RUNAWAY JN THE LAND SCAPE STRINGS 07 MADRID JUNE 2007

MELANIE BECKER

RUNAWAY IN THE LANT SCAPE

K.BECKER, M.B, C.VAFA + J.WALCHER, hep-th/0611001 K.BECKER, M.B, J.WALCHER, hep-th/07060514 K.BECKER, YC CHUNG, 6.600, 0706.2502 hep-th

CALABI-YAU MANIFOLDS

MANY ASPECTS OF THE 4D THEORY CAN BE TRACED BACK TO THE TOPOLOGY OF THE INTERNAL MANIFOLD

MODULI FIELDS => FLUX COMPACTIFICATIONS

SCENARIOS

BEFORE OUR PAPER THERE WERE (ROUGHLY

SPEAKING) 2 SCENARIOS:

Kachru Kallosh

KKLT LIKE SCENARIOS Linde + Trivedi

- x fluxes (cplx. st.)
- x np effects (kähler)
- x 153'S (170)
- O (SiZE)

ABILIZATION WITH ONLY FLUXES (GEOMETRIC)

MODULI STABILIZATION AT THE CLASSICAL LEVEL WITH FLUXES ONLY IN SUGRA APPROX

MASSIVE IIA ON ORIENTIFOLD

AdS4 x T 6/1/3x7/3 Siryavets Kachru + Taylor

De Wolfe

PARAMETRIC CONTROL: SMALL PARAMETER

1 < E

FLUX NUMBER N-700

- * GEOMETRIC DESCRIPTION
- * ILA HODEL JS CONSTRAINT TO ACO
- * MASSES OF MODULÍ TOO SNALL

GOAL: CONSTRUCT A SIMPLE TYPE IIB
MODEL IN WHICH MODULI STABILIZATION
CAN BE ACHIEVED BEYOND THE SUGRA
APPROXIMATION IN TERMS OF FLUXES
ONLY

- 1) MODULI STABILIZATION IN A NON-GEOMETRIC MODEL (MIGHT BE THE ONLY WAY TO STABILIZE SUSIC VACUA
- 2 SUSIC VACUA OF Ads/MINKOWSKI TYPE WITH ALL MODULI STABILIZED

A NONGEOMETRIC TYPEITS MODEL

IN THE TYPE IB THEORY THERE IS A SUPERPOTENTIAL FOR COMPLEX STRUCTURE MODULI

GUKON, Vafa + Witten

$$W = \int_{H_6} 6 \Lambda \Omega$$
 $6 = HRR - 7 HNS$

TAKE A MODEL WITH h21=84 h11=0 cplx. str. Kähler str.

NO RADIAL MODULUS => NON-GEOMETRIC V NOT A CALABI-YAU (WHICH HAVE A SIZE)

W=2 SCFT => LANDAU-GINZBURG MODEL with c=9 (ORIENTIFOLD)

GOAL: CONSTRUCT THIS MODEL

CONSTRAINTS ON THE MODEL

1 SUPERSYMMETRY

UNBROKEN SUSY DEMANDS

$$DiW = \partial_iW + (\partial_iK)W = O$$
 (*) $i = \tau$, cplx. Structure moduli

$$K(\tau) = -4 \log (\tau - \overline{\tau})$$
; $K(\overline{z}a) = -\log (i \int \Omega_{\Lambda} \widehat{\Omega})$

$$W = \int 6 \Lambda \Omega = WRR - 7 WNS space-time superpotential$$

$$D_TW = \frac{1}{7-\bar{7}} \int (36+\bar{6})\Lambda\Omega = 0 \Rightarrow T = \frac{WRR}{2WNS} (3-e^{i\varphi})$$

$$DiW = \int 6 \Lambda \chi_i = 0$$
 $\chi_i : harmonic (2,1) forms$

$$G = A^{i} \chi_{i} + A^{o} \left(-3\Omega + \overline{\Omega}\right)$$

$$3 - FORM FLUX$$

$$HINKOWSKI \qquad AdS_{4} \quad W \neq 0$$

$$W = 0$$

2 TATPOLE CANCELLATION

FOR A COMPACT MODEL THE TOTAL
CHARGE HAS TO CANCEL. CONSIDER FOR NOW
MINKOWSKI UACUA

$$\int HRR \Lambda HNS = \frac{1}{(7-z^{*})} \int 6\Lambda 6^{*} = -Q(0_{3})$$
03-PLANE CHARGE

NEGATIVE 03 PLANE CHARGE JS

PROVIDED BY ORIENTIFOLDS OF
LANDAU-GINZBURG MODELS

LANDAU GINZBURG ORIENTIFOLDS

THE LANDAU GINZBURG MODEL JS

CONSTRUCTED IN TERMS OF 9 COPIES OF

C=| MINIMAL MODELS

$$W = \sum_{i=1}^{9} X_i^3$$
 WORLD SHEET SUPERPOTENTIAL AT FERMAT POINT

DIVIDED BY THE ORBIFOLD PROJECTION

$$7/3$$
: $X_i \rightarrow \omega X_i$ with $\omega = e^{\frac{2\pi i}{3}}$

MODULI FIELDS CORRESPOND TO PRIMARY FIELDS JN THE CONFORMAL FIELD THEORY.
HOW DO THESE LOOK PRECISELY?

COMPLEX STRUCTURE DEFORMATIONS

CORRESPOND TO PRIMARY FIELD OF THE

(C,C) RING AND ARE DESCRIBED IN TERMS

OF THE JACOBIAN RING

$$x_{i} x_{j} x_{k}$$
 $x_{i} x_{j} x_{k}$
 $x_{i} x_{i} x_{i}$

KÄHLER STRUCTURE DEFORMATIONS
NS-SECTOR

CORRESPOND TO PRIMARY FIELDS IN THE (a,c) RING AND COME FROM THE TWISTED SECTORS OF THE ORBIFOLD hoo = 1 hos = 1 (723 orbifold)

R-R GROUNDSTATES (Special flow) DRIENTIFOLD ACTION?

ORIENTIFOLD ACTION

SOURCES OF NEGATIVE CHARGE ARE OBTAINED BY ORIENTIFOLDING

$$X(\tau,\sigma) \simeq PX(\tau,-\sigma)$$

$$JNVOLUTION P^{2}=1$$

WHAT ARE THE ALLOWED JUVOLUTIONS?

THE WORLDSHEET ACTION HAS AN

F- TERM

$$\int d\theta^{+} d\theta^{-} W(x) \xrightarrow{P_{A}} - \int d\theta^{+} d\theta^{-} W(P_{X})$$

$$W(X) = -W(P_{X}) \xrightarrow{SHOULD} BE ODD$$

INVOLUTIONS

THERE ARE 5 CHOICES OF INVOLUTIONS WHICH CONSIST IN AN OVERALL SIGN FLIP AND PAIRWISE EXCHANGE OF LG COORDINATES

$$(x_1x_2...x_8x_9) = -(x_1x_2...x_8x_9)$$

 $(x_1x_2...x_8x_9) = -(x_2x_1x_3x_4...x_8x_9)$
••••

03 PLANE

STATES SHOULD BE JUVARIANT UNDER ORIENTIFOLD ACTION (UP TO A SIGN)

$$X_1X_2X_j$$
 7
 $X_1X_1X_K \implies X_1X_1X_K$ 30
 (84 states) $X_1X_1X_1 + X_2X_1X_2$ 21
 5 states 63

SUSIC CYCLES IN LANDAU-GINZBURG Igbal, Hori + Vafa

FLUXES NEED TO BE INTEGRATED OVER SUSIC CYCLES TO CHECK TADPOLE CANCELLATION

WE ARE CONSIDERING AN N=2 LG THEORY ON A MANIFOLD WITH BOUNDARY. THE SUPERPOTENTIAL W IS AN F-TERM THAT UNDER SUSY GIVES A TOTAL DERIVATIVE. BOUNDARY TERM =0

DA-CYCLES (SLAGS)

@ B-Cycles (Golx)

JmW=O (odd)

W=O (even)

STRAIGHT LINE a P CYCLE W-PLANE &

POINT IN W-PLANE

SIMPLE EXAMPLE

CONSIDER ONE C=1 MINIMAL MODEL

WE NEED TO BUILD A 7/3 INVARIANT COMBINATION OF THE TWO CYCLES AND CONSIDER 9 MINIMAL MODELS

WE WOULD LIKE TO INTEGRATE THE R-R GROUND STATES (BASIS)

$$X^{\ell-1} \equiv 1\ell$$
 $\ell = 1/2$

OUER A-CYCLES < Vm /

THERE IS A NATURAL PAIRING THAT

DEFINES THE INTEGRATION OF STATES

OVER CYCLES

Cecohi, Hori + Vafa

$$\langle Vm|\ell \rangle = \int x^{\ell-1} e^{-x^3} dx$$
 $\ell = 1,2$

TADPOLE:

 $\int 6 \cdot 6^* = \int \langle \ell|Vm \rangle I^{mm} \langle Vm|\ell' \rangle$
 $\tau - \tau^*$

THESE ARE ALL THE TOOLS WE NEED!

SUMMARY OF CONDITIONS

CONSIDER MINKOWSKI SOLUTIONS FOR NOW

O SUPERSYMMETRY
$$6 = HRR-THNS \in H^{2,1}$$

 $\int G \Lambda \Omega = \int G \Lambda \Omega^* = \int G \Lambda \chi_{2,1} = 0$

2) TAMPOLE CANCELLATION

TAKING THIS JNTO ACCOUNT WE OBTAIN A LARGE SYSTEM OF DIOPHANTINE EOS. HARD TO SOLVE 1

SAMPLE STRONG COUPLING SOLUTION

ALL MINKOWSKI SOLUTIONS EMERGE AT STRONG COUPLING (ADS SOLUTIONS ALSO EXIST) (NOT JN THIS MODEL THOUGH)

$$|\ell\rangle = |\ell_1 \ell_2 ... \ell_9\rangle$$
 with $|\ell\rangle = \chi^{\ell-1}$
 $\ell = 1.2$
 $T = \omega = e^{\frac{2\pi i}{3}}$
Theak coupling (NORTH)

NON-RENORMALIZATION THEOREM

THE TYPE ILB FLUX SUPERPOTENTIAL DOES NOT RECEIVE ANY CORRECTIONS IN 95

WIB = 5612

String coupling

Vafa Dijkgraaf + Vafa

PERTURBATIVE CORRECTIONS Burgess, Escoda +

THE N=1 ACTION STILL HAS FEATURES OF

THE N=2 THEORY

(NO COUPLING BETWEEN HYPERS + JECTORS)

2 NON-PERTURBATIVE CORRECTIONS:

NO CANDIDATE JUSTANTON AVAILABLE

THIS ENSURES THE EXISTENCE OF VACUA!

MASSES OF MODULI?? SUSY BREAKING?

TYBE IIB FLUX VACUA AT WEAK COUPLING

GOAL: SEARCH FOR VACUA IN THE LARGE COMPLEX STRUCTURE AND SHALL 95 LIMIT MIRROR TO MASSIVE ILA MODEL OF DEKT (LARGE RADIUS, SMALL 95)

 $W = \sum_{i=1}^{9} x_i^3 + \alpha_1 x_1 x_2 x_3 + \alpha_2 x_4 x_5 x_6 + \alpha_3 x_7 x_8 x_9 + \cdots$

BULK MODULI: t,t2 t3 RELATED TO Q; COMPLEX STRUCTURE OF T6 = (T2)3

BLOW UP MODES: STABILIZED

FLUX SUPERPOTENTIAL AND MODULI

WE WOULD LIKE TO DERIVE WIB (titzt3).

$$W_{IIB} = \int (H_R - T H_{NS}) \wedge \int \Omega$$
 $H_{NS} = N^{\alpha} d\alpha - \tilde{N} \alpha \beta^{\alpha}$
 $H_{R} = M^{\alpha} d\alpha - \tilde{M} \alpha \beta^{\alpha}$
 $H_{R} = M^{\alpha} d\alpha - \tilde{M} \alpha \beta^{\alpha}$
 $SYMPLECTIC BASIS$

SPECIAL GEOMETRY

$$\frac{\partial T}{\partial t} = \oint_{AI} \Omega$$
 PREPOTENTIAL

$$\widehat{\mathcal{J}}(z) = -\frac{1}{3!} \mathcal{R}_{IJK} \underline{\mathcal{Z}^{I} \mathcal{Z}^{J} \mathcal{Z}^{K}} \quad ; \quad \mathcal{R}_{123} = \mathcal{R}_{=1}$$

$$z^{0} \quad z^{1} = t_{2} = t_{3} = t$$

$$W_{RR} = -t^{3}M_{0} + 3t^{2}M_{2} + 3tM_{4} + M_{6}$$

$$W_{NS} = -t^{3}N_{0} + 3t^{2}N_{2} + 3tN_{4} + N_{6}$$

MODULI [FLUX XX] THEN EASILY FOLLOWS BY SOLVING TADPOLE

DtW=DzW=0 W=0 (Minkowski)

WHAT DID WE SEE 2 /

- (1) MINKOWSKI SOLUTIONS ARE CONFINED TO STRONG COUPLING
- (2) Ads SOLUTIONS EXIST FOR LARGE & AND SMALL 9s WE WORKED OUT SPECIFIC EXAMPLES

EXAMPLE: MIRROR OF MASSIVE ITA

A SIMPLE SOLUTION WHICH IS MIRROR TO THE MASSIVE TYPE IT A MODEL 15

$$W_{NS} = N_6$$
 $W_{RR} = -t^3 M_0 + 3t^2 M_2 + 3t M_4 + M_6$

SOLUTION

$$t_1 = \frac{M_2}{M_0}$$
 $t_2 = \sqrt{-\frac{M_2^2}{M_0^2} - \frac{M_4}{M_0}}$ $t = t_1 + it_2$
 $T_2 \approx \frac{M_0}{N_6} (t_2)^3$

A CONJECTURE

A SURPRISE ARRIVED FROM THE MASS MATRIX

MASSES ARE OF THE ORDER OF THE 4D COSMOLOGICAL CONSTANT ?

SITUATION IS RATHER GENERIC FOR ALL
TYPE IB SOLUTIONS AS WELL AS FOR THE
HASSIVE IA MODEL OF DGKT
GUKOU, Ogguri + Vafa

CONJECTURE

ANY SEQUENCE OF SUPERSYMMETRIC WEAKLY COUPLED STRING VACUA HAS SOME MODULI FIELDS WITH MASSES OF THE ORDER OF THE COSMOLOGICAL CONSTANT. . . "

FOR SUSIC VACUA MODULI MIGHT ONLY BE STABILIZED IN THE NON- GEOMETRIC PHASE YVV

UPLIFTING TO DE SITTER Theis + Vandoren

Kalloshto Saueressij

THE SITUATION MAY IMPROVE ONCE WE UPLIFT TO DE SITTER SPACE AND MODULI MIGHT BE HEAUY

* WE CAN UPLIFT WITH D3s (KKLT)

* SUSY BREAKING WITH FLUX ONLY

ONCE SUSY IS BROKEN AND IN MODELS WITH A RICHER STRUCTURE THERE MIGHT

BE AN ALTERNATIVE TO D3'S INVOLVING ONLY FLUX. Aganagic, Beam Heckman + Vafa (non-compact) INGREDIENTS:

* PERTURBATIVE CORRECTIONS TO K(D)

* NON-PERTURBATIVE CORRECTIONS TO WITE), WHICH ARE ALLONED IN MORE COMPLICATED MODELS ONCE SUSY JS BROKEN.

NOT A FREE LUNCH THOUGH V

CONCLUSION

IT IS OF GREAT IMPORTANCE TO UNDERSTAND HODULI STABILIZATION IN THE NON-GEOMETRIC PHASE P

SOME RATHER INTERESTING

QUESTIONS NEED TO BE SOLVED:

- * STRONG COUPLING SOLUTION: IS THERE A DUAL CFT???
- * WEAK COUPLING SOLUTION:

 INSTANTON CORRECTIONS TO WI
 PERTURBATIVE CORRECTIONS TO K
- * FLUXES ON CFT AND LANDAU. GINZBURG?

 * OMPLICATIONS OF LIGHT MODUL! FOR SWAMPLAND

AN EXCITING TRIP THROUGH THE NON-GEOMETRIC LAND SCAPE IS AHEAD OF US T

