Giant Magnons

Juan Maldacena
Strings 2006
Beijing

N. Beisert, hep-th/0511082

D. Hofman, J.M., hep-th/0604135

Introduction

- Understand the spectrum of operators of N=4 SYM in the planar limit.
- 't Hooft limit → spin chains
- AdS/CFT spin chains → string worldsheets
- Simplifications in a large J limit.
- One finds well defined elementary excitations that propagate along the chain: Magnons
- We will find the description of these magnons on the string theory side, at large 't Hooft coupling.

Large J limit

- $J = J_{56}$ in SO(6)
- $J \rightarrow Infinity$
- Δ J = fixed, $\lambda = g^2 N = fixed$

•
$$O = \sum_{l} e^{ipl} (...ZZZWZZZ....)$$

- $p = 2 \pi n/J = fixed$, $p \sim p + 2 \pi$
- No finite volume effects
- No $P_{total} = 0$
- Not the pp-wave (or BMN) limit

Mann, Polchinski Rej, Serban, Staudacher Zarembo, Arutynov, Tseytlin,

. . . .

....ZZZWZZZ...

...ZZZ∂ZZZZ...

 $...ZZZ\partial^2 ZZZ... \rightarrow ...ZZ\partial ZZZZ\partial ZZZZ...$

We have "impurities" that propagate along the "string" of Zs.

Finite number of elementary impurites: 8 bosons and 8 fermions

Single impurity spectrum

$$\varepsilon = \Delta - J = \sqrt{1 + \frac{\lambda}{\pi^2} \sin^2\left(\frac{p}{2}\right)}$$

Beisert, Dippel Staudacher (Santambrogio Zanon, Berenstein, Correa, Vazquez)

Beisert

Proof

Full N=4 superconformal group \rightarrow Subgroup that leaves Z invariant: PSU(4|4) \rightarrow SU(2|2)²

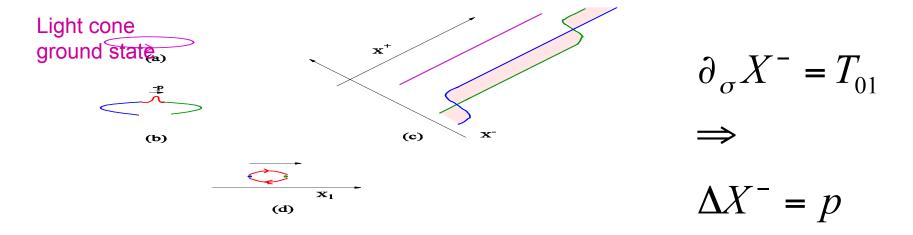
Impurity with p=0 is a BPS state.

Nonzero p \rightarrow central extension \rightarrow states are still BPS. Central extension $\sim (1 - e^{ip})$. Related to terms of the form $[\psi,Z]$ in the supercharges. Note that p is a quasi-momentum: periodicity in p

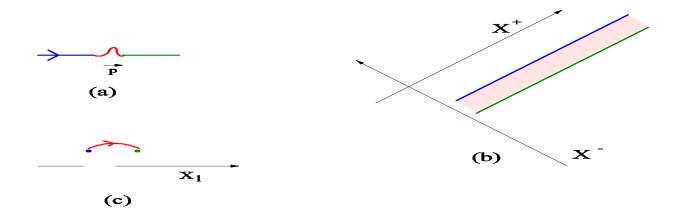
We will now analyze the single impurity problem at large λ using string theory

Strings in flat space

- Light cone gauge X⁺, X⁻ + transverse
- Large p_



Infinite momentum→ infinite string in light cone gauge



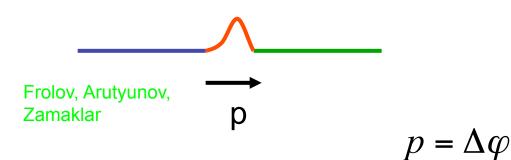
The string endpoints in spacetime look like light-like D-branes.

Strings in AdS₅ x S₅

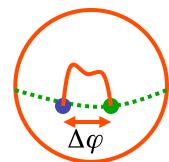
 Δ =E=J = ∞ . Ground state Pointlike string moving along $\varphi = t$

Choose $X^- = t - \varphi$

Worldsheet in light cone gauge

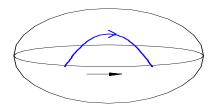


Spacetime picture



p periodic = angle periodic

Find the solution with lowest energy for a given momentum p



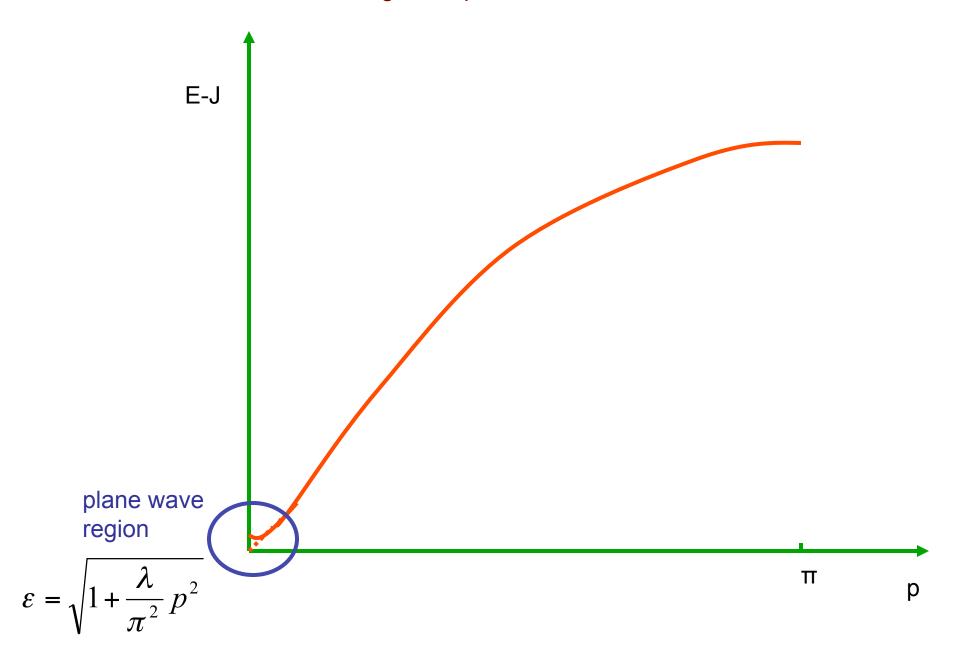
Compute the energy

$$\varepsilon = E - J = \frac{\sqrt{\lambda}}{\pi} \left| \sin\left(\frac{p}{2}\right) \right|$$

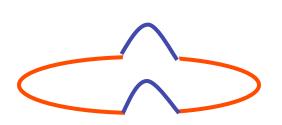
Agrees with the large λ limit of:

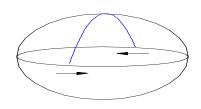
$$\varepsilon = \Delta - J = \sqrt{1 + \frac{\lambda}{\pi^2} \sin^2\left(\frac{p}{2}\right)}$$

Large λ dispersion relation



Spinning string on S² inside S⁵





Gubser, Klebanov, Polyakov

worldsheet

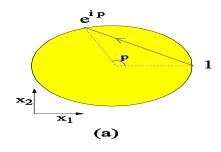
spacetime

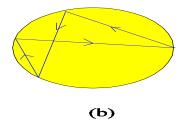
For very large J we approximate it as a two magnon solution. Each magnon has momentum $p=\pi$

$$E - J = 2\frac{\sqrt{\lambda}}{\pi^2}$$

Solution in other coordinates

Project the S⁵ on to a disk.





Energy is the length of the string.

Symmetries: Same as in the gauge theory $SU(2|2)^2$ + central extension

Central extension → String winding charge (physical states → no net winding charge)

S-Matrix

- Ground state: Chain of Zs
- Impurities = 8 bosons + 8 fermions = single BPS multiplet of the (extended) symmetries.
- Define asymptotic scattering S-matrix 2 → 2 impurities.

Staudacher

Structure of the S matrix

- $S_{ab,cd} = M_{ab,cd} S_0$
- M is a known 16² x 16² matrix fixed by symmetries
- S₀ is an unknown phase
- This is true both in the gauge theory and string theory (same symmetries)
- Integrability

 factorized scattering (obeys the Yang Baxter equation)
- S₀(p₁,p₂, λ) is all we need to know to solve planar N=4 SYM!
- Feed the S-matrix into Bethe ansatz → get spectrum.

Direct computation of S₀ at large coupling

- Classical scattering of two magnons
- Determined by the classical time delay in the two magnon classical solution
- Use:

Classical strings on S² x R

Pohlmeyer Mikhailov

classical sine gordon theory. (only classical)

Sine gordon solition = single magnon Energy of the string solution ≠ energy in sine gordon

Result using the classical sine gordon theory we get

$$S_0 = e^{i\delta}$$

$$\delta = -\frac{\sqrt{\lambda}}{\pi} \left(\cos\frac{p}{2} - \cos\frac{p'}{2}\right) \log \left[\frac{\sin^2\frac{p-p'}{2}}{\sin^2\frac{p+p'}{2}}\right]$$

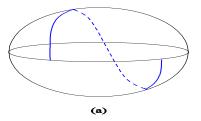
Same as the large λ limit of the "string S-matrix" of Arutyunov, Frolov and Staudacher

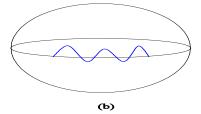
Bound states

Sine gordon theory has bound states. In the classical limit these are so called "breather" solutions = time dependent non-dissipative solutions

We can produce the explicit time dependent solutions for the string theory.

Mikhailov





More energy than a pair of states with half the momentum.

Semiclassical quantization gives

$$\varepsilon = \sqrt{n^2 + \frac{4\lambda}{\pi^2} \sin^2 p}$$

We can view this as the superposition of two magnons with momenta

$$p_1 = \frac{p}{2} + iq$$

$$p_2 = \frac{p}{2} - iq$$

Classically stable.

We expect that they are stable in the full theory due to integrability. They should appear as poles in the phase of the S matrix

BPS bound states

Bound state of n magnons.

Come from poles in the matrix structure of the S-matrix.

Dorey Arutyunov, Frolov, Zamaklar

In string theory, similar to the magnons we described but with extra angular momentum in the SO(4) directions of the S⁵

$$\varepsilon = \sqrt{n^2 + \frac{\lambda}{\pi^2} \sin^2\left(\frac{p}{2}\right)}$$

So for n=1 these solutions give precisely the formula for the energy. No quantum corrections to first order in $1/\sqrt{\lambda}$

Minahan, Tirziu, Tseytlin

Summary

- Simple class of observables at large J which allow a direct comparison between gauge theory and string theory.
- Identified magnons & matched dispersion relation at strong coupling. Periodicity in momentum = geometrical angle.
- Matched the energy of a spinning string
- Found the phase of the S matrix at strong coupling. Agreed with AFS.

Future

- Compute S₀
- Promising route: Use a crossing symmetry equation

Janik, (Beisert)

Crossing symmetry equation

Janik, Beisert

- Equation based on crossing symmetry.
- $S_0(1, 2) S_0(1,2) = f(1,2)$
- Kinematics \rightarrow torus (p ~ p + 2 π ; $\theta = \theta + 2 \pi i$)
- Think of the equation on C²
- Initial goal: Find a meromorphic solution, i.e. a solution with no branch cuts or essential singularities.
- There exists no such solution.

J.M., Neitzke, Swanson

- Understand better what is the allowed analytic structure!
- There are many solutions if one allows branch cuts and/ or essential singularities.
- To do: Select the correct solution....