From anti-de Sitter background to superconformal world sheet symmetry

general bosonic: hep-th/9801206 ♥

black holes and superconformal mechanics: ✓ hep-th/9804177

supersymmetric theory: ongoing

1

In short

- Solution of the supergravity theory
 → Killing vectors and spinors → supergroup
- World-sheet theory where the supergroup gives rigid symmetries
- local GCT and κ-symmetry.
- gauge fixing leads to a conformal world-sheet theory.
- · Application:

d=4, N=2 supergravity solution (near horizon Reissner-Nordström black hole) leads to world-line theory which is 'relativistic superconformal mechanics'.

Plan

- Bosonic theory
 - Brane solutions
 - Killing vector adS algebra
 - world-volume action
 - conformal algebra
- Supersymmetric world-volume theory
 - solutions of supergravity and Killing vectors/spinors
 - supergroups
 - world-volume action
 - κ-symmetry
 - gauge fixing leads to superconformal symmetry
- 3. Conclusions

'relativistic superconformal mechanics': example developped in parallel to the general presentation.

Brane solutions with <u>adS</u> Killing vector algebra

$$(m = 0, 1, \dots p; m' = 1, \dots d - p - 1): \qquad d = 4, 10 \text{ or } 11$$

$$ds^{2} = H_{\text{brane}}^{-\frac{2}{p+1}} dx_{m}^{2} + H_{\text{brane}}^{\frac{2}{d-p-3}} dX_{m'}^{2}$$

$$H_{\text{brane}} = 1 + \left(\frac{R}{r}\right)^{d-p-3}; \qquad r^{2} = X^{m'} X^{m'}$$

$$H_{\text{hor}} = \lim_{r \to 0} \left[1 + \left(\frac{R}{r}\right)^{d-p-3}\right] = \left(\frac{R}{r}\right)^{d-p-3}$$

 brane solution interpolates beween asymptotically flat and near horizon anti-de Sitter geometry

Gibbons, Townsend

- large N (many branes solution) (R^x ∝ N)
 Maldacena
- there is a special duality transformation that removes the constant

Hyun

Boonstra, Peeters, Skenderis

Cremmer, Lavrinenko, Lü, Pope, Stelle, Tran

anti-de Sitter Killing vector algebra

$$ds_{hor}^2 = \left(\frac{r}{R}\right)^{\frac{2(d-p-3)}{p+1}} dx_m^2 + \left(\frac{R}{r}\right)^2 dr^2 + R^2 d^2 \Omega$$

is $adS_{p+2} \times S^{d-p-2}$ metric.

Killing vectors $SO(p+1,2) \times SO(d-p-1)$

Example: p = 0, d = 4. Rename $R \rightarrow M$

$$ds^2 = -H_{\text{brane}}^{-2} dt^2 + H_{\text{brane}}^2 dX_{m'}^2$$

$$H_{\text{brane}} = 1 + \frac{M}{r}$$

Is Reissner-Nordstrom (RN) black hole. Near horizon geometry

$$ds_{hor}^2 = -\left(\frac{r}{M}\right)^2 dt^2 + \left(\frac{M}{r}\right)^2 dr^2 + M^2 d^2 \Omega$$

which is the Bertotti–Robinson (BR) metric. $adS_2 \times S^2$.

$$\delta t = \underline{a} + \underline{b}t + \underline{c}t^2 + \underline{c}(M^4/r^2)$$
; $\delta r = -r(\partial_t \delta t)$
 $SO(1,2)$ and $\underline{SO(3)}$ isometries of $\underline{d^2\Omega}$.

This scheme works in various theories:

	d	р
M5	11	5
M2	11	2
D3	10	3
Self-dual string (D1+D5)	6	1
Magnetic string	5	1
Tangerlini black hole		0
Reissner-Nordström black hole	4	0

All have $adS_{p+2} \times S^{d-p-2}$ geometry.

E.g. self-dual string can also be obtained from 10 dimensions with D1 + D5, having $adS_3 \times S^3 \times E_4$.

More generalizations, with products of spheres,
...
Boonstra, Peeters, Skenderis, hep-th/9803231

Bosonic world-volume theory

$$S_{cl} = S_{Born-Infeld} + S' + S_{Wess-Zumino}$$

$$S_{BI} = -\int d^{p+1}\sigma \sqrt{-\det \mathcal{G}_{\mu\nu}}$$

$$\underline{\mathcal{G}_{\mu\nu}} = g_{\mu\nu}^{\text{ind}} + T_{\mu\nu}$$

$$g_{\mu\nu}^{\text{ind}} = \partial_{\mu}X^{M}\partial_{\nu}X^{N}G_{MN}$$

with

$$T_{\mu\nu}=0$$
 $S'=0$ $S'=0$ $S'=0$ $S'=0$ $S'=0$ $S'=0$ $S'=0$ $S'=0$ $S'=1$

 a: auxiliary field of Pasti-Sorokin-Tonin appears in

$$\begin{split} u_{\mu} &= \partial_{\mu}\underline{a} \; ; \qquad \mathcal{H}_{\mu\nu\rho} = 3\partial_{[\mu}\underline{B_{\nu\rho]}} \\ \mathcal{H}_{\mu\nu} &= \frac{u^{\rho}}{\sqrt{u^2}}\mathcal{H}_{\mu\nu\rho} \; ; \qquad \mathcal{H}^*_{\mu\nu} = \frac{u^{\rho}}{\sqrt{u^2}}\mathcal{H}^*_{\mu\nu\rho} \end{split}$$

Geometric input:

- G_{MN}, solution of supergravity
- Wess-Zumino term

BR metric:

$$ds^{2} = -\left(\frac{r}{M}\right)^{2}dt^{2} + \left(\frac{M}{r}\right)^{2}\left(dr^{2} + r^{2}d^{2}\Omega\right)$$

r=0 is coordinate singularity. Define ρ

$$\frac{r}{M} = \left(\frac{2M}{\rho}\right)^2$$

$$ds^2 = -\left(\frac{2M}{\rho}\right)^4 dt^2 + \left(\frac{2M}{\rho}\right)^2 d\rho^2 + M^2 d^2\Omega$$

Bosonic part of WZ:

$$\dot{S}_{WZ} = \int A$$
; $A = \frac{r}{M} \dot{t} d\tau$

World-line action

$$S = mS_{BI} + qS_{WZ}$$

$$= -m \int d\tau \sqrt{-g_{00}^{ind}} + q \int \underline{A}$$

$$g_{00}^{ind} = \left(\frac{2M}{\rho}\right)^4 \left[-(\dot{t})^2 + \left(\frac{\rho}{2M}\dot{\rho}\right)^2\right]$$

$$+M^2 \left[\dot{\theta}^2 + \sin^2\theta\dot{\phi}\right]$$

Gauge of time reparametrizations: $\underline{t = \tau}$. In Hamiltonian language

$$H = \left(\frac{2M}{\rho}\right)^2 \left[\sqrt{m^2 + \frac{\rho^2 p_\rho^2 + 4L^2}{4M^2}} - q \right] \,,$$

$$(L^2=p_{ heta}^2+\sin^{-2} heta p_{\phi}^2)$$
 is $H=-p_0$ solving

$$(p_0 - qA)^2 G^{00} + p_{m'} G^{m'n'} p_{n'} + m^2 = 0.$$

charged particle in BR background.

$$H = \frac{p_{\rho}^2}{2f} + \frac{mg}{\rho^2 f}$$

$$f = \frac{1}{2} \left[\sqrt{m^2 + (\rho^2 p_{\rho}^2 + 4L^2)/4M^2} + q \right]$$

$$mg = 2M^2 (m^2 - q^2) + 2L^2$$

Limit

 $\underline{M} o \infty$; (m-q) o 0; $M^2(m-q)$ fixed gives $\underline{f} o \underline{m}$, and is conformal mechanics of de Alfaro, Fubini and Furlan, 1976.

'non-relativistic conformal mechanics' (large black hole mass).

The <u>full solution</u> we get from the 'brane-like' procedure: <u>relativistic conformal mechanics</u>'.

With L=0, force vanishes when m=q.

Combination of symmetries → conformal symmetry

- Rigid symmetries
 - SO(3) rotations on θ , ϕ
 - anti-de Sitter

$$\delta t = \underline{a} + \underline{b}t + \underline{c}t^2 + \underline{c}\frac{M^4}{r^2}$$

$$\delta r = -r(\underline{b} + 2\underline{c}t)$$

Local symmetry: time reparametrizations

$$\delta t = \underline{\xi}(\tau)\dot{t}$$
; $\delta r = \underline{\xi}(\tau)\dot{r}$; ...

Gauge fixing $t = \tau$

$$0 = \underline{a} + \underline{b}\tau + \underline{c}\tau^2 + \underline{c}\frac{M^4}{r^2} + \underline{\xi}(\tau)$$

a= translations

<u>b</u>= dilatations

c= special conformal transformations

SO(2,1) finite conformal group in 1 dimension

PS: Notes about infinite dimensional groups in case p = 1

- 1. Brown and Henneaux, 1986: consider also other geometries which have adS_3 as near-horizon limit. Symmetries between such asymptotic geometries form Virasoro algebra of which $SO(2,2) = SU(1,1) \times SU(1,1)$ is finite dimensional subgroup.
- 2. F. Brandt, J. Gomis and J. Simón, hep-th/9707063 and 9803196: There are extra symmetries of $\int d^2\sigma \sqrt{-\det(g_{\mu\nu}+F_{\mu\nu})}$

$$\begin{array}{ll} \delta X^M &= \underline{h^M(X)}\,\underline{\lambda(\mathcal{F})} \\ \delta V_\mu &= -\underline{\lambda'(\mathcal{F})}\sqrt{g}\,(1+\mathcal{F}^2)\epsilon_{\mu\nu}\left(\partial^\nu X^M\right)h_M(X) \\ \text{where} \end{array}$$

$$\underline{h^M(X)}$$
 : Killing vectors of the metric G_{MN} $\mathcal{F} = -\frac{\epsilon^{\mu\nu}F_{\mu\nu}}{2\sqrt{g}}$

The arbitrary function λ thus provides a sort of Kač-Moody extension of the isometry group.

2. Supersymmetric theory

In terms of $Z^{\Lambda} = \{X^M, \theta^A\}$,

superspace coordinates in d = 11, 10, 4, ...and possibly other forms.

$$\underline{g_{\mu\nu}^{\text{ind}}} = \left(\partial_{\mu} Z^{\Lambda} E_{\Lambda}^{\underline{M}}\right) \left(\partial_{\nu} Z^{\Sigma} E_{\Sigma}^{\underline{N}}\right) \eta_{\underline{MN}}$$
(underline is flat index)

d=4, p=1 example:

comes from N=2, d=4 supergravity.

$$A \leftarrow (\alpha i)$$
; $i = 1, 2, \alpha$ spinor index

$$\underline{S_{WZ}} = \int d\tau \, \dot{Z}^{\wedge} A_{\wedge}$$

E.g. flat superspace

$$\begin{split} E_M{}^{\underline{M}} &= \delta_M{}^{\underline{M}} \; ; \qquad E_{\alpha i}{}^{\underline{M}} = \tfrac{1}{2} \left(\gamma^{\underline{M}} \theta_i \right)_\alpha \\ A_M &= 0 \; ; \qquad A_{\alpha i} = \tfrac{1}{2} \varepsilon_{ij} \theta_\alpha^j \end{split}$$

leads to

$$\underline{g_{\tau\tau}^{\text{ind}}} = \left(\dot{X}^M - \frac{1}{2}\bar{\theta}\Gamma^M\dot{\theta}\right)\left(\dot{X}^N - \frac{1}{2}\bar{\theta}\Gamma^N\dot{\theta}\right)\eta_{MN}
\underline{S_{WZ}} = \frac{1}{\sqrt{2}}\int d\tau \dot{\bar{\theta}}^i \varepsilon_{ij}\theta^j + h.c.$$

Start from solutions of supergravity

 ds^2 as BR with mass M (near-horizon)

Soln. with electric charge Q and magnetic P:

$$\underline{F_{0r}} = -\frac{Q}{M^2}$$
; $\underline{F_{\theta\phi}} = -P\sin\theta$

with $P^2 + Q^2 = M^2$.

For Killing spinors, define 2 x 4 real spinors

$$(\mathcal{P}_{\pm})_A{}^B = \frac{1}{2} \left(\delta_A^B \pm \frac{1}{M} \left(Q + i \gamma_5 P \right) \varepsilon^{ij} \gamma_0 \right)$$

Killing spinors are

$$(\mathcal{P}_{+}\epsilon)^{i} = \left(\frac{M}{r}\right)^{1/2} \underline{\eta_{+}^{i}}$$

$$(\mathcal{P}_{-}\epsilon)^{i} = \left(\frac{r}{M}\right)^{1/2} \left(\underline{\eta_{-}^{i}} - \frac{t}{M}\gamma_{0r}\underline{\eta_{+}^{i}}\right)$$

where η_{\pm}^{i} are Killing spinors of sphere $\hat{m}=\theta,\phi$

$$\nabla_{\tilde{m}} \underline{\eta_{\pm}^{i}}(\theta, \phi) = \mp \frac{1}{2M} \gamma_{r} \gamma_{\hat{m}} \underline{\eta_{\pm}^{i}}(\theta, \phi)$$

4 solutions for each sign.

Lü, Pope, Rahmfeld, hep-th/9805151

Algebra of Killing spinors and vectors: SU(1,1|2)

Commutators give adS and SO(3) of sphere.

$$\begin{aligned}
[\underline{\eta_+}, \underline{\eta_+}] &= \underline{P} \\
[\underline{\eta_+}, \underline{\eta_-}] &= \underline{D} + \underline{SO(3)} \\
[\underline{\eta_-}, \underline{\eta_-}] &= \underline{K}
\end{aligned}$$

or

$$\begin{pmatrix} SU(1,1) & \eta_{\pm}^i \\ \eta_{\pm}^i & SU(2) \end{pmatrix}$$

Should always be of a similar form, with

- 1. SO(p+1,2) should appear as factor in bosonic part of the superalgebra.
- fermionic generators in a spinorial representation of that group.
- \rightarrow more bosonic symmetries (R) should appear as symmetries of non-adS part of the target space (here S^2)

First see isomorphisms of conformal groups

$$p = 0$$
 $SO(1,2) \sim SU(1,1) \sim Sp(2)$
 $p = 1$ $SO(2,2) \sim SO(1,2) \times SO(1,2) \sim SU(1,1) \times SU(1,1)$
 $p = 2$ $SO(3,2) \sim Sp(4)$
 $p = 3$ $SO(4,2) \sim SU(2,2)$

Results for $p \ge 2$:

p	superalgebra	R	nr.ferm.
2	OSp(N 4)	SO(N)	4N
3	SU(2,2 N)	$U(N)$ for $N \neq 4$	8N
		SU(4) for $N=4$	ŀ
4	F(4)	SU(2)	16
5	OSp(6, 2 2N)	USp(2N)	16N

p = 0 (or 2 factors for p = 1)

superalg.	R	nr.ferm.
OSp(N 2)	O(N)	2N
$SU(N 1,1) \ (N \neq 2)$	U(N)	4N
SU(2 1,1)	SU(2)	8
$OSp(4^* 2N)$	$SU(2) \times USp(2N)$	8N
G(3)	G_2	14
F(4)	SO(7)	16
$D^1(2,1,\alpha)$	$SU(2) \times SU(2)$	8

Examples

	sAlg.	<u>G</u>	,
M5	OSp(6,2 4)	SO(5)	$adS_7 \times S^4$
M2	OSp(8 4)	SO(8)	$adS_4 \times S^7$
D3	SU(2,2 4)	SO(6)	$adS_5 \times S^5$
D1+D5	$(SU(1,1 2))^2$	SO(4)	$adS_3 \times S^3$
BR	SU(1,1 2)	SO(3)	$adS_2 \times S^2$

World-volume (world-line) action

BI-term, based on supervielbeins, ...

can be obtained from 'Gauge completion'

Nath, Arnowitt, PL 65B(76)73 Cremmer, Ferrara, PL 91B(80)61 Castellani, van Nieuwenhuizen, Gates, PRD22(80)2364 de Wit, Peeters, Plefka, hep-th/9803209

<u>WZ-term</u> starts now from solution $A_{\mu} = W_{\mu}$, supergravity solution

$$W_0 = \frac{Q}{M^2}r \; ; \qquad W_\phi = P\cos\theta$$

Other way: supercosets: here

$$\frac{SU(1,1|2)}{U(1)\times U(1)}$$

Castellani, Ceresole, D'Auria, Ferrara, Frè, Trigiante hep-th/9803039 Matsaev, Tseytlin, hep-th/9805028 and 06095 Kallosh, Rajaraman, hep-th/9805041

κ -symmetry

World-volume theory has the rigid symmetries

N=4, d=2 has 8 real supersymmetries, and the solutions which we considered have 8 real Killing spinors (2 complex doublets of SU(2)).

But also κ symmetry. This imposes q=m

$$\delta_{\kappa}\theta = (1+\Gamma)\kappa$$
; $\Gamma = \frac{1}{\sqrt{-g_{00}}} \varepsilon^{ij} \gamma_{\underline{M}} \Pi^{\underline{M}}$

 Γ is complicated matrix, but $\Gamma^2 = 1$.

At 'classical values'

$$t=\tau$$
; $r=r_0$; $\theta=\theta_0$; $\phi=\phi_0$; fermions = 0

$$\Gamma_{cl} = \varepsilon^{ij} \gamma_0$$
; $1 + \Gamma_{cl} = 2\mathcal{P}_-$

if P = 0 (only electr. charged Q = M)

zero force if P=0, thus $Q=\pm M$

Irreducible κ symmetry: $\mathcal{P}_{-\kappa} = 0$.

$$\delta_{\kappa}\theta = \mathcal{P}_{+}\kappa + \dots$$

Local symmetries

- world-volume diffeomorphisms
- Kappa symmetry

Broken by gauge choice: reformulation as $adS_{p+2} \Rightarrow Conf_{p+1}$.

Remember bosonic:

$$\delta_{adS}r = -r(\underline{b} + 2\underline{c}t)$$
; $\delta_{gct}r = \xi(\tau)\dot{r}$

Gauge choice: $\delta t = \underline{a} + \underline{b}\tau + \underline{c}\tau^2 + \underline{c}\frac{M^4}{r^2} + \underline{\xi}(\tau) = 0$ r transforms as a scalar with Weyl weight 1.

Fermionic:

$$\delta \mathcal{P}_{+} \theta^{i} = \left(\frac{M}{r}\right)^{1/2} \eta_{+}^{i} + \kappa^{i} + \dots$$

$$\delta \mathcal{P}_{-} \theta = \left(\frac{r}{M}\right)^{1/2} \left(\eta_{-}^{i} - \frac{t}{M} \gamma_{0r} \eta_{+}^{i}\right) + \dots$$

Gauge fixing

$$\mathcal{P}_{+}\theta = 0$$

Conformal supersymmetry: where $\underline{\eta}_{-}$ takes role of \underline{Q} -supersymmetry η_{+} of \underline{S} -supersymmetry.

Summary

We establish superconformal symmetry of the gauge-fixed non-gravitational brane actions

Starting from solution of supergravity with background $adS_{p+2} \times S^{d-p-2}$ geometry.

Non-relativistic superconformal mechanics was done by

Akulov and Pashnev, 1983.

Fubini and Rabinovici, 1984.

We obtain

'relativistic superconformal mechanics'

having as limit $M \to \infty$ non-relativistic superconformal mechanics.

PS: there is still a simplification, keeping only the radial mode. Based on $OSp(1|2) \subset SU(2|1,1)$.

We qualified for the case

d p

4 - 1

