = -\int \left[\frac{P_2(N)}{24} \right]^{(1)}_{W_6} \]

by Bott + Cattaneo \(dg - g_4/9 + 10001 \)

\[\therefore \text{MS Anomaly cancels} \]
4. Applications

A. Conformal anomalies

We have shown cancellation for \(Q_5 = 1 \), for arb. \(Q_5 \) if we assume the anomaly cancels then

\[
I_9^{2.m.}(Q_5) = Q_5 I_9^{2.m.}(1) + \left(\frac{Q_3^3 - Q_5}{24} \right) P_2(N)
\]

by the multiplet of anomalies this gives an exact prediction for the conformal anomaly of (2,0) theory

\(Q^3_3 \): compatible w/ BH analysis

\(Q_5 \): \((1/Q^3_3)\) correction

Precise check by wrapping MS on 4-cycle \(P \) of CY. as in MSW

find \(C^\text{anom}_R \equiv C^\text{MSW}_R \) both \(Q_5, Q_5 \) pieces
B. C-S terms in gauged SUGRA

\[S_{5 \times AdS_5} : \int_{AdS_5} \omega_5^{(0)} (A) \]

\[d\omega_5^{(0)} = Tr F^3 \]

\[S_{4 \times AdS_4} : \int_{AdS_4} \left(-\frac{1}{2} \omega_3^{(0)} \wedge \omega_4 + \omega_4^{(0)} \right) \]

\[d\omega_3^{(0)} = \omega_4 = Tr F n F \]

\[d\omega_4^{(0)} = Tr F^4 \]

These have been determined in the literature by Noether method in compactified theory. How do they arise from KK RED.?

Clue: \[\int_{AdS_4} \left(-\frac{1}{2} \omega_3^{(0)} \wedge \omega_4 + \omega_4^{(0)} \right) + \int_{AdS_4} \left[P_2 (F) \right]^{(0)} \]
Problem is to generalize Freund-Rubin to include fluctuations in metric ...

\[G_4 = N E_4 \]

Answer: \[G_4 = \Phi N E_4 (F) + \text{fluc in } C \]
\[C_3 = N E_3^{(0)} \]

Then \[SC_3 \wedge G_4 \wedge G_4 = N^3 \int_{\text{AdS}} [P_2 (N)]^{(0)} \]

by Bott-Cattaneo

Note: \[SC_3 \wedge I^\text{inf}_8 \] gives additional C-S terms linear in \(Q_5 \) needed to match AdS-CFT anomalies

We believe a similar computation using IIB e.o.m. leads to C-S term in AdS5
\[(G_3^2 - 1) \int \omega_5^{(0)} \]
\[\frac{1}{Q_3^3} = \frac{g_s^2}{g_5^2 Q_5^3} \]

Classical must exist 1-loop correction to match anomaly of SU(\(Q_3 \)) CFT on bndy