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INTRODUCTION

M -theory — existence of a sequence of massive BPS states
in ITA theory electrically charged with respect to RR 1-form
which are interpreted as KK particles in 11D SUGRA com-
pactified on S§' (Witten, Townsend).

Later this particles were identified with "D0 Branes”. In
certain energy regime dynamics of N such particles — SUSY
QM of N x N matrices; dimensional reduction of I = 10
SYM theory.

The existence of these M-theory KK tower of states is equiv-
alent to statement that QM has exactly 1 bound state for
each V. Existance of bound state was proven for N = 2
(Sethi-Stern).

The part of the proof of the existence of the bound state
is the computation of the index. For W = 2 case this index
has been computed (Yi, Sethi-Stern - 97). For N = 3 re-
cently numerical computation has been performed (Krauth,
Nicolai, Staudacher - March 98) and for general V is done
analytically (MNS - March 98).

Here is presented the derivation for all &V in D) = 10, com-
pute the integral also for reductions of ) = 4 and D) = 6
N = 1 5YM theories and will demonstrate the validity of
the conjecture by Green and Gutperle.



Witten Index

Bound states in SUSY QM are detected by Witten’s Index:

limg 0o Tra(—1)"e™?" = Np — N

This Tr is F-independent in theories with a discrete spectrum
but if there is a continuous spectrum one can have non-
trivial behavior (densities of Fermionic and Bosonic degrees
of freedom may differ). SUSY allows to relate the expression
above to the simpler one:

]imﬁ.mTI‘?{{—l}Fﬂ-ﬁH

In the case of N D0 branes we can rewrite this as:

1

S - dim. reduced action of N' = 1 D = 10 SYM with the
gauge group G = SU(N)/Zy.



We wish to compute more general integral:
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for D=3+41,54+1,941 with
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and I'* are the Clifford matrices for Spin(D).

The difference between Witten's Index and zero § limit is
called boundary term and is non-zero (we will see that inte-
gral is not integer); it should be analyzed separately:

limg— 0o Tra(—1) e PH — limg_,oTry(—1)F e PH =
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We start with change of variables:

¢p=Xp-1+iXp
B; = Xs;_1+1X3;
i=1,...,D/2-1

Sometimes we use

X ={X,a=1,...,D—2}

We also add bosonic auxillary field H.

Same for fermions:

v — I.I'rn = {ﬁjj?tﬁ;}!f‘.‘ﬂ

The origin of these fields for example in D = 10 is follow-
ing: original fermions were 16 of SO(1,9). We think of the
fermions (we "break” in 10d language SO(1,9) ) first as of
a representation of SO(1,1) x SO(8) and then as that of
S0(1,1) x SO(2) x SO(6) or SO(1,1) x SO(T7).

16 — 8, + 8., or using triality 8. —+ 8,. 8 — 7+ 1 for
SO(T), thus one gets 8 (real) 4/’s, 7 - ¥'sand 1 - #.

When 10d theory is considered on flat space (T of zero size
in our case - dimensional reduction) this change of variables
doesn’t break original Lorentz group.



Action:
1

=ﬁ

D-2
gTrH? - % Z Tr|[Xa, ¢]|* + fermions
a=]

S Tr|p, ¢)* — iTrE (X)H+

Here £ are “equations”:
D=4: £ = (B, B]]
D=6: &= ([By,Bl]+(Ba By By, Ba), (B}, BY))

~ 1 .
D=10: &= ([Bi,Bj.—] + seiulBl Bl i <4, Z[Bnﬂﬂ)

In DD = 6 case £ can be also written as a three-vector

1
Ea= [}fﬂ,x.1]+ EEAEE[XE.XC], A=1,223

and for D = 10 using octonions structure constants as a
seven-vector:

1
Ea = [Xa,Xs| + ECABG[XBrXG]



BRST symmetry (one of the original SUSY generators):
Qxﬂ =T, Q‘I'u = [";ﬁ": Xu]

e=H Qf =4
Qd=n Qu=|[p.¢d Qp=0

Action: S = Q(R),

1 - -
R="Tr— —iIry- &€

-2
. 1 -
oTrx - H + - S T, (X, ]
a=1
1 1 D=2
_ 2 S+ - i _', = -l- =
§= 1 ﬁgTr[qfr,:E] e Y " Tr[Xa,8)[Xa, §)—iTrH-E+gTeH-H

a=1

o€ 1 1
—iTr [ ¥+ Wy + — W[ Xa, 7] — gTYF - [y X) + ——Trnln,



Ghost charges:

¢ +2
o, +1

H, X, 0
X1 1 -1
& -2

Now we note that all fields are paired with fermions except
for ¢. We conclude that above action gives a canonical mea-
sure for all fields except ¢. Thus we need to fix the measure
for ¢ on Lie Algebra of G.

(= is a simple Lie group and we have unique Killing form up
to a constant multiple. This form determines measure on
Group and on Algebra, thus ratio is independent of above
constant mutiple and we conclude that measure normalized
against the Volume of Group is canonical:

D¢
Vol( &)

However, this measure depends whether the group has a cen-
ter or not. Our group is G = SU(N)/Z n because all fields
are in adjoint representation. When we reduce the computa-
tion to an integral over the Lie algebra of the maximal torus
T C SU(N) the measure D¢ will be normalized in such a
way that the measure on T obtained by the exponential map



integrates to one. Therefore there is an extra factor #£2 in
front of the integral since in passing to the measure on t we
get as a factor a volume of the generic adjoint orbit:

Vol(G/T)  #Z
Vol(G/Z) — Vol(T)

Gaussian integral over auxillary field H leads to the extra

factor B
(5)

g

which people usualy forget to put when writing integral in
on-shell variables.



Now we have the integral where we can apply the general
method of "Integrating Over Higgs Branch” (G. Moore, N.
Nekrasov, S. Sh., hep-th/9712241).

In order to apply this method we need 1. global symmetries
of the problem and 2. deformed BRST transformation (our
integral is ill-defined because it is over non-compact space
and integrad looks to be order 1 at infinity). We have for
symmetries:

4 : K= Spin(2),£€1;
6 : K = Spin(4), £ € 31;
10 : K = Spin(6), £ € (6@6), @1

or for D = 10 we can also use K = Spin(7), Een

We will deform @ using generic element € in the Cartan
subalgebra of global group K. Let

(% )

D=4 e=FE-R

B _(E,-R 0
D=6 E—( 0 Ele)

(E1+ E2)-R
D=10 e= {Eg'l"E;ﬂ*R

for generic real E;.

Then:

{El +E3} R)



Now we write the deformed nilpotent charges:

chu — q"ru Q{‘Iru L [‘ﬁ': -x-:l] + XbTﬂ{'E}E
QX=H QH=[$,%]+Tule) X
Qc'ﬁ =T Qtﬂ = ['i:i ';E]
Qcﬁb =0
Here T), denotes action of Lie(K) on X's and T, action of

Lie(K') on the equations. Explicitly for the case of D = 10
we have:

X To(€) = (iBy(By — B) +iEy (B — BY) +iEs(Bs — Bl)+
iE4(By — Bl))a
Ta(e)x = ((Er + E2)(x12 — Xa4) + (E2 + E3)(x23 — X14)
+(E1 + E3)(x13 — Xx24))



Now we can write the deformed action simply by replac-
ing ) by ). in our action:

Se=Q.R
for the old R.
We get: 5=

D=2
T-rhr, o)’ +— Z Tx[Xa, ¢|(Xa, §]—iTrH -£+gTcH -H-

-2

=1

m,Trn[n,@Hgﬁx T(X+ 1z T{f}“"w[xmxh]

We want to treat coupling constants g,§,§ separately al-
though so far they were equal. Note that because each term

is -exact separately we can take limits in any order. Later
we will take the limit

g — o0
Added piece is equal

- 1 abr T
Se —5p = QTI'{]E Ts[E}x} + ET-U{E} bﬁfﬁ’[xmxﬁ]



and has ghost charge —2 (e is assigned charge 0 temporarily).
This means integral is not changed and is convergent if the
original one was.

When we look on T, we see that there is always one zero
mode for the mass matrix of ¥ and that the rest is non-
vanishing for generic €. So we add a new (), exact term:

5QTr(x0d) = —sTrxon + sTrHyo

with large s. Its ghost charge is —2 and again doesn’t change
the integral. Now together with gH? this term gives non-
zero masses to all fermions of negative ghost charge.

We can integrate out all negative ghost charge fermions (tak-
ing limit s — 0o, g — oo} and produce a very simple action
but without "kinetic term” for ¥,. We add another term
with positive ghost charge:

1 Df2-1
ot - pig. | —
Q. S B!l - Bl | =

i=1

Df2-1
t Y Teww! 4 tTeB; (ad{fﬁ}ﬁf +Ty(e)]) B]

i=1

The “standard” ghost charge for ¢ is 2, then the insertion of
coupling ¢ must be compensated by the insertion of coupling
8.



We conclude that answer can depend only on combination st.
But, one can repeat Witten’s derivation ("2d Gauge theories
revisited”, 92) by first s — oo with g much smaller than s.
Result is the effective action:

S{:Ij’ ~ %{Quﬁwﬂ[;{: E]}

We will see that for large 5,¢ the dependence on either vari-
able disappears thus the value we get is the SAME as the
original integral.

For large s, t, g we can proceed by semiclassical (saddle point)
approximation.



Usualy one takes small g limit and gets diagonal ma-
tricies. At the same time corresponding integral is ill-defined
because we have zero from fermionic zero mode and infin-
ity from bosonic zero mode. Here, we take large coupling
constant limits and this makes an action trivial up to simple
contribution from quadratic terms - gaussian integrals.

Large s limit sets yg, 7, Hp and ¢ to zero. After this, only
nonzero terms left in the action in large g, 1 limit will come
from the terms proportional to g and from the terms pro-
portional to £, but these fields come without zero modes.

First we take the gaussian integral over BRST quartet -
(n,¢, X, H). Result is (factors of g cancel between H and
y integral because we have same amount of these fields):

Det (T;(€) + ad(¢))

with determinant in the representation of the space of equa-
tions.

Second gaussian integral is over pair B;, ¥;. Result is (again,
without any factors of £) :

1
Det (T,(e) + ad(d))

in the space of complex matrices B.

Now we rewrite the integral over ¢ from Lie(G) to t =
Lie(T). Once we include corresponding Vandermonde fac-
tor the result is:



Ipe1o(N) = (By + B2) (B2 + Es)(Bs + E )\
p=10At EyEsEaEy

N P(di;)
N! j;ﬂég Q(i;5)
P(x) = z(z + Ey + E2)(z + Ez + Ez)(z + Ey + Ej)

4
Q(z) = || (z + Ea +10)

a=1

ZE{.=U

CE

For D =6 and ) = 4 we get:

E,+ BN\ N _$i;(i; + Er + Ey)
IDﬂ[NJ:( llE:lEEE) j: {i:H 5 t;h;-l-:l‘:?' +iﬂ]

Ip=i f qt: b
4 NIE” ) L (855 + Br +10)




One can get D = 6 case from D) = 10 by formal limit £ —
oo and [ = 4 from D = 6 by formal limit s — oo.

Let me remind the origin of the factor % The denominator
is the order of the Weyl group of SU(N) which enters in
passing to the integral over the conjugacy classes of ¢. We
then rewrite this integral as an integral over t, divided by
|W(G)| = N!. The numerator N is the order of the center
of Z » which appears in comparing the volumes of SU(N)
and . The measure D¢ is defined as follows. The maximal
Cartan subalgebra of SU(N) can be identified with R™ ™!
by means of the imbedding:

(d1,.--,dn—1) = diag (¢1,...,dn-1,—F1 — ... — 1)

into the space of traceless hermitian matrices. The measure
D¢ is simply the normalized Euclidean measure on RV

If we think about these integrals as of contour integrals then
the fear that they are ill-defined because the measure ap-
proaches 1 at oo dissapears. The fact that they should
be treated as a contour integrals follows from the integra-
tion which led to the them - for example we need the shift
E — E +i0 in order to make sense of gaussian integrals.



N=2

For D = 10 and NV = 2 we have:
1 P'(0) f d¢P{?¢}P{—E¢J
27 Q(0) Q(2¢0)Q(—2¢)
P(z) = z(z + E1 + Ex)(z + E3 + E3)(z + E, + E3)

Q) =[] _ e+ Ea+10)

We close the contour in upper half-pane (prescription). We
have four poles at

¢=%Eﬂ:+m

With residue at each of them:
1 R(-2E,)
12 E,R'(E.)

H{I_ Eq)

=]

Resyp,+io =

Thus we conclude:
4
1 R(—2z)
1 = — dr—1| =5/4
2Bty = 1 (f Zrey )=5/

For other values of d computation is same and we get:

112 (Eﬂﬁ 1+{ I]WE)

5/4,1/4,1/4, for D =10,6,4 respectively




SU(N) for D=4

First we simplify the integrand by Bose-Cauchy iden-
tity:

1 f?f’:j o
Ef‘rg{{ﬁu+E1+1ﬂ} E{ H H::’J — Dayi +El+1D

Only the cycles of maximal length contribute to the residue
formula { there are (N — 1)! of those), since otherwise we
get less then N — 1 residues. We pick up a residue for all ¢
except one, j when

bty = Gi + By +1i0, for all i#j.

Let us assume that j = IV and that o is a long cycle a(i) =
i + 1 (both can be achieved with the help of Weyl group);
we get the pole at

b = %(zi ~ N - 1)E,

and claim is that residue is



D=10, SU(N)

General D = 6 case can be treated in a similar way as ) = 4
but is technicaly more complicated. We will turn directly to
D = 10 case where we will take a little bit different route.
The strategy is to reduce the number of matrices by enfore-
ing deformed octonionic instanton equations. As opposed
to section 2 where we were basically taking strong coupling
limits here we are taking mixed weak and strong coupling
limits, imposing the weak coupling limit to enforce some of
the equations.

Introduce the formal variable m. Deform the "equation” to

1
Eij = ®ij — gfijk!ﬂ:
where

®;; = [Bi, Bj] — meijra By 1<i,j<4

and
’I'i‘fi‘jg{f = Z TI"-T—',';,-*T-'L-

1<i,7=4 1<i,5=4

bodi | =i

Thus, imposing these equations we are led to the equations
describing vacua of N = 4 SYM broken down to N = 1



(Vafa, Witten, 94) in 4d language, together with B generat-
ing the gauge transformations in the complexified unbroken
group:

[B;, B;] = meijraBi,

[B4, Br] =0

From first equation we coclude that B; forms the N-dimensional
representation of SU(2) (reducible) Now we want to split the
couplings to g’ and g"” for the equations £;; and for equation
ELJB:':BI | respectively (we can do this without spoiling
(J-symmetry). Take the limit g' — 0. This limit enforces
above equations. We rewrite:

1o 1< 1
EZ'IH[L@]I? = 7 > THBi, ¢l + T [Ba, 41
a=1

i=1

Now we take the limit §' — 0 and enforce the equations:

[B;,o|=0,1=1,2,3

Now we use the argument that extra U(1)’s kill the contri-
butions to the partition function. Thus we need to count the
vacua where the adjoint group is broken down to SU(d)/Z4,
N = ad. This also means that all irreducible components
of SU(2) in B; are the same, so we have d copies of a-
dimensional representation of SU(2):

B::: = ”Ln”uxu @ I{IK{I



and o = 1,2, 3, L, being SU(2) generators in the a-dimensional
irreducible representation of SU(2). Now, because By and
¢ commute with B; we get for By, ¢:

[Bﬂijﬁr = laxa ® Eﬂd}dxds lr.fl"JN;.:r-.r = faxa ® {‘ﬂdxd

But, in the limit §' — 0 we can integrate out (”ignore”)
B, = 1,2, 3 and stay with By, . We get back to D =4
integral but for gauge group SU(d)/Z4. Moreover, due to
supersymmetry, not only the degrees of freedom but also the
measure is appropriate to interpret the integral as Ip—4(d).
Using our result for D = 4 we prove that:

1
Ip=10(N) = ZF

d| N



Correlation functions and KP

Here we present the results of the computations of the
correlation functions of Tr¢'. In all these computations we
keep € as a regulator. Using the tricks described above the
generating function of such correlators reduces to the integral
over the eigenvalues of ¢ with the insertion of exp — 3 g. 47"
for example in [ = 4 case we get:

do EEH gn Tr"
Vol(G) Det (ad(g) + €)

One can show that the grand partition function has the fol-
lowing properties:

Zuva= Ze"”{e_”} = Det(1 + e*K)
N

where K is the integral operator:

fe) = [ar L0

As a function of the chemical potential p = #; and the pa-
rameters £, which are related to g, via:

Viz) =i (Wix +ie) — W(z — ie))

for W(z) = > taz™ it is equal to the 7-function of KP
hierarchy. In particular

u = 28logZ



obeys:

Fu 8 u du  Fu
E-B-T%-+E;|:-4at—3+ﬁuat—l+at—%] = 0.

For the D = 10 case the grand partition function can be
represented as:

==
Ly vio = ]___[ Det(1 + e K)
=1

which suggests certain speculations about GKM and Borcherds
products.



