Strings '98

Three-Point Functions of Chiral Operators in D=4, $\mathcal{N}=4$ Super-Yang-Mills in the Large N limit.

hep-th/9806074

Sangmin Lee, Shiraz Minwalla, Mukund Rangamani and Nathan Seiberg

Outline of the Talk

- I. SYM₄ and its Chiral opeartors.
- II. Weak Coupling result (Free Field Theory)
- III. Strong Coupling result (AdS/CFT)

Conjecture: at least in the large N limit, the 3-point functions are independent of λ .

I. SYM₄ and its Chiral Operators.

Operators in SYM₄ appear in infinite dimensional multiplets under the d=4 $\mathcal{N}=4$ SCA.

Representations of the SCA may be decomposed into a finite number of representations of the d=4 conformal algebra.

The d=4, $\mathcal{N}=4$ algebra has a number of special short representations (chiral) that are composed of a fewer number of conformal representations. Analogue of BPS particles.

GENERIC REP.

CHIRAL REP.

For the U(N) theory study the chiral primaries are which scalars under SO(4), k^{th} traceless symmetric tensor under SO(6), scaling dimension k. (Theory also possesses many nonchiral primaries.)

II. COMPUTATION AT SMALL $\lambda = g_{YM}^2 N$

CPOs of SYM₄ are of the form

$$\mathcal{O}^I = \mathcal{C}^I_{i_1..i_k} \text{Tr}(\phi^{i_1}..\phi^{i_k}).$$

 $\phi^i = \phi^i_a T_a$: vector of $SO(6)_R$, adjoint of U(N). C^I : totally symm. traceless tensor of $SO(6)_R$.

Normalize the SYM action $S = \frac{-1}{2g_{YM}^2} \int TrFF...$

Propagator:

$$\langle \phi_a^i(x)\phi_b^j(y)\rangle = \frac{g_{YM}^2\delta_{ab}\delta^{ij}}{(2\pi)^2|x-y|^2}.$$

The 2-point ftn of two CPOs specified by tensors $\mathcal{C}_{i_1...i_{k_1}}^{I_1}$ and $\mathcal{C}_{j_1...j_{k_2}}^{I_2}$.

$$\langle \mathcal{O}^{I_1}(x)\mathcal{O}^{I_2}(y)\rangle = \lambda^k \frac{k}{(2\pi)^{2k}|x-y|^{2k}} \langle \mathcal{C}^{I_1}\mathcal{C}^{I_2}\rangle.$$

$$\langle \mathcal{C}^{I_1} \mathcal{C}^{I_2} \rangle \equiv (\mathcal{C}^{I_1})_{i_1 \dots i_{k_1}} (\mathcal{C}^{I_2})^{i_1 \dots i_{k_2}}.$$

Rescale:
$$O^I = \frac{\lambda^{\frac{k}{2}}\sqrt{k}}{(2\pi)^k}\mathcal{O}^I$$
 s.t.

$$\langle O^{I_1}O^{I_2}\rangle = \frac{\delta^{I_1I_2}}{|x-y|^{2k}}.$$

The 3-point ftn of rescaled CPOs

$$\langle O^{I_1}(x)O^{I_2}(y)O^{I_3}(z)\rangle = \frac{1}{N} \frac{\sqrt{k_1k_2k_3}\langle \mathcal{C}^{I_1}\mathcal{C}^{I_2}\mathcal{C}^{I_3}\rangle}{|x-y|^{2\alpha_3}|y-z|^{2\alpha_1}|z-x|^{2\alpha_2}}.$$

Result correct only at $N = \infty$. Nonzero corrections from nonplanar diagrams at finite N.

III. COMPUTATION AT large $\lambda = g_{YM}^2 N$ AdS/CFT correspondence

J. Maldacena

Correlation functions in SYM₄ are related to partition function of IIB on $AdS_5 \times S^5$ as ftn of boundary values of fields.

S. Gubser, I. Klebanov, A. Polyakov; E. Witten.

1/N correction to the large N limit of SYM \iff

Quantum correction to the classical limit of String theory.

 $1/\lambda$ correction to the large λ limit of SYM \iff α' correction to the SUGRA limit of string theory.

Procedure

- Identify SUGRA fields coupling to CPOs in S_{int}.
- Compute S_{SUGRA} as fuction of arbitrary boundary values of these fields.

Subtleties

S_{int} not known.

H. Kim, L. Romans, P. van Nieuwenhuizen Use linearized e.o.m. Onshell fluctuations → SCA multiplets. N. Marcus

Match with worldvolume operators.

Seems insufficient

- Field identified to linear order. However nonlinear field redefinitions in SUGRA ↔ contact terms in CFT.
- Field determined up to normalization. Consequence: Can compute correlation functions only of normalized operators.

Note: Distinct from normalization of action.

Gravity is a gauge theory.

Need to impose gauge and solve Gauss's law. Some fields physical, others constrained.

Physical Fields

Represent true physical degrees of freedom.
 Appear in representations of the SCA.

Compute S_{SUGRA} as ftn of bdry values of physical fields only. Set the value of all other physical fields to zero on boundary.

Physical fields \leftrightarrow CPOs and their Conf descendents denoted by $s^I(x^1,.,x^5)$.

S. Ferrara , A. Zaffaroni

IIB SUGRA action is complicated.

- No simple covariant action for IIB SUGRA.
- Even Einstein action nonlocal as function of physical fields.
- 1. Study linearized e.o.m. to determine s^{I}
- 2. Find e.o.m to $O(s^2)$.
- 3. Determine $S_{eff}(s^I)$ to $O(s^3)$ upto normalization.
- 4. Fix Normalization of S_{eff} by comparing with < JJJ>. Alternatively comparing with Sorokin's action. Same answer.
 - G. Dall'Agata, K. Lechner, D. Sorokin.

Result of Our Computation

Correctly normalized action for s^I fields to cubic order.

$$S = \frac{4N^2}{(2\pi)^5} \int d^5x \sqrt{-g_1} \{ -\sum_I \frac{A_I}{2} [(\nabla s^I)^2 + k(k-4)(s^I)^2] + \sum_{I_1I_2I_3} \frac{\mathcal{G}_{I_1I_2I_3}}{3} s^{I_1} s^{I_2} s^{I_3} \}.$$

 $\mathcal{G}_{I_1I_2I_3}$ = Very complicated ftn of I_1, I_2, I_3 .

S yields. D. Freedman, S. Mathur, A. Matusis, L. Rastelli

$$\langle O^{I_1}(x)O^{I_2}(y)O^{I_3}(z)\rangle = \frac{1}{N} \frac{\sqrt{k_1k_2k_3}\langle \mathcal{C}^{I_1}\mathcal{C}^{I_2}\mathcal{C}^{I_3}\rangle}{|x-y|^{2\alpha_3}|y-z|^{2\alpha_1}|z-x|^{2\alpha_2}}$$

Same formula as in weak coupling limit!!

IV. DISCUSSION

Conjecture: The 3-point ftns are independent of λ, at least in the large N limit.

Evidence

- True at small and large λ.
- First possible correction from large λ is zero. T. Banks, M. Green.

Suggested Check

Compute the $O(\lambda)$ correction to free field 3-point function at $N = \infty$.

D. Freedman, S. Mathur, A. Matusis, L. Rastelli hep-th/9901001

- Not true for 4-point funtions as these receive corrections at $O(\alpha'^3) = O(\lambda^{\frac{-3}{2}})$.
- It may even be that the 3-point function is independent of λ for fixed finite N; ie the free field answer is correct at all N, λ.

LTR (F2) TR(F2) TR (F4) >

Tr(Gen) TR(K1-14)