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work in progress

This is a highly speculative talk about some possible connec-
tions between number theory and black holes in supergrav-

ity /superstring theory.

1. Review of the “attractor equations”™

2. Solution for K3 x T*,T% FHSV: A product of three
(isogenous) elliptic curves.

3. Three connections to arithmetic
4. Attractors and RCFT’s

5. CY 3-folds

6. Grandiose speculation



Introduction

Modular forms, congruence subgroups, elliptic curves, are all
mathematical objects of central concern both to string theo-
rists and to number theorists. [Is there a deeper connection?

PROBLEM: the detailed questions of the number theorists
and the string theorists seem generally orthogonal... For
example: In string perturbation theory we encounter the
elliptic curve '

rET =C/(Z+ 7E)

but there never was any compelling reason to restrict atten-
tion to elliptic curves defined over @) (or any other number

field).

which naturally isolates certain arithmetic varieties.

We hope that the arithmetic of these varieties will be inti-
mately connected with questions about

» BPS states, their spectrum and existence

¢ Properties of the CFT at the Dbrane horizon.

The point of this talk is that the “attractor mechanism”
for susy black strings and black holes provides a framework
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THE ATTRACTOR EQUATIONS

¥ CALAB|-YAU 3-FoLD
WM :  MODULI OF COMPLEX STRUCTURES

Y H3(x ; Z) “charge vector”
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The minimization principle

d = 4, N' = 2 compactification: 1IB/Ms x X3 has abelian
gauge fieldstrengths (with duals):

Fe (M R)® H(X;R)

Dyonic charges:

F=4€ H}X;Z)

Sk

Definition: For v € H3(X;Z), 2 € H*°(X) in complex
structure z € M:

| [, 9F

Z(z;7))* = .

¢ A well defined nonnegative function of z € M.

e If y supports a BPS state then M2 (z; ) /Mg .0 = 1Z(2;7)*

Theorem [Ferrara, Gibbons, Kallosh].

a.) |Z(z;7)|* has a stationary point at z = z,(7) € M, with
Z(z.;7) # 0 iff 4 has Hodge decomposition § = 43° + 493,

b.) If such a stationary point exists it is a local minimum.
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Black holes and d:,rnamir:al systems

Static, spherically symmetric, dyonic, extremal black holes:
ds® = 2V dt? + e 2V (dr? + r2dQ?)
F-=E"® (e

dih = A = 0 =dynamical system for z(r) on My py:

TE%':E_H} = —|Z(z(r); )|

v 4 |

K dﬂ[?] "
1 2 —_ ] .1
”2 I{H .I'II _] = 17y I | —

dr

e

L

Attractor equations are the fixed point equations 4! =

‘Near horizon geometry:

2 2
ds? = ——di* + zf‘iiz + Z2d0*

Z:
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SOLUTION For x = k3xT2

CHARGE:  YeH¥(x;Z) = W{Kk3: 2)eH(r*;2)
= H:(k3;Z) @ HYk2:;Z)

A

¥ = P ® g
- E ’
xPﬂ ) tnr: Eﬂl‘-ﬂ N (———Mm‘;fw":III ﬁ! Ettm}
P9 +24-D, p _ =P g+i4-bm
TRy = M ipyy= =

Dmr (Ff;‘)z—— '.Pi %.2 <0
T,t'e OFD) = O+ {BTQ

Yaq,

® psrcanc (NS) =20, dense,isolated in

: : #EMCEP'I‘:EM.Q k3 SUr’Fﬂ-CI y

@ Cfn.s:nﬂu! 5’ I'J-‘Hnr?: g_w.ﬂ!mﬁir. 'Fur'-l'hs

=Py

y - F - = D
Qpy= i‘(_ﬁ 11) ) Hdet Qp, P



Solution for X = K3 x T*
Charge: 4 € 11?25 @ 11?25,

Useﬂlf—dualit},r and the product structure:

e H¥(X:;Z)= HYK3,Z)® HY (T, Z)
>~ HY(K3;Z)® H* (K3, Z)

Y=pdg O30 = 020 A dz

Attractor equations:

2AAmCO*Y =p AmC0*0 = ¢
Solution:
0% ~ C(g - 7p)
N2AQ2 =0=p*r* —2p-gr+¢* =0
K3
p-q+ /Dy,
r=r1pg) = ———

Dpq=(p-q)* —p°¢* <0

By the Torelli theorem, the complex structure of the K3

surface is uniquely determined by 2*° = C(q — 7p).



(20

Exceptional K3 Surfaces

We now show that these atiractor varieties are closely
related to products of three special (arithmetic) elliptic curves

Neron-Severi lattice: NS(S) = ker{y — [ 0}.
Transcendental lattice Ts = (NS(S5))*.

e Generic K3: N5(5) = {0}

¢ Generic algebraic K3: NS(S)= HZ, p(S) =1

¢ Generic elliptic K3: NS(S)=BZ & FZ, p(S) =2
e Attractor K3:

HYgH? =Ts@C Ts=(pq)z

NS(8) = (p,q)+ Cc H*(K3;Z) has rank p(5) = 20!
These define exceptional K3 surfaces:

They form an isolated dense set of the moduli of algebraic
K3's and have been completely classified.



Exceptional K3 surfaces & (Quadratic Forms

Definition: An integral binary quadratic form:

e Q:(;E E:,.r‘ﬂ) ‘a,bce Z,

C

Equivalence: 3m € SL(2,Z):
a b2\ . [ a /2
m(wg c )m‘ - (wz ¢ )

Theorem|Shioda-Inose] There is a 1-1 correspondence between
exceptional K3 surfaces, S, and SL(2, Z) equivalence classes
of positive even binary quadratic forms.

S5 =Quadratic forms:

2 _p-
TS = {p*q}z = EQF."I' — (—i-q 22 '?)

Form @Q =S: Consider Ag = E,, x E,,:

—b++vD _b+vD
n="9 =3
Ag
{



R

The Attractor Varieties: [/B/K3 x T*

Corollary. Suppose p,q € 11*%% gpan a rank two primitive

sublattice Ly, , = (p,q) C H*(K3; Z).

Then the attractor variety X, , determined by 5 = p@yg
is Y2q,,o X Er(p,g)-

_prgtiy—Dpg
T(P,Eﬂ - pg

and Ysq, . 1s the Shioda-Inose K3 surface associated to the
even quadratic form:

2
_ P —P-q
20, 0 =
P49 (—F't]' qﬂ )

The variety is a double-cover of a Kummer surface con-
structed from

Yaq,, % Er =+ Km (Ermq} X Ef’{p.q]') % Er(p,q)

, —p-g+iv-D
T(f'.iq}= 2

Similar results hold for X = T®, (K3 x T?)/Z,
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Three Relations to arithmetic

» Enumeration of U-duality classes with the same near-horizon
metric is a class number problem.

# The BPS mass-spectrum at an attractor point is given in
terms of norms of ideals in a (quadratic imaginary) number
field.

e By the theory of “complex multiplication” the attractor
varieties are arithmetic varieties, i.e., defined by polynomial
equations over certain number fields (classfields).
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Class Numbers

How many equivalence classes of quadratic forms are there?

m..( .!.-.::2 bi 2) miT = ( ;,:2 '!’ff) ml@c SL{E,I}_

[Fermat, Buler, Lagrange, Legendre, Gauss|. There are a finite num-
ber at fixed discriminant D = b* — dac. If g.c.d.(a,b,¢) =1
(“primitivity™) this number h(D) is called the class number.
h(D) = 1 except for 13 values of D.

The distinct classes may be labelled by points ; € F:

—b++vD

ar’ +bry+ey’=alz -yl = 7= 2

SL(2,Z) acts on 7 in the standard way.
X

Example: D) = —20:

1 E' 3 2 s
(l’] 5) x° + Dy ﬂ—w"?:

_ £1+iv5
2= 2
L 2T For




HoRIZON AREA & U-DuaTy (=X

% NEAR- HOR120N METRIC ONLY DEPENDS ON |§*)]
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H ?ng MANY U -DUALITY NEQUIVALENT Y
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FOR LARCE A, Tle # of U- /nequivalest
L"l-ﬁn.rjes witd Aerigen are.. A grows Jike A




Near-horizon metric vs. U-duality

|Z(2(7); v)|? is defined for all charges, not necessarily large.
=rextend notion of “horizon area” to all BPS states.

Ezample: IT/K3 x T?

y=p@dgeA=II" g I3 = H3(X;; Z)

|Z. F = —Dpq= R/FP'EJ'E - (p-q)? Dpg=—4detQpyq

Define the discriminant of a BPS stateto be |Z,|* = \/-D(~).
In the SUGRA approximation the near-horizon metric only
depends on the discriminant D(~):

20) - m2() = VD)

dar

While D(v) is invariant under U(Z), it might be that
U-inequivalent +’s have the same D(7). (i.e., the same near-
horizon metric).

N(D) = #{]v : D(~) = D}
Example: K3 x T? U(Z) = SL(2, Z) x O(22, 6; Z).

(#',4') ~ (p,q) iff 3m € SL(2,Z) with mQp,,m™ = Qp o



The growth of U-duality inequivalent classes

Conclusion: N (D) = h(D), @)y, primitive

The number of classes grows with |D| !

log N'(D) > log | D|*/?

Therefore, at large entropy the number of [/-duality in-
equivalent black holes with fixed area A grows like A.

Is there some larger “symmetry” which unifies these ¢
Results for other models:

1. FHSV:
log N'(D) = log|DJ”

2. 6D Strings: For nr tensor multiplets:

log N'(P) > log | P?|(nr=1/2
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BPS Masses and Norms of Ideals

FHSV: A charge p,q € TT'%%(2) defines a unique attractor
point z.(p,q) € M.

What is the BPS mass spectrum at the alfractor point?

The answer turns out to involve the arithmetic of the quadratic
imaginary number field Kp_ , where

Kp =Q[iv/]D|] = {a +iby/|D| : a,b € Q}

w
e To each attractor point z.(p,q) we associate a class of

ideals in Kp: z.(p,q) + [a, ]

_ 1 p-q+ /Dy
gp:qzipzz"i— 2 E

To each BPS charge (r, ) we associate an ideal in [a, .

The BPS mass spectrum M*(r, 5) at z.(p, q) is given by the
norm of the ideal:

1
KpalZ(z.(p,q); T, -‘-’HE = EPEM_TJJ-QBF = Nlﬂp-q (A—Tp,eB)]
A, B are (rational) integers depending on p, g, 7, s.

Corollary:
e The spectrum is integral
"o At inequivalent 7; these integers are disjoint.



BPS MASSES @ ATTRACTOR PTS. FOR D= -26 QZ
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T,= i5(12) T, = (+isNuz)e



I
COMPLE X MULTIPLICATION s

Abel, Guoss, Eirerpith, Kronecker, Weber:

o bfy .
(h!,_ c) “+bT+C =0 =»

J®) is on alagbraic ma-en-nﬁ deyree h@®)

et ——

(5-:: + 25 )3

1

(02): JG8)
(#3): i(HE)= (s0-%FY
E. = 1Yy°= #x3- odv) &) E

. 2700 ok o=k, (j@6)-0(S, i)
c(T) S D r:.(d ) ( JL)

Core: THE W=48 ATTRACTORS ARE
ARITRMETIC VARIETIES, DE FINED/ Kpy

Rewt: CET. = GaQ(ﬁ/ﬁ) permute s
the h,cq.t) V- mﬂcru-n..rn-ﬂt-ﬂ‘ fﬂ*‘t‘hc{'br :me:l"-.!



Complex Multiplication

If 7 € Kp then j(r) and the elliptic curve E. have very
special properties...

-y -

Theorem [Abel, Gauss, Eisenstein, Kronecker, Weber |

Suppose at® + b7 +¢ = 0. Let D be the discriminant of
the associated primitive quadratic form. Then,

i.) 4(7) is an algebraic integer of degree h(D).

ii.) If 7; correspond to the distinct ideal classes in O(D),

the minimal polynomial of j(7;) is
h( )

= [] (= - i(n)) € Zla]
k=1

(; g) 7(iv/5) = (50 + 26v/5)°
(f ;) (H;"’r}_{ﬁu 26+/5)°

p(z) = 2°—1264000 z — 681472000

The curve E, = {(z,¥y) : ¥* = 42% — ¢(x + 1)} has special
arithmetic properties:

275(7)
j(r) — (12)°

T =

for E, defined over Kp = Kp(i(w))-

Consequence: There is an arithmetic Weierstrass model
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Attractors are arithmetic
Corollary: The N = 4, 8 attractor varieties are arithmetic.

In fact: Kp = Kp(j(r:)) is independent of 73; it is a “class-
field of Kp.”

The attractor varieties are arithmetic varieties, defined over
classfield extensions of the field of definition, Kp, of the
periods.

A result of classfield theory: Ko p is Galois over Kp, and
Gal {H' p/Kp) is in fact isomorphic to the class group C(D)

[r] = oy € Gal(Kp/Kp)
i([7] * [75]) = o (F[T35])

Example:
D=-20 Kp__20 = K_2(Vv5) =Q(v-1,v-5)
(0) = Gal(Kp/Kp) = Z/(22)

1+w"r_

(50 — 26v/5)% = j{ ) = a(i(iv5)) = o((50 + 26v/5)%)

Thus, Ga][ﬁfﬂ:l,} acts on the (complex) attractor VM
moduli, and permutes the attractor moduli at fixed discrim-
inant: the Galois group extends the U-duality group and
“unifies” the different attractor points at discriminant D.




RCFT’ are attractive

F — Theory duality : HET/T? &  IIB/S — P!
-~ Moduli =B%2 = Gr,(2,I1'*? @ R)

Rightmover projection of p € I1'%:?
pR = Eﬁfzfﬂz,n
P

Compare “attractor points” for p,q € 17'%2;

¢ Transcendental lattice: Ts = (p, q)»

F-theory = Exceptional K3 surface:
(Generic) Mordell-Weil group MW = (p, q)é

L
Heterotic theory: B'? = a space of projectors:
o= .FL + FR — plﬂ,ﬂ + F[],Z

“Attractor equations”: p* = ¢ =0 = RCFT!

tional K3 surfaces. The Mordell-Weil group generates the

The heterotic RCFT’s are F-theory dual to the excep-
enhanced chiral algebra of the heterotic RCFT.

® Realizes part of an old dream of Friedan & Shenker.

e [ conjecture: II/attractor varieties is dual to Heterotic/RCFT
in general!
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ARITHMETIC lf MIRROR MAPS L—-

frcnm!:\t o g T > (‘3 E_t,:'

1 Tk & A
mu.!h?lm- on Kn —_— KD" ¢ fossbiedd

K3 MIRROR NRP = F-THEORY MAP
HET/T* &—» F/ k3
(T; U: ﬁ )  — /V1= Lf}fg— I-E:r_’z‘}x -—fi{E,J

Exfﬂt: k-p. EE— kE/ Cl‘asr{-{n'nfa'P 'C-D
WE CHECKED IT FoRr SEVERAL FAMILIES

ARITHMETIC ATTRACTOR CONTECTURE:

Svppese : ¥ — 20)e "‘E
(d‘) J{I, o K‘r w Lield

_ -,
(v.) XE,[-'” is  defined over Kg

Er = -th-t Gﬂ—!ﬂf&' extengion ﬂ; “::f

— S




Application to K3 mirror maps

Algebraic coordinates on B'82

. ZY? =4X3 — fo(s,0)X 2% — fra(s,1)2Z°
fa(s,t) =a_4s® + -+ + ayqt®
fl![ﬁp t-:l =ﬂ'_.3512 + -4 H_E_Etl?

Bl8.2 _ [{{ﬁ;,ﬁ]} - D|/GL(2,C)

Flat coordinates on B152

Gri(2, 1128 @ R) = R +iCy = {y = (T, U, A)}

T: Kahler, U: complex, A: Wilson

Definition: F-map, or K3 mirror map: ®p : y — (&, ﬁj. It
is a vector-valued modular form for O(18,2; Z).

Example: [Morrison & Vafa, Cardoso-Curio-Lust,Lerche & Stieberger]:
v =2 +aztz + (2" + 55 + 27)
J(T)J(U) = —17232{3)3

(J(T) - 1728)(J(U) — 1728) = +1?232(§}“
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Arithmetic Mirror Maps

Shioda-Inose + Complex multiplication motivates the

Conjecture: the K3 mirror map should behave anal-
ogously to the elliptic functions in the theory of complex
multiplication: y* € Kp = oy, 5; € K

We have checked this for many families of K5's

1. Lian & Yau commensurability: l-parameter families of

K 3-surfaces:
P(j,z)=0

z = z(g) is the mirror map. Therefore algebraic over K.
2. Morrison-Vafa family: follows from CM theory.

3. Friedman-Morgan-Witten: T — o0 and stable degenera-
tions:

ellipticfunctions
_}

{(zi,vi) }iza,...8
U (@A)

(%,U)



Attractors for Calabi-Yau 3-folds

Arithmetic Attractor Conjecture: Suppose v € A de-
termines an attractor point z.() € M. Then the special
coordinates X', Fy are valued in a number field K, and X,
is an arithmetic variety over some finite Galois extension of
K,

Impnrtan#distincti{}n: Attractors of rank 1 & rank 2

Suppose )
Im(2C,9) = 5

Im(2C,Q) = 42

(31, 4) = Im(C1C) [zi{nﬁ}} = 26K Im(C,Cs)

If a complex structure satisfies the attractor equation for two
different nonzero vectors vy, € Ha(X; Z). Then either

a.) {(1.92) #0 “Attractor of rank 2" =

1 . .
5Tm (0, Ca) (C'l“rz - Cﬂ1>
HY@HY =Ty ®C Txc HX;Z)

=

b.) i =riy forreQ “Attractor of rank 17
Mwch

Weak Attractor Conjecture: Only asserts this for rank 2: T97¢ %

;kcf},-
* Thasky 4o ?Dzﬂl'ﬂlnt EN- E.ﬂapjtuflihj 5.
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Nontrivial Exact CY Attractors

¢,410,F
K,M i:tr? +:{:g +:L'§ +.'1:: + :rg — Bz 2oy — 21;5:1:‘11:{:; = }/z:

»
Co 2 "2"“1. ese

/| \

P @ (1, ¢)lp=0 = @’un(¢)  j even
=o'ul(¢)  jodd

where o = e2™/8 1 = —1/4.

Define

7() = iV2u,)(¢)/u.(9)
Attractor points: 7 = a + bi € Q[i] !
All these attractor points are of rank 2,
By CM theory, ¢? is in a class field of Kp.

This confirms the weak attractor conjecture on the di-
visor Gﬂ.




Multiple minima & attractive hair

The charges v leading to attractor points on Cy also have

solutions near the LCSL (mirror to the large radius limit in
IT1A).

=d = 4, N' = 2 black holes have extra attractive hair: the
label of the basin of attraction of the attractor dynamical
system

N.B. The extremal mass (=horizon area =entropy) is differ-
ent at the two points: The entropy depends on attractive
hair.




Kronecker’s Jugendiraum ...

Kronecker considered the problem of finding all abelian ex-
tensions of the number field Q).

Answer (the Kronecker-Weber theorem):

There is a “magical” transcendental function, & — f(#) =
exp|2mifl] whose values f(#) on torsion points in the circle
# € Q generate all abelian extensions of @.

O e

Formally: all abelian extensions of K = () are subfields of
some cyclotomic extension Q[e?™/™],

Kronecker’s Jugendtraum: An analogous situation holds with
K =1Q replaced by imaginary quadratic fields K = Kp, and
f(x) replaced by the elliptic functions: j(7), p(2,7), '(z,7)
evaluated on torsion points of elliptic curves E, of CM type.

Kronecker’s Jugendtraum is true: This is the theory of com-
plex multiplication, mentioned above.

Lo



. and Hilbert’s 12!" problem

In his famous address to the ICM in 1900 Hilbert posed his
12" problem in which he encouraged mathematicians to

“... succeed in finding and discussing those functions which
play the part for any algebraic number field corresponding to
that of the exponential function in the field of rational num-
bers and of the elliptic modular functions in the imaginary
quadratic number field.”

This has been partially solved by the Shimura-Taniyama the-
ory of abelian varieties of CM type.

In view of the above remarks on complex multiplication, K3
mirror symmetry, and the attractor points, one cannot help
speculating that the transcendental functions provided by
the mirror map are just the functions which Hilbert was

seeking,.

The attractor conjecture proposes the generalization:

elliptic curve — Calabi — Yau d — fold
T € Hy — t*e M
discriminant D — v € HY(X; Z)
ar’ +br+¢=0 — 2ImCS} = 4
QVD] - K()
T = 3(7) — The mirror map



Conclusions

e Black holes/strings in compactifications with 16,32 super-
charges are connected with lots of interesting arithmetical
phenomenon, thanks to the attractor mechanism.

® There is an action of Gal(€}/Q)) on attractor points, whose
physical role is unclear...

e We believe these arithmetical phenomena carry over to
theories with 8 supercharges, but we have only verified that
in a few examples.

e The known examples suggest that the transcendental mir-
ror map functions have arithmetical properties generalizing
those of the j-function (=a generalization of Kronecker's
Jugendtraum).



