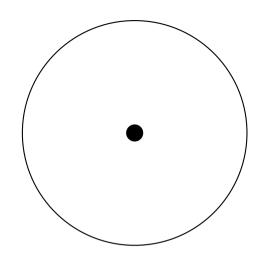
Microscopics of the black hole - black string transition

OR

Developing the story of fractionation

Samir D. Mathur
The Ohio State University

Work with Borun D. Chowdhury and Stefano Giusto



3-charge extremal D1-D5-P black hole

$$S_{bek} = \frac{A}{4G} = 2\pi\sqrt{n_1 n_5 n_p}$$

$$S_{micro} = 2\pi \sqrt{n_1 n_5 n_p}$$

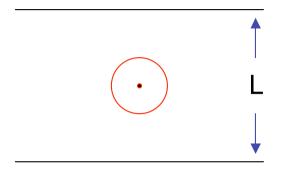
Strominger-Vafa '96

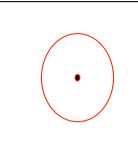
We understand something about the quantum structure of black holes ...

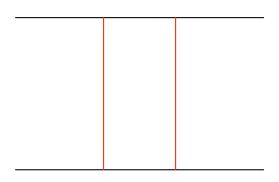
There are many other properties of black holes/black branes Can we understand these microscopically?

That will teach us more about the nature of quantum gravity ...

The black hole - black string transition







Small mass: **Black hole**

Large mass: **Black string**

Tension

$$\mathcal{T} = -\frac{1}{L} \int T_{zz} = (\frac{\partial M}{\partial L})_S$$

Small black hole $T \approx 0$

Uniform black string

$$\mathcal{T}\frac{L}{M} = const.$$

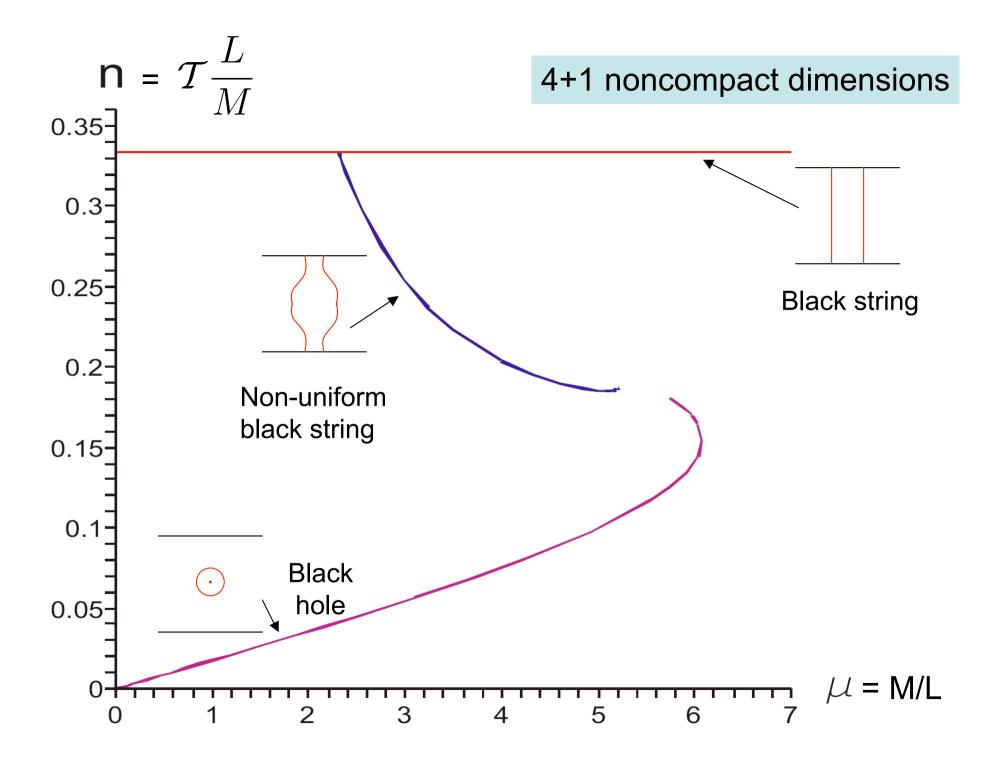
Numerical Work by

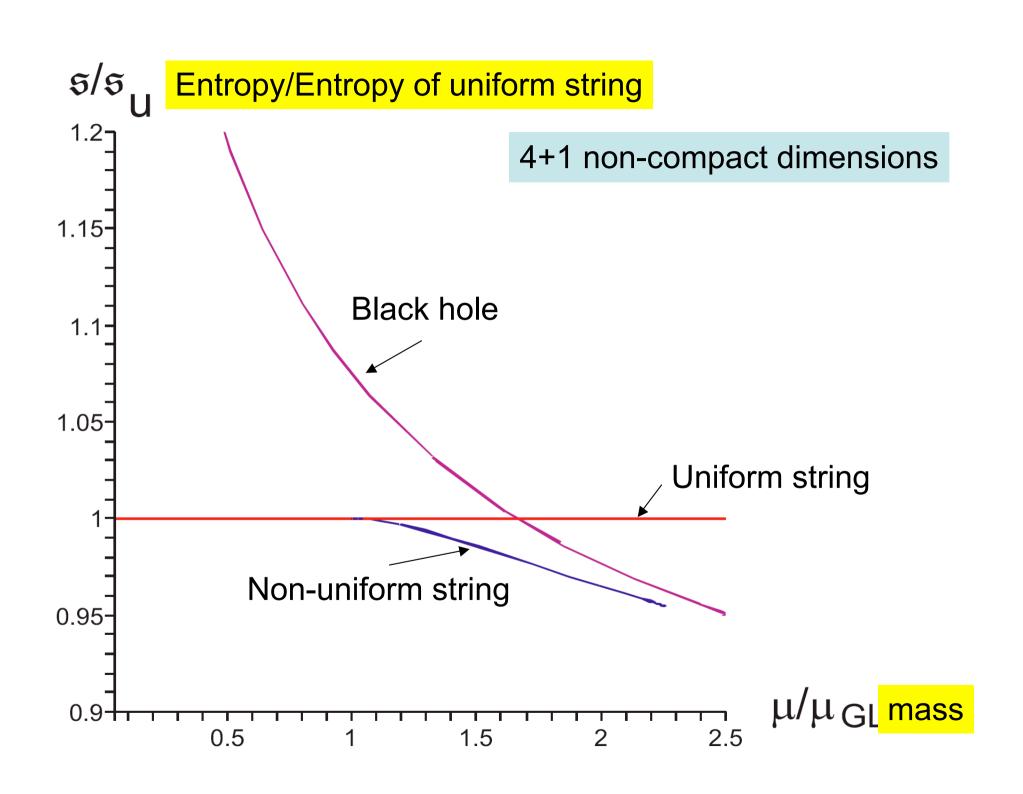
Gregory+Laflamme, Gubser, Kol, Harmark+Obers, Wiseman, Kleihaus+Kunz+Radu, Hobvedo+Myers

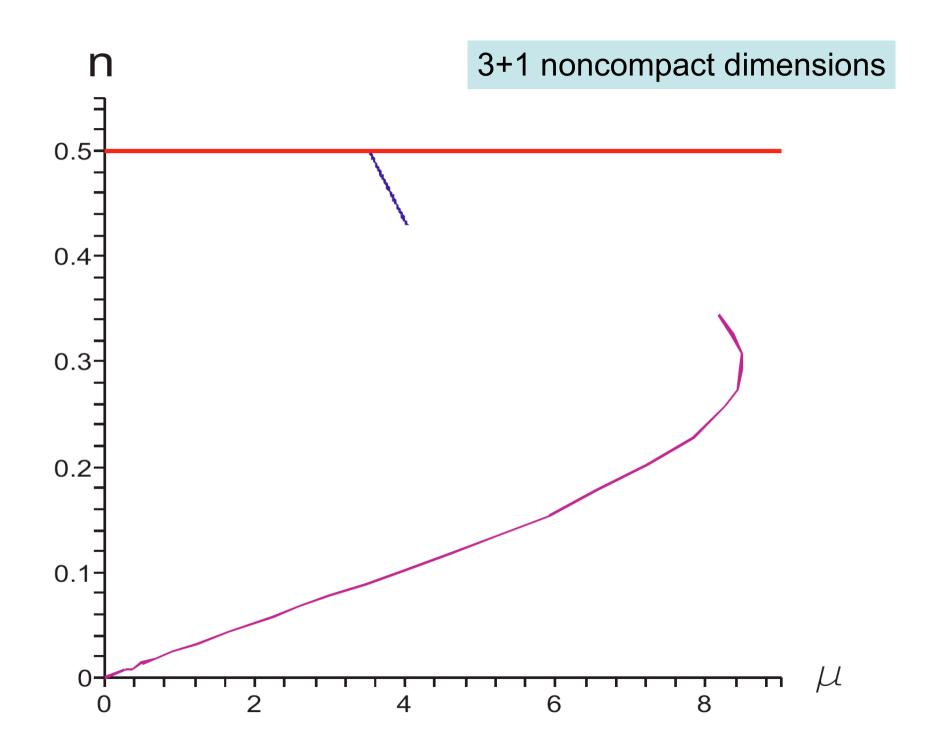
and many others

Has established a picture for the phase diagram of this *black hole - black string* transition

(We will borrow many graphs depicting numerical work from these authors...)

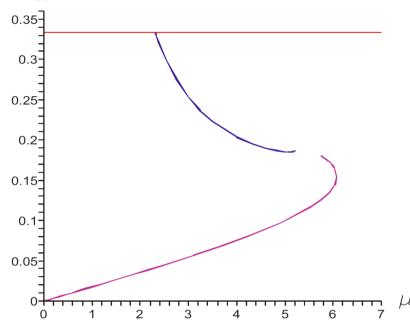


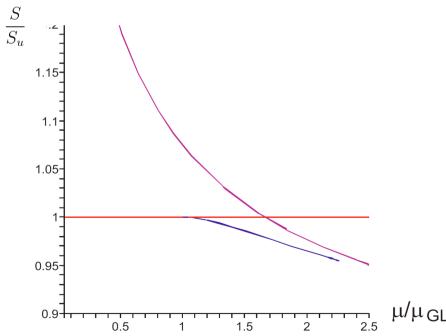




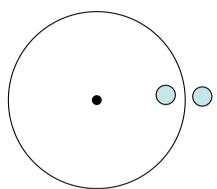
Microscopic (3+1 noncompact):

Numerical (4+1 noncompact):



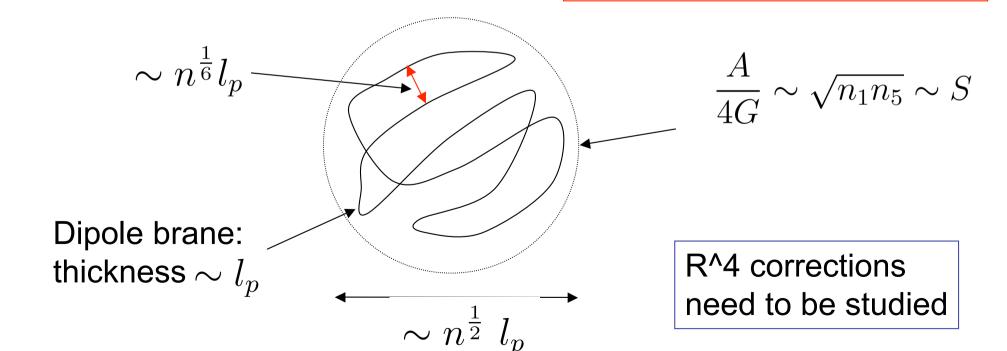


Motivation: Information loss if radiation happens in 'empty space around horizon'



But D1-D5 extremal bound state:

Charges
$$n_1 \sim n_5 \sim n$$



Natural scale of 'nonlocal quantum gravity' effects: [

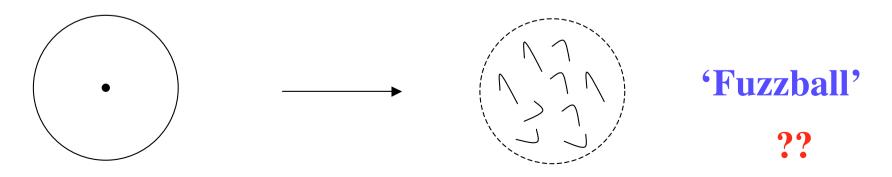
But a black hole is made from a large number of quanta (branes) $(N_1, N_2, N_3, ...)$

$$l_p \longrightarrow N^{\alpha} l_p$$
 ??

Different kinds of branes 'fractionate each other'

Fractional branes have low tension (Planck scale) (N₁N₂N₃)

These low tension 'floppy fractional branes' stretch over long distances (Schwarzschild radius of black hole)



Plan

Start with neutral black hole/black string, add charges by 'boosting + duality'.

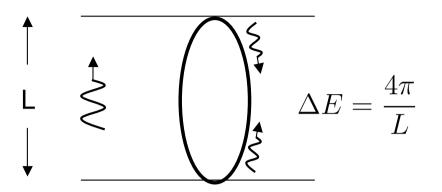
This gives a near-extremal system. Numerically computed phase diagrams can be easily converted to give the near-extremal case (Harmark+Obers).

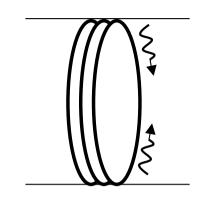
But for near extremal systems we have a microscopic brane description.

We will make one assumption about 'fractionation'.

Compute phase diagram from microscopic brane description

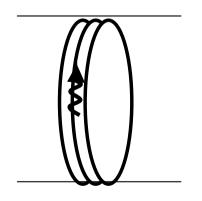
Fractionation and Entropy





$$\Delta E = \frac{4\pi}{n_1 L}$$

2 large charges (extremal):



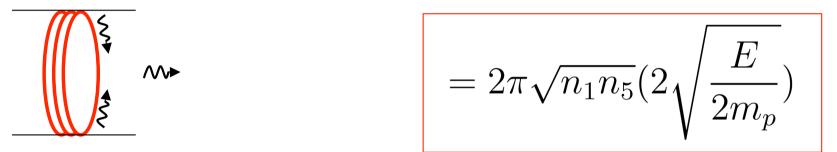
$$S = 2\sqrt{2}\pi\sqrt{n_1 n_p}$$

P P pairs are fractionated by the winding Charge n₁

D1-D5-P:
$$M_{9,1} \to M_{4,1} \times T^4 \times S^1$$

3 large charges (extremal): $S=2\pi\sqrt{n_1n_5n_p}$ Strominger Vafa

2 large charges +
$$E$$
 : $S=2\pi\sqrt{n_1n_5}(\sqrt{n_p}+\sqrt{\bar{n}_p})$



1 large charge + $\,E\,$:

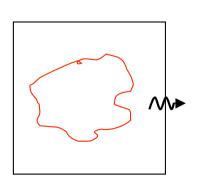
 $S = 2\pi\sqrt{n_5}(\sqrt{n_1} + \sqrt{\bar{n}_1})(\sqrt{n_p} + \sqrt{\bar{n}_p})$

$$=2\pi\sqrt{n_5}(\frac{E}{\sqrt{m_1m_p}})$$

Callan

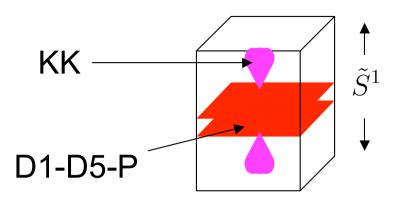
Maldacena

(Maldacena '96)



Similar relations exist for

$$M_{9,1} \to M_{3,1} \times T^4 \times S^1 \times \tilde{S}^1$$



4 large charges (extremal):

$$S = 2\pi\sqrt{n_1 n_5 n_p n_{kk}}$$

3 large charges + E :

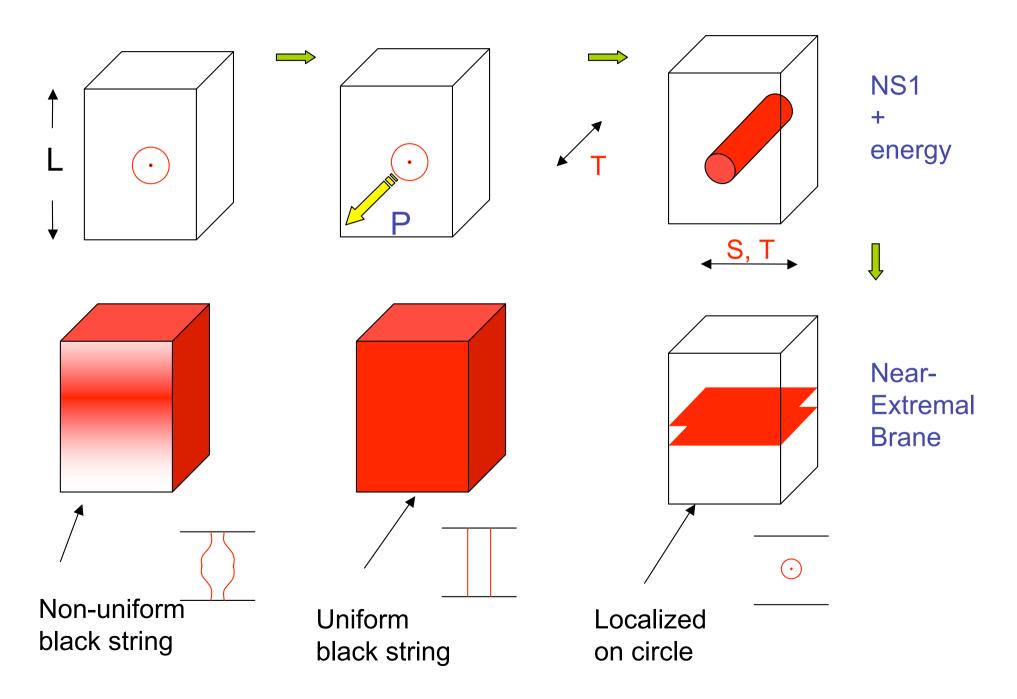
$$S = 2\pi\sqrt{n_1 n_5 n_{kk}} (\sqrt{n_p} + \sqrt{\bar{n}_p})$$

2 large charges + E:

$$S = 2\pi\sqrt{n_1 n_5}(\sqrt{n_p} + \sqrt{\bar{n}_p})(\sqrt{n_{kk}} + \sqrt{\bar{n}_{kk}})$$

$$=2\pi\sqrt{n_1n_5}(\frac{E}{\sqrt{m_pm_{kk}}})$$

Adding charges: Neutral to near extremal: Hassan+Sen '91



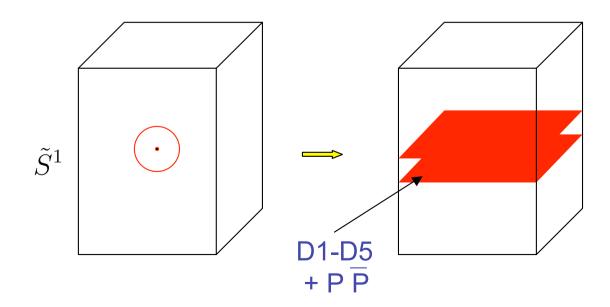
Compactify:
$$M_{9,1} \to M_{3,1} \times T^4 \times S^1 \times \tilde{S}^1$$

Let \tilde{S}^1 be large.

Then we effectively have a black hole in 4+1 non-compact dimensions

(only
$$T^4 \times S^1$$
 compact)

Add D1-D5 charges by 'boosting+ duality'



$$S = 2\pi\sqrt{n_1 n_5} (\sqrt{n_p} + \sqrt{\bar{n}_p})$$
$$= 2\pi\sqrt{N} \left(2\sqrt{\frac{E}{2m_p}}\right)$$

$$N = n_1 n_5$$

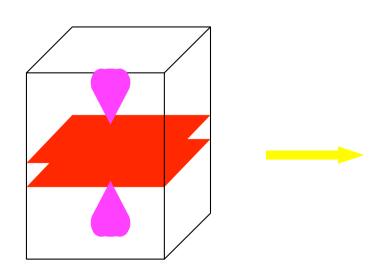
$$M_{9,1} \to M_{3,1} \times T^4 \times S^1 \times \tilde{S}^1$$

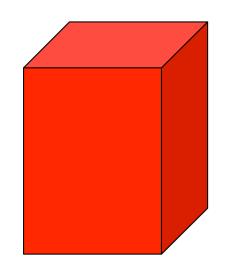
Suppose we could excite all charges appropriate to this compactification

We have 2 charges D1-D5 in 3+1 non-compact dimensions

$$S = 2\pi\sqrt{n_1 n_5} (\sqrt{n_p} + \sqrt{\bar{n}_p}) (\sqrt{n_{kk}} + \sqrt{\bar{n}_{kk}})$$
$$= 2\pi\sqrt{N} \frac{E}{m_p m_{kk}}$$

$$N = n_1 n_5$$





Assumption:

A part N_1 of the D1-D5 effective string fractionates the PP charges

The remainder $N-N_1$ fractionates the $\overline{PP} + \overline{KKKK}$ charges

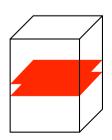
(Suggested by study of supertube excitations,

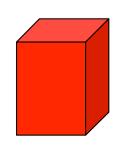
Giusto + SDM + Srivastava '06)

Energy E_1 goes to the \overline{PP} excitations

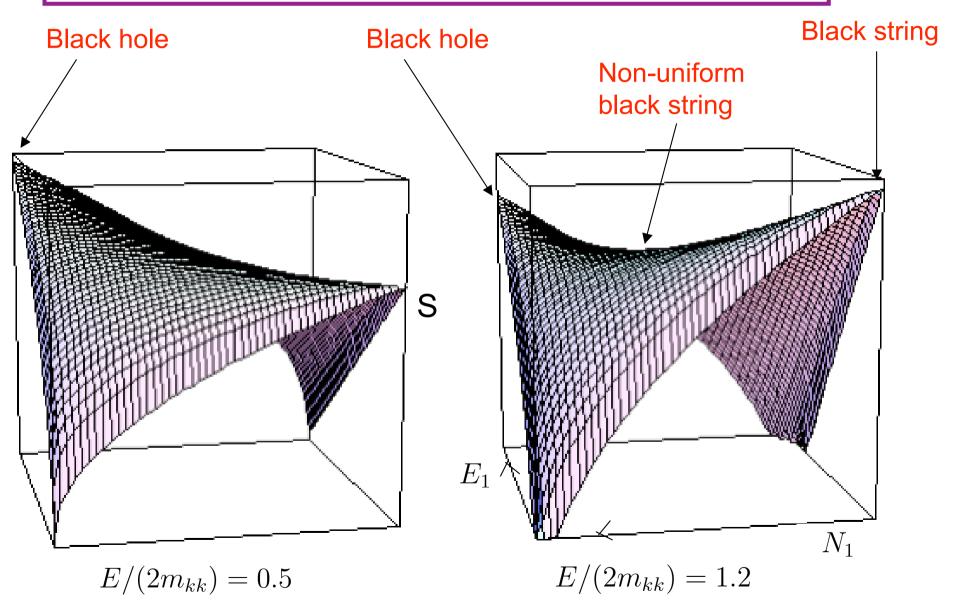
Energy $E - E_1$ goes to the $\overline{PP} + \overline{KKKK}$ excitations

$$S = 2\pi \sqrt{N_1} \left(2\sqrt{\frac{E_1}{2m_p}} \right) + 2\pi \sqrt{(N-N_1)} \frac{(E-E_1)}{m_p m_{kk}}$$





$$S = 2\pi \sqrt{N_1} \ (2\sqrt{\frac{E_1}{2m_p}}) \qquad + \qquad 2\pi \sqrt{(N-N_1)} \ \frac{(E-E_1)}{m_p m_{kk}}$$



Computing the tension

The microscopic model treats the branes as non-interacting

For the black hole solution Tensions (pressures) are found to agree with gravity

(Horowitz+Maldacena+Strominger '96)

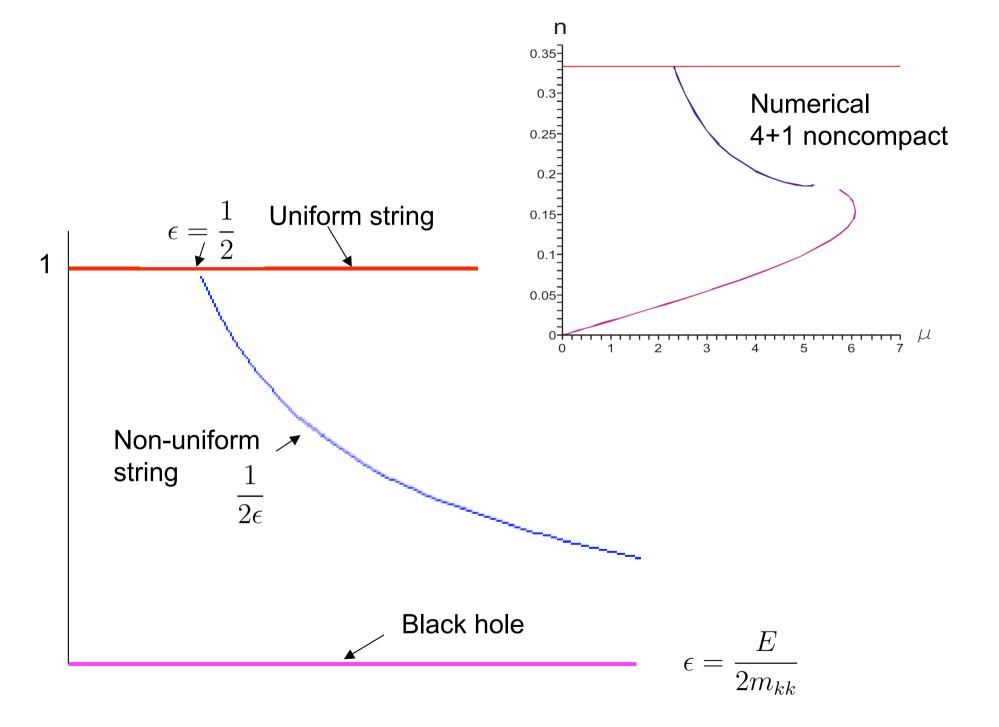
$$\mathcal{T} = \mathcal{T}_{D1} \; + \; \mathcal{T}_{D5} \; + \; \mathcal{T}_{Par{P}} \; + \; \mathcal{T}_{KKar{K}K} \ 0 \; 0 \; 0 \ 2n_{kk} \; rac{dm_{kk}}{dL}$$

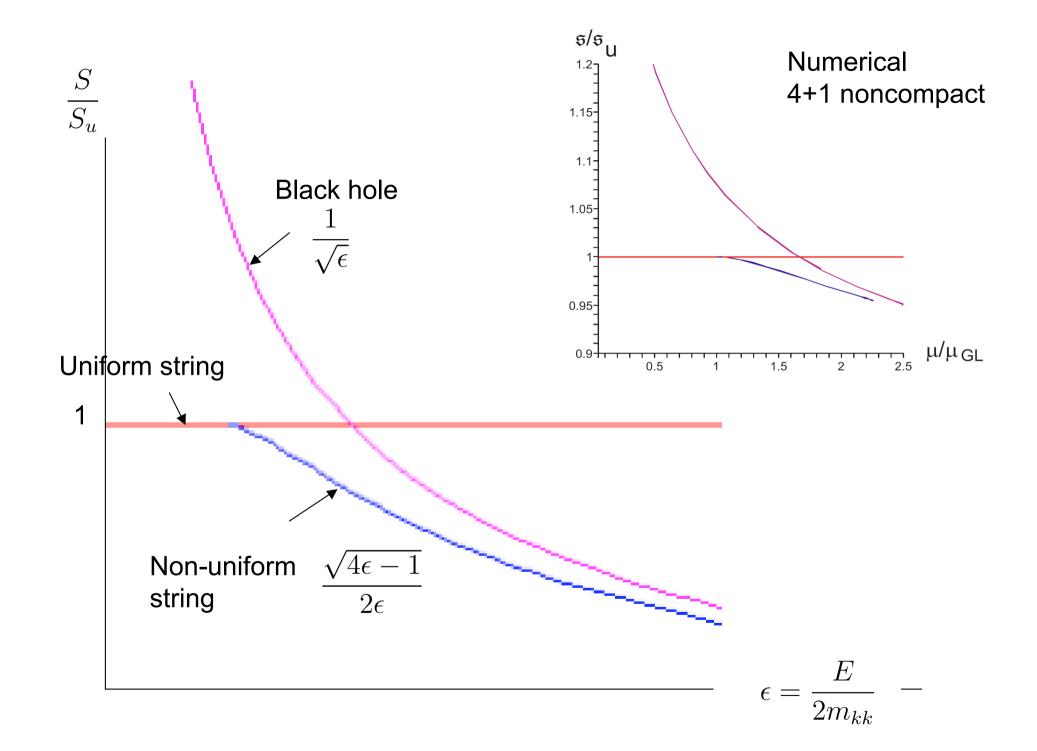
KK

$$n_{kk} = \frac{1}{2m_{kk}} (\frac{E - E_1}{2})$$

$$m_{kk} \propto L^2, \quad \frac{dm_{kk}}{dL} = \frac{2m_{kk}}{L}$$

$$\mathcal{T} = \frac{E - E_1}{L}$$





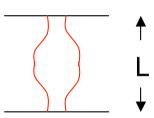
Smarr relations

Black hole and black string solutions satisfy Smarr relations

For 3+1 noncompact dimensions, near extremal, this relation is

$$TS = (2 - r)E$$

$$TS = (2-r)E$$
 $r = (\frac{\partial E}{\partial L})_S \frac{L}{E}$ (tension)



Non-uniform string: Conjectured gravity ansatz satisfies Smarr

Microscopic computation:

$$S = A\sqrt{4\epsilon - 1}, \quad E = 2m_{kk}\epsilon$$

$$\frac{1}{T} = \frac{dS}{dE} = \frac{A}{m_{kk}} \frac{1}{\sqrt{4\epsilon - 1}}$$

$$r = \frac{dE}{dL}\frac{L}{E} = \frac{1}{2\epsilon}$$
 \Longrightarrow $TS = (2-r)E$

$$TS = (2 - r)E$$

This supports the identification of the saddle point solution with the non-uniform string

Summary of results:

We have made a simple assumption about the nature of fractionation (energy and charges split between two different kinds of excitations)

With this assumption we get a phase diagram that has most of the features of the numerically obtained phase diagram

Black holes and the Uniform string satisfy Smarr relations.

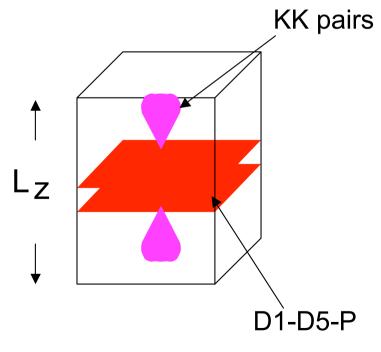
A non-interacting superposition of two systems satisfying Smarr will always satisfy the Smarr relation.

The fact that the numerical gravity solution satisfies Smarr suggests that using a non-interacting model is a good assumption ...

The computations we have used are similar to those used to get a crude estimate of the D1-D5-P bound state

(SDM '97)

Put a D1-D5-P extremal bound state in a box of length Lz

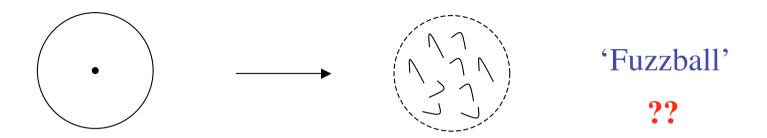


First fractional KK pairs appear when

$$L_z \sim \left[\frac{g^2 \alpha'^4 \sqrt{n_1 n_5 n_p}}{VR}\right]^{\frac{1}{3}} \sim R_s$$

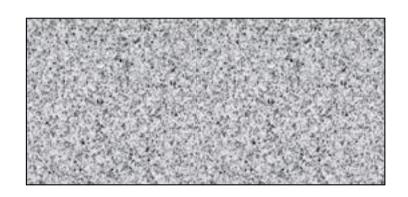
(i.e., box size is if order horizon radius)

Construction of microstate geometries

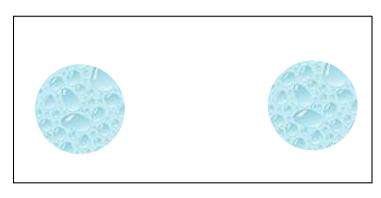


- 2-charge in 4+1 non-compact dimensions: Lunin+SDM
- 3 charge in 4+1, U(1) X U(1) symmetry: Giusto+SDM+Saxena, Lunin
- 3 charges in 3+1, U(1) X U(1) symmetry: Bena+Kraus
- 3 charges in 4+1, U(1) symmetry: Bena+Warner, Berglund+Gimon+Levy
- 4 charges in 3+1, U(1) X U(1) symmetry: Saxena+Potvin+Giusto+Peet
- 4 charges in 3+1, U(1) symmetry: Balasubramanian+Gimon+Levi

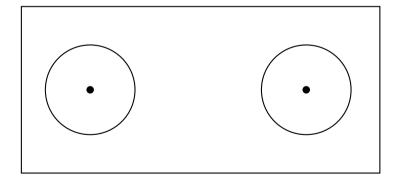
Possible implications for Cosmology ... the maximal entropy states are very quantum fuzzy fluids



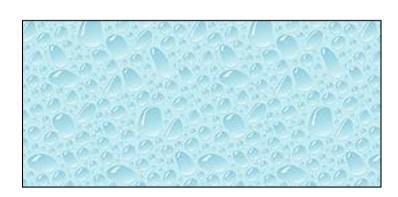
Dust filled Universe



Black holes — Fuzzballs



All matter in Black Holes



Fuzzball matter:

Quantum correlations across

Horizon scales ??