Quantum Gravity in the Bad Old Days

\[Z = \int d[g_{\mu\nu}] \exp i \int \mathcal{S} g R \]

Divergences

Topology Change

Information Loss
THE HOLOGRAPHIC PRINCIPLE

\[S_{\text{max}} = \frac{\text{Area}}{4G\hbar} \leq \text{Volume} \]

NUMBER OF D.O.F. \approx S_{\text{max}}
One bit per unit transverse area in L.C.F.
Matrix Theory (SYM) = DLCQ of M-T

Holography must be a property of SYM.

\begin{align*}
\text{3-Torus} & \\
\text{M-theory Torus} & \\
\text{SYM Torus} & \\
S &= N^2 \Sigma^3 T^3 \\
\langle X^2 \rangle &= \frac{L^3}{L} N \Sigma^2 T^2 = G_8^{\text{th}} N \Sigma^2 T^2 \\
\text{Area} = \langle X^6 \rangle &= G_8 N^3 \Sigma^6 T^6 \\
G_8 \frac{S}{A} &= \frac{1}{T^3 \Sigma^3 N}
\end{align*}
\[\frac{G_0 S}{A} = \frac{1}{T^3 \Sigma^3 N} \]

Recall \(\Sigma_{\text{eff}} \sim N^{1/3} \Sigma \)

\[T_{\text{crit}} = \frac{1}{\Sigma N^{1/3}} \]

Phase transition at \(\frac{G_0 S}{A} \approx 1 \)

\begin{align*}
N &> S \\
N &\sim S & T = T_{\text{crit}} \\
N &< S
\end{align*}
The case of $\text{AdS}_5 \times S_5$

A spatial section of AdS

$$dS^2 = R^2 \left[\frac{4 d\Omega^2}{(1-r^2)^2} - \frac{(1+r^2)^2}{(1-r^2)^2} dt^2 \right]$$
Supergravity/IIb string theory in $AdS_5 \times S_5$
is equivalent to 3+1 dim super Yang Mills
on the boundary $(S^3 \times R) \times S_5$

\[(g_{\text{YM}}^2 N)^{1/4} \ell_5 = R \text{ (radius of } AdS_5 \times S_5) \]

In some sense holographic but
in what sense is the number of
D.O.F. = 70 \text{ per Planck area?}
Number of S.Y.M Degrees of Freedom

is \(\infty \) for 2 reasons

1. Continuum QFT
2. \(N \to \infty \)

That's OK because boundary sphere has \(\infty \) area.

Can we regulate these \(\infty \)'s?

The U.V., I.R. connection

\(E.W. \)

Diagram:

- **SYM (radius = 1)**
 - Regulator length = \(\delta \)
- **SUGRA/String**
 - \(R = 1 - \delta \)
An Example of UV, IR

\[\text{Area} = \Delta t \int \sqrt{g_{00} g_{rr}} \, dr \]

\[\text{Energy} = \int \sqrt{g_{00} g_{rr}} \, dr = \int \frac{1 + r^2}{(1 - r^2)^2} \, dr \times R^{d-1} \]

This is linearly divergent at \(r = 1 \)
It reflects the \(\infty \) U.V. energy of a point charge.

Integrating to \(r = 1 - \delta \) gives

\[\text{Energy} \sim \frac{1}{\delta} \]

As would be expected from U.V. cutoff.
Now Count

\[N_{DOR} = \frac{N^2}{g^3} \]

SYM SIDE

Area of AdS

\[\text{Boundary} = \frac{R^3}{g^3} \]

Gravity Side

\[N_{DOR} = \frac{N^2}{R^3} \text{ Area} \]

Now use:

\[g_{ym}^2 N = R^4 \lambda_5^4 \]

\[g_{ym}^2 = g_{st} \]

\[\frac{g_{st} \lambda_5}{R^5} = \frac{1}{G_5} \]

\[N_{DOR} = \frac{\text{Area}}{G_5} \]
THE RADIAL DIRECTION IS SCALE SIZE

UV → IR → UV → IR
Holography + Cosmology

\[ds^2 = a(t)^2 dx^i dx^i \]

\[a = t^p \]

\[t = 0 \]

\[S_H \leq A_H \]

Today

\[S_H \sim 10^{50} - 10^{100} \]

\[A_H \sim 10^{120} \]

Tomorrow

\[X_H \sim t^{1-p} \]

\[S_H \sim X_H^d = t^{d-dp} \]

\[A_H \sim (aX_H)^{d-1} \sim t^{d-1} \]

\[d-1 \geq d-dp \]

or

\[p \geq \frac{1}{d} \]

Bound on expansion rate
EoS of state:

\[\text{Pressure} = \gamma (\text{energy density}) \]

\[a(t) \sim t^{2 \over 3(1+\gamma)} = t^p \]

Bound \(\gamma \leq 1 \)

Standard Causal Bound

Yesterday:

Extrapolating backward one finds

\[\frac{S_H}{A_H} \approx 10^{-28} \left(\frac{t_d}{t} \right)^{1/2} \]

\(t_d = \text{decoupling time} \)

At Planck time

\[\frac{S_H}{A_H} \sim 1 \]