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Introduction

Matrix theory [1] proposes that M-theory is described by the maximally
supersymmetric quantum mechanics of U{N) matrices in the large N
limit. Moreover, a prescription for computations is given [1, 2, 3| n
which it has been argued [4] that the finite N corresponds to the so-
called discrete light cone frame quantisation of the M-theory (for a review
see [5]). One test of these conjectures (see, eg, [6, 7]) is te compare
low energy scattering of supergravitons in the Matrix theory with the
corresponding results in eleven-dimensional supergravity (a subtle limit,
see |3, 9]). In particular, the two theories agree for the scattering of
two well-separated supergravitons with small transverse velocities [10,
1, 11]. However, supergravity seems to predict different behaviour to
that of the matrix model for processes such as the scattering of three
supergravitons [12).

It has been suggested |13, 14] that this discrepancy may vanish on taking
the large N limit. However, only through the recent work of Malda-
cena [15) has it been possible to deal with this limit, In [13, 16] brane
configurations were studied in the limit where the feld theory on the
brane decouples from the bulk, and it was observed that when the oum-
ber of branes N, becomes large, the curvature of spacetime around the
brane becomes small (for earlier discussions in the conformal case, see [17]
and references theein)., However, for small curvatures branes are well de-
seribed by extremal black-hole type solutions of the associated supergeav-
ity. Moreover, as discussed in [18] , this limit corresponds to the infinite
boost limit in the DLCQ Matrix theory preseription mentioned above,



Thus we are naturally led to the following conjecture.

Conjecture: In the large N limit of DLOQ Matrix theory, super-
gravitoms are described by DO-brane solutions of [IA supergravity.

This leads immediately to the trivial resolution of the problem in Dine

and Rajaraman [12].

Resolution: Since DO-branes are BPS states which can be iden-
tified with Kaluza-Klein supergraviton modes of 11d supergrav.
ity [1%, 20], their leading order seattering amplitudes will be pro-
portional to those of point particles in 114 supergravity, Therefore,
leading order supergraviton amplitudes calculated using the large
N limit of DLOGQ Matrix theory are those of 11d supergravity,

In the rest of this poster we describe an explicit calculation of the three
supergraviton amplitude as “extremal black hole” solutions, since the
details may be of interest,



Summary of the calculation

We calculate the effective action for large separation and low transverse
velocity scattering of these particles (neglecting spin effects as wsual), fol-
lowing a “post-Newtonian™ caleulation similar to those going back to [21]
- with the slight twist that we work in the lightcone frame.

The essence of the calculation is as follows.

I, Lift the static BPS solution of [IA supergravity with m. clusters
of DO-branes to eleven dimensional supergravity compactified on a
spacelike circle. Infinitely boost along the spacelike circle 1o obtain
the DLCQ of supergravity.

2. In the leading order, where spin effects are neglected, the DO-brane
action is that of a massless point particle with constant p_.

3. Promote the contres in the static solution to dynamical variables
and, by solving Einstein's equations, determine corrections te the
metric order-by-order in time (27 ) derivatives and separation of the
brames,

4. Substitute the solution found back into the action to obtain the
effective action for the centres,

In the following V' will stand for a typical (small) transverse speed and L
a typical [large) transverse separation.



1. Uplifting static D0-branes to 11D
The static BPS solution of 1A supergravity that describes n, clusters of
D0-branes at positions g, ([22], and references therein) is,

di = Flzhdetde” = — fuly) "V + foly)' Pdy-dy |
o) = g i, Az = 0 -
_ ne n.i:l . ] - _F'_ . |
Jolw) +Ef ™ TN "

The statement that these are D0-branes means that the *charges” in
this selution, g, are determined in terms of string parameters [20] by
wif gL ~ N1 g, where N; is the number of D0-branes in the ' cluster.
As described clearly in [18, 23], this can be lifted to eleven dimensions
{on R,) and infinitely boosted to obtain the theory compactified on a null
circle with radius f

ds* = drtde” + ff{yjd’: dr™ + dy-dy ,
oy = flyy-1= E m“l— (2)

im1
2. The source action
The appropriate point-particle action has been discussed in [7]. The mo-
mentum of each cluster in the minus direction p', is cvclic pt = @,
so that the physics is contained in the “Houthian™ constructed from the
usual action for & massive particle, After the massless limit is taken, the
action for particle i with transverse velocity o = dy} /dz™, reads

1
510 = q.j’d:*— 92— + gt~
L"r'gﬂ-- + @eat?)? — 9o (45 + 29500 + gasty aﬁ] - (3




3. Einstein’s equations
In summary, then, the system of interest is described by
5=k [dzy=gRig) + S, (4)
1=l
where the source action S° is given in Eq. (3). Now let the centres in
the static solution Eq. (2} become dynamical variables, and determine
corrections to the metric so that we have a solution to Einstein’s equations
aun =Tun + 2tk Ihw = L ohiv (3
P
order-by-order in an expansion in #¥ derivatives. The zeroth order g 35
given by Eq. (2) and we will say that ¢'* *has d; = n" in this expansion.
This is a nontrivial solution since it corresponds to a nontrivial “tangent
deformation” in the moduli space of static solutions. The corrections gi™
vamish on the spatial infinity.
s Zeroth opdep. This is just the static solution. Eipstein’s equations imply
2t 2R N
i B rm——— T — r
=W "R 0)
# First opder. The first order solution is easily understood in terms of
transverse boosts, A “Galilean™ transversal boost with velocity v in light-
cone fime, as is appropriate for our discussion, gives
™t = gt
= r+2qv-y=-vizt,
¥ = y—1v. (7)
Taking =* as the coordinates of the “static frame™, we obtain the metric
for a single center moving transversally with constant velocity by using
the boost as a coordinate transformation (v’ = |y — =te|),

da? = (1 = 20 FB(P))drtdz™ + [P{r')dzds™ + o' [P (") drtdrt
+{ B + AFE(r wara )y dy® + 455 (P vadr=dy® = 4f5 (P ) v detdy* (8)
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This is extended to n, centers moving independently to give the ansatz

e {' ‘Eiv.-’fé"{r-'}) d*dz™ + 3 i ridz-dz

+ i vl i detdet + (E.d. +4 i FaNrs ]t:-:‘ur) dy*dy®

sl =1
Fip Ty -
H T N rtdemdy* =43 [ r)eleldstdy®,  (9)
i= iml
where r; = |y = y(z*)|. It is now straightforward to check that this
ansatz is indesd & solution of the 11d system to first order in V
.
gt =E_2&'Tr.,p, with all other 4" = 0. {10)
» Leading lasge-distance behaviour of the d, expansion The expression for
B, muzl be iteratively determined in the de-expansion. Clearly this only
pecEves corrections at even orders of dy. It is well koown that the d; = 2
contribution vanishes (see, e.g., [24, 23]) — this is “fatness of the moduli

space”. To see this in the present calculation, we use the first-order cor-
rections Eq. (10), to write down the equation of motion for the centres
{the geodesic equation) to second order

it = —3afl + 00V, (1)
But from the Einstein equations to second order (still only using Eq. (10)),
we find R .

- Fﬂuﬂ =T =0, (12)
and thus ®; ~ V) as stated.
Further, a detailed caleulation® [26] shows that the ansatz Eq. (9) is
correct to second arder, except for g2 which is given by

T
R e 8 L/ T (1)
TR el ‘

"To pegulnrise the paint particle we replase ry — [#f 4 5)9F,

fi



where,
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The impertant result in the above is the observation that the solution at
second order differs from the boosted metric Eq. (9) by O 177).

At higher order the leading behaviour 15 equally simple. Let us separate
out the “boosted™ corrections § which are contained in Eq. (9); ie,

airh = Fus + haew s (13)
Then .
W =0 {F) . (16)

T see this one just calculates the leading terms in the Einstein equations
at n*® order in the expansion.

We now show that the leading term in the efective action is determined
by “independently boosted™ metric §ayn. Expanding the action around
dagn, the above result implics that

65 _ihl 4 higher order , (17)
]

Stal = Slal + 3

The second term can be further expanded around tle static solution Fyp .
given by Eq. (2), and only the first term in this expansion is required for
the leading order result,

&5 85 .
7 h) = =—=| [k, h]+ higher order .

Mow, the fact that the boosted single conter metric is a solution of the
Finstein equations for a constant transverse velocity source implies that,
up to derivatives of v,
)
g

M =0,

-~
-1



where §; denotes the boosted single center selution (for the ith center)
— ie, the limit of fuw as p; — 0, j # & Thus we must have, up to
derivatives of v,

&5 M

E’E’ II-'E'-‘] . ':l{ [AL ]1
meaning that the RHS is at least quadratic in the p; since it vanishes
il all but one of them is sent to zero. The notation [-] means “true for
arbiteary insertions into the varational slot™. By inserting k il is seen
that this term is higher order, and can be ignored. Thus we only have to
worry about the contribution of ®, 4. ... terms.
Using the previous results, we have so far shown that, in the second term
af Eq. (17],

&
5—5L= Ol (18)
g 3

Thus, we only need the terms with derivatives on v in the LHS of Eq, (18).
To this order, the £ need only be contracted with 81" which is zero. The
© terms only appear, at this order, in the +— and ab components of
the Einstein tensor. But, as summarized above, h1*+~ and A** vanish,
Thus, finally, the result is proved — all terms but the first in Eq. (17) are
higher order in 1/ L.



4. Computing the action

At this point we simply compute the leading contribution up o C{V").
The result for the leading O{V*) contribution to two particle scattering
is [we always drop “polarisation” terms with numerators including v - y)

5.14]=_1_-5 Ny |'l:'|_—".'-':;||l “9]
al 2 ROMY |y, — |
This is precisely the result reported in [11]. In the present caleulation it
results from a cancellation between Einstein and souree coniributions.
The result for the leading Cf V*) contribution to three particle scattering,
in the limit considered by Dine and Rajaraman (|| == |y, = wsl) 1= (for
brevity we only write the *Dhne-Rajaraman™ term)

s o 52 Ny NG NG oy — o4 |wg — wafey — w5
RS lwal |y, — wal”

It is interesting to note that these is clearly no contribution from the

. {20)

source action of this form. We see that the term required for agreement
with the perturbative supergravity calculation does appear.

After completion of this work, & pumbser of papers appeared which dis-
cuss the [ne-Rajaraman problem EET, 28, 24, 31]] from the finite & side,
In [27] it was suggested that the supersymmetry cancellations proposed
i the Matrix theory caleulation of [13] would not occur, but this has
been disputed in [28] and [29]. The technical caleulation in this paper
has significant overlap with [30], where, further, the Matrix theory result
is recaloulated and shown to be in agreement at finite N. The present
paper supports the supergravity side of their caleulation,
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