D-brane Instantons in Supersymmetric 4D String Vacua

Ralph Blumenhagen

Max-Planck-Institut für Physik, München
Motivation

In order to make progress towards making definite low energy predictions from string theory one must resolve the issue of moduli stabilisation.
Motivation

In order to make progress towards making definite low energy predictions from string theory one must resolve the issue of moduli stabilisation

- Tree level effects: Fluxes ("tunable")
Motivation

In order to make progress towards making definite low energy predictions from string theory one must resolve the issue of moduli stabilisation

- Tree level effects: Fluxes ("tunable")
- Non-perturbative effects: instantons, gaugino condensation (defined by string background)
Motivation

In order to make progress towards making definite low energy predictions from string theory one must resolve the issue of moduli stabilisation

- Tree level effects: **Fluxes** ("tunable")
- Non-perturbative effects: **instantons**, gaugino condensation (defined by string background)

Program: **Systematic investigation of string instanton effects** for various classes of $\mathcal{N} = 1$ string vacua
Motivation

In order to make progress towards making definite low energy predictions from string theory one must resolve the issue of moduli stabilisation

- Tree level effects: Fluxes (”tunable”)
- Non-perturbative effects: instantons, gaugino condensation (defined by string background)

Program: Systematic investigation of string instanton effects for various classes of $\mathcal{N} = 1$ string vacua

(Most of the work so far was for world-sheet instantons in Type II and heterotic string theory and for M-brane instantons)

(Dine, Seiberg, Wen, Witten), (Becker2, Strominger), (Harvey, Moore), (Witten), (Green, Gutperle), (Antoniadis, Gava, Narain, Taylor), (Rocek, Saueressig, Theis, Vandoren), (Berglund, Mayr), (Kashani-Poor, Tomasiello), (Tsimpis), (Halmagyi, Melnikov, Sethi), (Grimm) ...
Program
Program

- D-brane instanton effects on $\mathcal{N} = 1$ 4D action
Program

- D-brane instanton effects on $\mathcal{N} = 1$ 4D action
- Zero mode structure and possible lifting

Strings 2007, 25.06.2007 – p.3/27
Program

- D-brane instanton effects on $\mathcal{N} = 1$ 4D action
 - Zero mode structure and possible lifting
 - CFT instanton calculus
Program

- D-brane instanton effects on $\mathcal{N} = 1$ 4D action
 - Zero mode structure and possible lifting
 - CFT instanton calculus
 - E2-instanton corrections to holomorphic objects W and f
Program

• D-brane instanton effects on $\mathcal{N} = 1$ 4D action
 • Zero mode structure and possible lifting
 • CFT instanton calculus
 • E2-instanton corrections to holomorphic objects W and f
 • Instanton corrections to D-terms \rightarrow brane stability
Program

• D-brane instanton effects on $\mathcal{N} = 1$ 4D action
 • Zero mode structure and possible lifting
 • CFT instanton calculus
 • E2-instanton corrections to holomorphic objects W and f
 • Instanton corrections to D-terms \rightarrow brane stability
• Instanton effects in realistic D-brane string vacua
Program

- D-brane instanton effects on $\mathcal{N} = 1$ 4D action
 - Zero mode structure and possible lifting
 - CFT instanton calculus
 - E2-instanton corrections to holomorphic objects W and f
 - Instanton corrections to D-terms \rightarrow brane stability
- Instanton effects in realistic D-brane string vacua
 - Generation of closed/open string superpotential \rightarrow moduli stabilisation, inflation
Program

• D-brane instanton effects on $\mathcal{N} = 1$ 4D action
 • Zero mode structure and possible lifting
 • CFT instanton calculus
 • E2-instanton corrections to holomorphic objects W and f
 • Instanton corrections to D-terms \rightarrow brane stability
• Instanton effects in realistic D-brane string vacua
 • Generation of closed/open string superpotential \rightarrow moduli stabilisation, inflation
 • Generation of perturbatively forbidden but phenomenologically desirable matter couplings like Majorana masses for neutrinos, Yukawa couplings for $SU(5)$ models or mass terms for exotic matter.
Program

• D-brane instanton effects on $\mathcal{N} = 1$ 4D action
 • Zero mode structure and possible lifting
 • CFT instanton calculus
 • E2-instanton corrections to holomorphic objects W and f
 • Instanton corrections to D-terms \rightarrow brane stability
• Instanton effects in realistic D-brane string vacua
 • Generation of closed/open string superpotential \rightarrow moduli stabilisation, inflation
 • Generation of perturbatively forbidden but phenomenologically desirable matter couplings like Majorana masses for neutrinos, Yukawa couplings for $SU(5)$ models or mass terms for exotic matter.
• Stringy derivation of field theory instanton effects
Reminder: GS mechanism

Gauge group $Y^a U(N^a) = Y^a SU(N^a) U(1)^a$ in general contains anomalous $U(1)^a$ symmetries. Anomaly cancellation via the 4D Green-Schwarz mechanism yields anomalous $U(1)^a$s become massive and survive as global perturbative symmetries. Only specific linear combinations of $U(1)^a$s are massless and remain as unbroken gauge symmetry (like $U(1)^a Y$).

Global $U(1)^a$ forbid some desirable matter couplings, e.g. Majorana type neutrino masses, $SU(5)$ Yukawa couplings or --^2-terms.

Relation to M-theory on G_2 manifolds (?).
Reminder: GS mechanism

Gauge group

\[
\prod_{a} U(N_a) = \prod_{a} SU(N_a) \times U(1)_a
\]

in general contains **anomalous** \(U(1)_a\) symmetries
Reminder: GS mechanism

Gauge group

\[\prod_{a} U(N_a) = \prod_{a} SU(N_a) \times U(1)_a \]

in general contains anomalous \(U(1)_a \) symmetries

Anomaly cancellation via the 4D Green-Schwarz mechanism
Reminder: GS mechanism

Gauge group

\[\prod_{a} U(N_{a}) = \prod_{a} SU(N_{a}) \times U(1)_{a} \]

in general contains anomalous \(U(1)_{a} \) symmetries

Anomaly cancellation via the 4D Green-Schwarz mechanism

- Anomalous \(U(1) \)s become massive and survive as global perturbative symmetries
Reminder: GS mechanism

Gauge group

\[\prod_a U(N_a) = \prod_a SU(N_a) \times U(1)_a \]

in general contains anomalous \(U(1)_a \) symmetries

Anomaly cancellation via the 4D Green-Schwarz mechanism

- Anomalous \(U(1) \)s become massive and survive as global perturbative symmetries
- Only specific linear combinations of \(U(1) \)s are massless and remain as unbroken gauge symmetry (like \(U(1)_Y \))
Reminder: GS mechanism

Gauge group

\[\prod_a U(N_a) = \prod_a SU(N_a) \times U(1)_a \]

in general contains anomalous \(U(1)_a \) symmetries

Anomaly cancellation via the 4D Green-Schwarz mechanism

- Anomalous \(U(1) \)s become massive and survive as global perturbative symmetries
- Only specific linear combinations of \(U(1) \)s are massless and remain as unbroken gauge symmetry (like \(U(1)_Y \))
- Global \(U(1) \) forbid some desirable matter couplings, e.g. Majorana type neutrino masses, \(SU(5) \) Yukawa couplings or \(\mu \)-terms \(\rightarrow \) relation to M-theory on \(G_2 \) manifolds(?)
Instanton corrections

Instanton corrections in string theory can break the axionic shift symmetries and therefore the global U(1) symmetries. (Bl, Cvetic, Weigand, hep-th/0609191), (Ibanez, Uranga, hep-th/0609213)

Consider: D2-brane (E2) instantons in Type IIA wrapping a sLag three-cycle on Calabi-Yau.

From E2-E2 open strings:

Generic 4 bosonic zero modes X_i and 4 fermionic zero modes γ_i and $\bar{\gamma}_i$.

Due to deformations, b_1 complex bosonic zero modes Y_i and fermionic zero modes γ_i and $\bar{\gamma}_i$.
Instanton corrections

Instanton corrections in string theory can break the axionic shift symmetries and therefore the global $U(1)$ symmetries.
Instanton corrections

Instanton corrections in string theory can break the axionic shift symmetries and therefore the global U(1) symmetries.

(BI, Cvetic, Weigand, hep-th/0609191), (Ibanez, Uranga, hep-th/0609213)

Consider: D2-brane (E2) instantons in Type IIA wrapping a sLag three-cycle Ξ on Calabi-Yau.
Instanton corrections

Instanton corrections in string theory can break the axionic shift symmetries and therefore the global $U(1)$ symmetries.

(Bl, Cvetic, Weigand, hep-th/0609191), (Ibanez, Uranga, hep-th/0609213)

Consider: D2-brane (E2) instantons in Type IIA wrapping a sLag three-cycle Ξ on Calabi-Yau.
From E2-E2 open strings:

- Generic 4 bosonic zero modes X_μ and 4 fermionic zero modes θ^α and $\bar{\theta}^{\dot{\alpha}}$
- Due to deformations, $b_1(\Xi)$ complex bosonic zero modes Y_i and fermionic zero modes μ_i^α and $\bar{\mu}_{i\dot{\alpha}}$
F-terms via E2-Instantons

The two zero modes are projected out by the E2 must be invariant under and must be an $O(1)$ instanton (instead of $SP(2)$ or $U(1)$) (Argurio, Bertolini, Ferreti, Lerda, Petersson), (Ibanez, Schellekens, Uranga), (Bianchi, Fucito, Morales). The two zero modes can be absorbed elsewhere, like for instantons on top of D6-brane: $x x x x \theta \beta (3/8, -3/2) \beta (3/8, 3/2) (0, 0) D6 E2 E2$!
F-terms possible only if

- The two $\theta^{\dot{\alpha}}$ zero modes are projected out by $\Omega \overline{\sigma}$. For this the E2 must be invariant under $\overline{\sigma}$ and must be an $O(1)$ instanton (instead of $SP(2)$ or $U(1)$) (Argurio, Bertolini, Ferreti, Lerda, Petersson), (Ibanez, Schellekens, Uranga), (Bianchi, Fucito, Morales)
F-terms possible only if

- The two θ^α zero modes are projected out by $\Omega \bar{\sigma}$. For this the E2 must be invariant under $\bar{\sigma}$ and must be an $O(1)$ instanton (instead of $SP(2)$ or $U(1)$) (Argurio, Bertolini, Ferreti, Lerda, Petersson), (Ibanez, Schellekens, Uranga), (Bianchi, Fucito, Morales)

- The two θ^α zero modes can be absorbed elsewhere, like for instantons on top of D6-brane:

\[
\begin{array}{c}
\theta^{(3/8,-3/2)} \\
\downarrow
\end{array}
\]

\[
\begin{array}{c}
E2 \\
\downarrow
\end{array}
\]

\[
\begin{array}{c}
\beta^{(3/8,3/2)} \\
\downarrow
\end{array}
\]

\[
\begin{array}{c}
D6 \\
\downarrow
\end{array}
\]

\[
\begin{array}{c}
b_{(0,0)} \\
\end{array}
\]

\rightarrow fermionic ADHM-constraints (Billo et al., hep-th/0211250),
Instanton Recombination and Fluxes

After recombination the resulting object does not have zero modes, but additional fermionic zero modes appear spoiling the generation of an F-term.

\[
\begin{align*}
E_2 \cdot E_2 &= 0 \\
E_2 \cdot E_2 &= 1
\end{align*}
\]

are soaked up and \(m \); zero modes survive (deformations of the instantons)!

generation of Beasley/Witten type multi-fermion couplings (Beasley, Witten)

Fluxes are known to lift \(E_3 \)-instanton zero modes (Witten), (Tripathy, Trivedi), (Bergsho et al.), (Lust et al.)

In Type IIB \(I_6 \) \(F \)-orientifolds a primitive \(G_{2,1} \) flux does not lift the zero modes of an \(U(1) \) instanton
Instanton Recombination and Fluxes

preliminary results of (Bl, Cvetic, Richter, Weigand, to appear)

E2-E2’ instanton recombination:

\[\text{After recombination the resulting object does not have zero modes, but additional fermionic zero modes appear spoiling the generation of an F-term.} \]

\[\text{After recombination are soaked up and new zero modes survive (deformations of the instantons) generation of Beasley/Witten type multi-fermion couplings (Beasley, Witten).} \]

Fluxes are known to lift E3-instanton zero modes (Witten), (Tripathy, Trivedi), (Bergshoef et al.), (Lust et al.).

In Type IIB \(I_6 \) \(F \)-orientifolds a primitive \(G_2 \)-flux does not lift the zero modes of an U(1) instanton.
preliminary results of (Bl, Cvetic, Richter, Weigand, to appear)

E2-E2′ instanton recombination:

- $E^2 \circ E^2′ \neq 0$: After recombination the resulting object does not have $\bar{\theta}$ zero modes, but additional fermionic zero modes appear spoiling the generation of an F-term.
Instanton Recombination and Fluxes

preliminary results of (Bl, Cvetic, Richter, Weigand, to appear)

E2-E2’ instanton recombination:

- $E2 \circ E2' \neq 0$: After recombination the resulting object does not have $\bar{\theta}$ zero modes, but additional fermionic zero modes appear spoiling the generation of an F-term.

- $[E2 \cap E2']^\pm = 1$: After recombination $\bar{\theta}$ are soaked up and $m, \bar{\mu}_{\bar{\alpha}}$ zero modes survive (deformations of the instantons) → generation of Beasley/Witten type multi-fermion couplings (Beasley, Witten)
Instanton Recombination and Fluxes

preliminary results of (Bl, Cvetic, Richter, Weigand, to appear)

E2-E2’ instanton recombination:

- $E2 \circ E2' \neq 0$: After recombination the resulting object does not have $\bar{\theta}$ zero modes, but additional fermionic zero modes appear spoiling the generation of an F-term.

- $[E2 \cap E2']^\pm = 1$: After recombination $\bar{\theta}$ are soaked up and $m, \bar{\mu}_\alpha$ zero modes survive (deformations of the instantons) \rightarrow generation of Beasley/Witten type multi-fermion couplings (Beasley, Witten)

Fluxes are known to lift E3-instanton zero modes (Witten), (Tripathy,Trivedi), (Bergshoeff et al.),(Lüst et al.)
Instanton Recombination and Fluxes

preliminary results of (Bl, Cvetic, Richter, Weigand, to appear)

E2-E2’ instanton recombination:

- $E2 \circ E2' \neq 0$: After recombination the resulting object does not have $\bar{\theta}$ zero modes, but additional fermionic zero modes appear spoiling the generation of an F-term.

- $[E2 \cap E2']^\pm = 1$: After recombination $\bar{\theta}$ are soaked up and $m, \bar{\mu}_{\hat{\alpha}}$ zero modes survive (deformations of the instantons) → generation of Beasley/Witten type multi-fermion couplings (Beasley, Witten)

Fluxes are known to lift E3-instanton zero modes (Witten), (Tripathy,Trivedi), (Bergshoeff et al.),(Lüst et al.)

- In Type IIB $\Omega I_6(-1)^F_L$ orientifolds a primitive $G_{2,1}$ flux does not lift the $\bar{\theta}$ zero modes of an U(1) instanton
Type IIA Space-time Instantons

Instanton action:

\[W_{np} = S_E^2 = \exp \left(\frac{2}{\beta} \right) \]

is not gauge invariant under \(U(1) \).

Indeed \(S_E^2 \) is not equal to \(e^{i Q_a (E^2)} \),

where \(Q_a (E^2) = N_a - (a_0 a_0) \).
Type IIA Space-time Instantons

Instanton action:

\[W_{np} \propto e^{-S_{E2}} = \exp \left[-\frac{2\pi}{\ell_s^3} \left(\frac{1}{g_s} \int_\Xi \Re(\Omega_3) - i \int_\Xi C_3 \right) \right] \]

is not gauge invariant under \(U(1)_a \)!
Type IIA Space-time Instantons

Instanton action:

\[W_{np} \propto e^{-S_{E2}} = \exp \left[-\frac{2\pi}{\ell_s^3} \left(\frac{1}{g_s} \int_{\mathcal{X}} \mathcal{R}(\Omega_3) - i \int_{\mathcal{X}} C_3 \right) \right] \]

is not gauge invariant under \(U(1)_a \)!

Indeed

\[e^{-S_{E2}} \rightarrow e^{i Q_a(E2) \Lambda_a} e^{-S_{E2}}, \]

where

\[Q_a(E2) = N_a \mathcal{X} \circ (\Pi_a - \Pi'_a). \]
Type IIA Space-time Instantons

Consequence: If

\[Q^a \left(E^2 \right)^6 = 0 \]

for some \(a \), no terms

\[W = e^{S_2} \]

possible but:

\[W = Y_i e^{S_2} \]

with

\[X_i Q^a (i) + Q^a (E^2) = 0 \]

i.e. non-perturbative breakdown of global

\(U(1) \)

symmetries.

see also e.g.: (Achucarro, Carlos, Casas, Doplicher, hep-th/0601190), (Haack, Kre, Lust, Van Proeyen, Zagermann, hep-th/0609211)

How can we understand this selection rule in terms of fermionic zero modes?
Type IIA Space-time Instantons

Consequence: If $Q_a(E2) \neq 0$ for some a, no terms $W = e^{-S_{E2}}$ possible but:

$$W = \prod_i \Phi_i e^{-S_{E2}} \quad \text{with} \quad \sum_i Q_a(\Phi_i) + Q_a(E2) = 0 \quad \forall a$$

i.e. non-perturbative breakdown of global $U(1)$ symmetries.

see also e.g. : (Achucarro, Carlos, Casas, Doplicher, hep-th/0601190), (Haack, Krefl, Lüst, Van Proeyen, Zagermann, hep-th/0609211)
Type IIA Space-time Instantons

Consequence: If $Q_a(E^2) \neq 0$ for some a, no terms $W = e^{-S_{E^2}}$ possible but:

$$W = \prod_i \Phi_i \: e^{-S_{E^2}} \quad \text{with} \quad \sum_i Q_a(\Phi_i) + Q_a(E^2) = 0 \quad \forall a$$

i.e. **non-perturbative** breakdown of global $U(1)$ symmetries.

see also e.g. : (Achucarro, Carlos, Casas, Doplicher, hep-th/0601190), (Haack, Krefl, Lüst, Van Proeyen, Zagermann, hep-th/0609211)

How can we understand this selection rule in terms of fermionic zero modes?
Instanton zero modes

...
Instanton zero modes

Additional Zero modes charged under $U(1)_a$:

Strings between $E2$ and $D6_a$ have DN-boundary conditions in 4D and mixed boundary conditions along $CY_3 \rightarrow 1/2$ complex fermionic zero mode λ_a (Ganor, hep-th/9612077)

<table>
<thead>
<tr>
<th>zero modes</th>
<th>Reps.</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_{a,I}$</td>
<td>$(-1_E, \square_a)$</td>
<td>$I = 1, \ldots, [\Xi \cap \Pi_a]^+$</td>
</tr>
<tr>
<td>$\bar{\lambda}_{a,I}$</td>
<td>$(1_E, \square_a)$</td>
<td>$I = 1, \ldots, [\Xi \cap \Pi_a]^-$</td>
</tr>
<tr>
<td>$\lambda_{a',I}$</td>
<td>$(-1_E, \square_a)$</td>
<td>$I = 1, \ldots, [\Xi \cap \Pi'_a]^+$</td>
</tr>
<tr>
<td>$\bar{\lambda}_{a',I}$</td>
<td>$(1_E, \square_a)$</td>
<td>$I = 1, \ldots, [\Xi \cap \Pi'_a]^-$</td>
</tr>
</tbody>
</table>
Instanton zero modes

Additional Zero modes charged under $U(1)_a$:
Strings between $E2$ and $D6_a$ have DN-boundary conditions in 4D and mixed boundary conditions along $CY_3 \rightarrow 1/2$ complex fermionic zero mode λ_a (Ganor, hep-th/9612077)

<table>
<thead>
<tr>
<th>zero modes</th>
<th>Reps.</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_{a,I}$</td>
<td>$(-1_E, \square_a)$</td>
<td>$I = 1, \ldots, [\Xi \cap \Pi_a]^+$</td>
</tr>
<tr>
<td>$\bar{\lambda}_{a,I}$</td>
<td>$(1_E, \bar{\square}_a)$</td>
<td>$I = 1, \ldots, [\Xi \cap \Pi_a]^-)$</td>
</tr>
<tr>
<td>$\lambda_{a',I}$</td>
<td>$(-1_E, \bar{\square}_a)$</td>
<td>$I = 1, \ldots, [\Xi \cap \Pi'_a]^+$</td>
</tr>
<tr>
<td>$\bar{\lambda}_{a',I}$</td>
<td>$(1_E, \square_a)$</td>
<td>$I = 1, \ldots, [\Xi \cap \Pi'_a]^-)$</td>
</tr>
</tbody>
</table>

Total $U(1)_a$ charge of all zero modes:

$$Q_a(E2) = N_a \Xi \circ (\Pi_a - \Pi'_a).$$
Instanton calculus
E2-instantons are described by open strings → computation of stringy instanton correlation functions should be possible in (boundary) conformal field theory. (Gutperle, Green, hep-th/9701093), (Billo et al., hep-th/0211250)
Instanton calculus

E2-instantons are described by open strings \to computation of stringy instanton correlation functions should be possible in (boundary) conformal field theory. (Gutperle, Green, hep-th/9701093), (Billo et al., hep-th/0211250)

As a first step we would like to compute (rigid) E2-contributions to the charged matter field superpotential

$$W_{np} \simeq \prod_{i=1}^{M} \Phi_{a_i,b_i} e^{-S_{E2}}.$$

with $\Phi_{a_i,b_i} = \phi_{a_i,b_i} + \theta \psi_{a_i,b_i}$ denoting chiral matter superfields at the intersection of Π_{a_i} with Π_{b_i} (suppress Chan-Paton labels for simplicity).
Instanton calculus: Summary
Probe superpotential by correlator

\[
\langle \Phi_{a_1,b_1} \cdots \Phi_{a_M,b_M} \rangle_{E2-\text{inst}} = \frac{e^{\frac{\kappa}{2}} Y_{\Phi_{a_1,b_1}, \ldots, \Phi_{a_M,b_M}}}{\sqrt{K_{a_1,b_1} \cdots K_{a_M,b_M}}}
\]

\[
\langle \Phi_{a_1,b_1}(x_1) \cdots \Phi_{a_M,b_M}(x_M) \rangle_{E2-\text{inst}} = \\
= \int d^4x \ d^2\theta \ \sum_{\text{conf.}} \Pi_a \left(\prod_{i=1}^{[\Xi \cap \Pi_a]^+} d\lambda_a^i \right) \left(\prod_{i=1}^{[\Xi \cap \Pi_a]^+} d\bar{\lambda}_a^i \right) \exp(-S_{E2}) \times \exp(Z_0') \\
\times \langle \Phi_{a_1,b_1}[\vec{x}_1] \rangle^{\text{tree}}_{\lambda_{a_1},\bar{\lambda}_{b_1}} \cdots \langle \Phi_{a_L,b_L}[\vec{x}_L] \rangle^{\text{tree}}_{\lambda_{a_L},\bar{\lambda}_{b_L}} \times \\
\prod_k \langle \Phi_{c_k,c_k}[\vec{x}_k] \rangle^{\text{loop}}_{A(E2,D6_{c_k})}
\]
Recall: loop-amplitudes (no a-insertion).

Factor out vacuum loops involving at least one E_2 boundary:

$$Z_{A}(E_2;D_6; a) = \int_0^{\Lambda_0^2} \, t \, Tr \, E_2; D_6; a \, e^{\frac{2}{\alpha} t L_0} D_6 = 0$$

and likewise

$$Z_{M}(E_2;O_6) = 0$$

but

$$Z_{A}(E_2;E_2) = 0$$

(due to bose-fermi deg.).

Therefore

$$\exp \left(Z_0 \right) = \exp \left(\sum_{a} Z_{A}(E_2;D_6; a) + Z_{M}(E_2;O_6) \right) !$$

One-loop determinants!
Instanton calculus: 1-loop

Recall: loop-amplitudes uncharged (no λ_α-insertion)
Recall: loop-amplitudes uncharged (no λ_a-insertion)

- Factor off vacuum loops involving at least one $E2$ boundary:

\[
Z^A(E2, D6_a) = c \int_0^{\infty} \frac{dt}{t} \text{Tr}_{E2,D6_a} \left(e^{-2\pi t L_0} \right) \neq 0
\]

and likewise $Z^M(E2, O6) \neq 0$ but $Z^A(E2, E2) = 0$ (due to bose-fermi deg.).
Recall: loop-amplitudes uncharged (no λ_a-insertion)

- Factor off vacuum loops involving at least one $E2$ boundary:

$$Z^A(E2, D6_a) = c \int_0^\infty \frac{dt}{t} \operatorname{Tr}_{E2,D6_a} \left(e^{-2\pi t L_0} \right) \neq 0$$

and likewise $Z^M(E2, O6) \neq 0$ but $Z^A(E2, E2) = 0$ (due to bose-fermi deg.).

Therefore

$$\exp (Z_0) = \exp \left(\sum_a Z^A(E2, D6_a) + Z^M(E2, O6) \right)$$

One-loop determinants!
Instanton calculus: 1-loop
Instanton calculus: 1-loop

Diagrammatically we have the relation (for even spin structures)

\[E_{2a} D_b = D_a x F_a x D_b \]

(Abel, Goodsell), (Akerblom, Bl, Lüst, Plauschinn, Schmidt-Sommerfeld)

Open problem: Computation of odd spin-structure \(E2 - D6 \) amplitude.
Instanton calculus: 1-loop
Stringy one-loop amplitudes are known to include the holomorphic Wilsonian part and non-holo. contributions from wave-function normalisation

\[(Shifman, Vainshtein), (Kaplunovsky, Louis)\]

\[Z_0(E2_a) = -\text{Re}(f_W^a)_{1\text{-loop}} - \frac{b_a}{2} \ln \left[\frac{M_p^2}{\mu^2} \right] - \frac{c_a}{2} K_{\text{tree}} \]

\[-\ln \left(\frac{V_3}{g_s} \right)_{\text{tree}} + \sum_b \frac{|I_{ab}N_b|}{2} \ln [\det Z(r)]_{\text{tree}}\]

with

\[b_a = \sum_b \frac{|I_{ab}N_b|}{2} - 3, \quad c_a = \sum_b \frac{|I_{ab}N_b|}{2} - 1.\]
Instanton calculus: 1-loop

The CFT disc amplitudes combine non-holomorphic and holomorphic pieces:

\[h_{ab} \left[x \right] i_{ab} = e^{K_{ab}} \]

Therefore, all the non-holomorphic piece including the instanton cancel out and one gets the holomorphic quantity:

\[Y_{a_1b_1} = \cdots \]

Higher loop only contribute to corrections of Kahler potentials.
The CFT disc amplitudes combine non-holomorphic and holomorphic pieces

\[
\langle \hat{\Phi}_{a,b}[x] \rangle_{\lambda_a, \bar{\lambda}_b} = \frac{e^{K_{a,b}} Y_{\lambda_a} \hat{\Phi}_{a,b}[x] \bar{\lambda}_b}{\sqrt{K\lambda_{a,a} \hat{K}_{a,b}[x] K_{b,\bar{\lambda}_b}}}.
\]
Instanton calculus: 1-loop

The CFT disc amplitudes combine non-holomorphic and holomorphic pieces

\[\langle \hat{\Phi}_{a,b}[\vec{x}] \rangle_{\lambda_a,\lambda_b} = \frac{e^{\frac{\kappa}{2} Y_{\lambda_a} \hat{\Phi}_{a,b}[x] \lambda_b}}{\sqrt{K_{\lambda_a,a} \hat{K}_{a,b}[x] K_{b,\lambda_b}}} . \]

Therefore, all the non-holomorphic piece including the instanton cancel out and one gets the holomorphic quantity

\[Y_{\Phi_{a_1,b_1},...,\Phi_{a_M,b_M}} = \sum_{\text{conf.}} \exp(-S_{E2})_{\text{tree}} \exp(-f_{W}^a)_{1-\text{loop}} \]

\[Y_{\lambda_{a_1} \hat{\Phi}_{a_1,b_1}[\vec{x}_1] \lambda_{b_1}} \cdots Y_{\lambda_{a_L} \hat{\Phi}_{a_L,b_L}[\vec{x}_L] \lambda_{b_L}} . \]

Higher loop only contribute to corrections of Kähler potentials.
Applications: Moduli potential

For E2-instantons with no matter field zero modes corrections to the uncharged closed/open string moduli superpotential can be generated:

$$W = A(T; U) e^U$$

Vacuum destabilisation

KKLT like stabilisation of closed string moduli

(Baumann et. al. hep-th/0607050)
Applications : Moduli potential

For E2-instantons with no matter field zero modes corrections to the uncharged closed/open string moduli superpotential can be generated

\[W = A(T, \Delta) e^{-U} \]

- Vacuum destabilisation
- KKLT like stabilisation of closed string moduli
- Inflaton potential for D-brane modulus \(\Delta \) (Baumann et. al. hep-th/0607050)
Applications : matter couplings

For appropriate E2-instantons, important perturbatively excluded matter couplings can be generated. Majorana masses for right-handed neutrinos (Bl, Cvetic, Weigand, hep-th/0609191), (Ibanez, Uranga, hep-th/0609213), see also (Bianchi, Kiritsis), (Cvetic, Richter, Weigand), (Ibanez, Schellekens, Uranga), (Antusch, Ibanez, Macri).

Non-pert. Majorana coupling:

\[W_M = M_M N_R c N_R c \]

with

\[M_M = x M_s e^{-2 \frac{3}{2} s g s V / E_2} \]

The natural mass scale is \(M_s' \approx M_{GUT} \) so that \(M_M \) is non-pert. suppressed w.r.t. to \(M_s >> M_{weak} ! \)
Applications : matter couplings

For appropriate E2-instantons, important perturbatively excluded matter couplings can be generated.
Applications: matter couplings

For appropriate E2-instantons, important perturbatively excluded matter couplings can be generated

- **Majorana masses** for right-handed neutrinos (Bl, Cvetic, Weigand, hep-th/0609191), (Ibanez, Uranga, hep-th/0609213), see also (Bianchi, Kiritsis), (Cvetic, Richter, Weigand), (Ibanez, Schellekens, Uranga), (Antusch, Ibanez, Macri)
Applications: matter couplings

For appropriate E2-instantons, important perturbatively excluded matter couplings can be generated

- Majorana masses for right-handed neutrinos (Bl, Cvetic, Weigand, hep-th/0609191), (Ibanez, Uranga, hep-th/0609213), see also (Bianchi, Kiritsis), (Cvetic, Richter, Weigand), (Ibanez, Schellekens, Uranga), (Antusch, Ibanez, Macri)

Non-pert. Majorana coupling:

$$W_M = M_M (N_R)^c (N_R)^c$$

with

$$M_M = x M_s e^{-\frac{2\pi}{\ell^3 s} gs Vol_{E2}}$$
Applications : matter couplings

For appropriate E2-instantons, important perturbatively excluded matter couplings can be generated

- **Majorana masses** for right-handed neutrinos (Bl, Cvetic, Weigand, hep-th/0609191), (Ibanez, Uranga, hep-th/0609213), see also (Bianchi, Kiritsis), (Cvetic, Richter, Weigand), (Ibanez, Schellekens, Uranga), (Antusch, Ibanez, Macri)

Non-pert. **Majorana coupling**:

\[
W_M = M_M \left(N_R \right)^c \left(N_R \right)^c
\]

with

\[
M_M = x M_s \ e^{-\frac{2\pi}{\ell_3^3 g_s} \ Vol_E^2}
\]

The natural mass scale is \(M_s \simeq M_{GUT} \) so that \(M_M \) is non-pert. suppressed w.r.t. to \(M_s >> M_{weak} \)!
SU(5) Yukawa couplings

Consider SU(5) GUT model via intersecting D6-branes. sector number U(5)

U(1) a U(1) b reps.

U(1) X (a0; a0) 3 10 (2; 0) 1 2 (a; b0)

3 5 (1; 1) 3 2 (b0; b0) 3 1 (0; 2) 5 2

H(1; 1) + 5 H(1; 1) i

Perturbative Yukawa couplings

h10 (2; 0) 5 (1; 1) 5 (0; 2) 5 H(1; 1) i

Yukawa coupling

h10 (2; 0) 10 (2; 0) 5 H(1; 1) i

is not U(1) invariant (but present on G2 manifolds).
Consider $SU(5)$ GUT model via intersecting D6-branes.

<table>
<thead>
<tr>
<th>sector</th>
<th>number</th>
<th>$U(5)_a \times U(1)_b$ reps.</th>
<th>$U(1)_X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a', a)</td>
<td>3</td>
<td>$10^{(2,0)}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>(a, b)</td>
<td>3</td>
<td>$\bar{5}^{(-1,1)}$</td>
<td>$-\frac{3}{2}$</td>
</tr>
<tr>
<td>(b', b)</td>
<td>3</td>
<td>$1^{(0,-2)}$</td>
<td>$\frac{5}{2}$</td>
</tr>
<tr>
<td>(a', b)</td>
<td>1</td>
<td>$5_H^{H(1,1)} + \bar{5}_H^{(-1,-1)}$</td>
<td>$(-1) + (1)$</td>
</tr>
</tbody>
</table>
SU(5) Yukawa couplings

Consider $SU(5)$ GUT model via intersecting D6-branes.

<table>
<thead>
<tr>
<th>sector</th>
<th>number</th>
<th>$U(5)_a \times U(1)_b$ reps.</th>
<th>$U(1)_X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a', a)</td>
<td>3</td>
<td>$10_{(2,0)}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>(a, b)</td>
<td>3</td>
<td>$\overline{5}_{(-1,1)}$</td>
<td>$-\frac{3}{2}$</td>
</tr>
<tr>
<td>(b', b)</td>
<td>3</td>
<td>$1_{(0,-2)}$</td>
<td>$\frac{5}{2}$</td>
</tr>
<tr>
<td>(a', b)</td>
<td>1</td>
<td>$5^H_{(1,1)} + \overline{5}^H_{(-1,-1)}$</td>
<td>$(-1) + (1)$</td>
</tr>
</tbody>
</table>

Perturbative Yukawa couplings

$$\langle 10_{(2,0)} \overline{5}_{(-1,1)} \overline{5}^H_{(-1,-1)} \rangle, \quad \langle \overline{5}_{(-1,1)} 1_{(0,-2)} 5^H_{(1,1)} \rangle$$
SU(5) Yukawa couplings

Consider \(SU(5) \) GUT model via intersecting D6-branes.

<table>
<thead>
<tr>
<th>sector</th>
<th>number</th>
<th>(U(5)_a \times U(1)_b) reps.</th>
<th>(U(1)_X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a', a))</td>
<td>3</td>
<td>(10_{(2,0)})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>((a, b))</td>
<td>3</td>
<td>(\bar{5}_{(-1,1)})</td>
<td>(-\frac{3}{2})</td>
</tr>
<tr>
<td>((b', b))</td>
<td>3</td>
<td>(1_{(0,-2)})</td>
<td>(\frac{5}{2})</td>
</tr>
<tr>
<td>((a', b))</td>
<td>1</td>
<td>(5^H_{(1,1)} + \bar{5}^H_{(-1,-1)})</td>
<td>((-1) + (1))</td>
</tr>
</tbody>
</table>

Perturbative Yukawa couplings

\[\langle 10_{(2,0)} \bar{5}_{(-1,1)} \bar{5}^H_{(-1,-1)} \rangle, \quad \langle \bar{5}_{(-1,1)} 1_{(0,-2)} 5^H_{(1,1)} \rangle \]

Yukawa coupling

\[\langle 10_{(2,0)} 10_{(2,0)} 5^H_{(1,1)} \rangle \]

is not \(U(1) \) invariant (but present on \(G_2 \) manifolds).
SU(5) Yukawa couplings
SU(5) Yukawa couplings

Can be generated, if the model contains an $O(1)$-instanton with $E^2 \circ \pi_a = -1$ and $E^2 \circ \pi_b = -1$,

(Bl, Cvetic, Lüst, Richter, Weigand, to appear)
SU(5) Yukawa couplings

Can be generated, if the model contains an $O(1)$-instanton with $E^2 \circ \pi_a = -1$ and $E^2 \circ \pi_b = -1$,

(Bl, Cvetic, Lüst, Richter, Weigand, to appear)

\[
W_Y = Y^{\alpha\beta}_{\langle 10 \ 10 \ 5_H \rangle} \epsilon_{ijklm} \ 10^\alpha_{ij} \ 10^\beta_{kl} \ 5^H_m
\]

Flipped $SU(5)$: hierarchy between (d, s, b) and (u, c, t) by E2-instanton, flavour hierarchy by world-sheet instantons
Applications: The ADS superpotential
Applications: The ADS superpotential

$\mathbb{N}=1$ SQCD with $N_f = N_c - 1$ flavours

(Akerblom, Blumenhagen, Lüst, Plauschinn, Schmidt-Sommerfeld, hep-th/0612132)

(Florea, Kachru, McGreevy, Saulina, hep-th/0610003)
The ADS superpotential

Fermionic zero modes:
\[L_{\text{ferm}} = c + f_e + \ldots \]

Bosonic zero modes:
\[L_{\text{bos}} = b + c + \ldots \]

ADHM constraints

Eventually one arrives at
\[SW'Z^4 x^2 N_c N_f \det[M_{ff}]_0 : \]

Higher corrections?
generalisations (Argurio, Bertolini, Ferreti, Lerda, Petersson), (Bianchi, Fucito, Morales)
The ADS superpotential

Issues:

• Fermionic zero modes:

\[\mathcal{L}_{\text{ferm}} = \beta_c \Phi \lambda_f + \lambda_f \tilde{\Phi} \tilde{\beta}_c. \]
The ADS superpotential

Issues:

• Fermionic zero modes:

\[\mathcal{L}_{\text{ferm}} = \beta_c \overline{\Phi} \overline{\lambda}_f + \lambda_f \Phi \overline{\beta}_c. \]

• Bosonic zero modes

\[\mathcal{L}_{\text{bos}} = b_c \overline{\Phi} \overline{\Phi} b_c + \tilde{b}_c \overline{\Phi} \overline{\Phi} \tilde{b}_c \]
The ADS superpotential

Issues:

- Fermionic zero modes:
 \[\mathcal{L}_{\text{ferm}} = \beta_c \bar{\Phi} \bar{\lambda}_f + \lambda_f \bar{\Phi} \beta_c. \]

- Bosonic zero modes
 \[\mathcal{L}_{\text{bos}} = b_c \Phi \bar{\Phi} \bar{b}_c + \bar{b}_c \bar{\Phi} \bar{\Phi} \bar{b}_c \]

- ADHM constraints
The ADS superpotential

Issues:

- Fermionic zero modes:
 \[
 \mathcal{L}_{\text{ferm}} = \beta_c \overline{\Phi} \lambda_f + \lambda_f \overline{\Phi} \beta_c.
 \]

- Bosonic zero modes
 \[
 \mathcal{L}_{\text{bos}} = b_c \Phi \Phi b_c + \tilde{b}_c \tilde{\Phi} \tilde{\Phi} \tilde{b}_c
 \]

- ADHM constraints

Eventually one arrives at

\[
S_W \simeq \int d^4x \ d^2\theta \ \frac{\Lambda^{3N_c-N_f}}{\det[M_{ff'}]}.\]

- Higher \(\alpha'\) corrections?

generalisations (Argurio, Bertolini, Ferreti, Lerda, Petersson), (Bianchi, Fucito, Morales)
Instanton corrections to f

Holomorphy dictates that for D6-branes the holomorphic gauge kinetic function must look like:

$$f = X^I M^{Ia} u^c I + f_{1}\text{loop} e^T c_i + f_{np} e^T U c_I e^T T c_i$$

For intersecting D6-branes on T^6 the holomorphic one-loop gauge threshold corrections are: (Lust, Stieberger), (Akerblom, Bl, Lust, Schmidt-Sommerfeld)

- $N = 1$ sector: $f^{(1)} = 0$
- $N = 2$ sector: $f^{(1)} = \ln \left(\frac{\alpha^I T^c}{I T c^I}\right)$

World-sheet instanton corrections come from world-sheets with two boundaries! Expect E_2-instantons from non-rigid ones with $b_1() = 1$.
Holomorphy dictates that for D6-branes the holomorphic gauge kinetic function must look like

\[f = \sum_{I} M^I_a U^c_I + f^{1-\text{loop}} \left(e^{-T^c_i} \right) + f^{\text{np}} \left(e^{-U^c_I}, e^{-T^c_i} \right). \]
Instanton corrections to f

Holomorphy dictates that for D6-branes the holomorphic gauge kinetic function must look like

$$f = \sum_I M_a^I U_I^c + f^{1\text{-loop}} \left(e^{-T_i^c} \right) + f^{\text{np}} \left(e^{-U_i^c}, e^{-T_i^c} \right).$$

For intersecting D6-branes on T^6 the holomorphic one-loop gauge threshold corrections are: (Lüst, Stieberger), (Akerblom, Bl, Lüst, Schmidt-Sommerfeld)

- $\mathcal{N} = 1$ sector: $f^{(1)} = 0$
- $\mathcal{N} = 2$ sector: $f^{(1)} = \ln(\eta(iT^c))$

World-sheet instanton corrections come from world-sheets with two boundaries \rightarrow expect E2-instantons from non-rigid ones with $b_1(\Xi) = 1$.

Strings 2007, 25.06.2007 – p.23/27
Instanton corrections to f
Instanton corrections to f

Zero modes: Y_i, μ^α, $\bar{\mu}^{\dot{\alpha}}$. Distinguish two cases depending on how the anti-holomorphic involution $\bar{\sigma}$ acts on the open string modulus Y

$$\bar{\sigma} : y \rightarrow \pm y.$$
Instanton corrections to f

Zero modes: Y_i, μ^α, $\bar{\mu}^{\dot{\alpha}}$. Distinguish two cases depending on how the anti-holomorphic involution $\bar{\sigma}$ acts on the open string modulus Y

$$\bar{\sigma} : y \rightarrow \pm y.$$

The zero mode measure reads

$$\int d^4x \, d^2\theta \, d^2y \, d^2\bar{\mu} \, e^{-S_{E2}} \ldots, \quad \text{for } \bar{\sigma} : y \rightarrow y$$

and

$$\int d^4x \, d^2\theta \, d^2\mu \, e^{-S_{E2}} \ldots, \quad \text{for } \bar{\sigma} : y \rightarrow -y.$$

(dual to world-sheet instantons studied by Beasley-Witten)
Instanton corrections to f
Instanton corrections to f

An instanton wrapping a 3-cycle with $b_1(\Xi) = 1$ and no additional zero modes can generate a correction to the $SU(N_a)$ gauge kinetic function.

$$\langle F_a(p_1) F_a(p_2) \rangle_{E2} = \int d^4x d^2\theta d^2\mu \exp(-S_{E2}) \exp(Z_0'(E2)) A_{F_a^2}(E2, D6_a)$$
Instanton corrections to f

An instanton wrapping a 3-cycle with $b_1(\Xi) = 1$ and no additional zero modes can generate a correction to the $SU(N_a)$ gauge kinetic function.

\[
\langle F_a(p_1) F_a(p_2) \rangle_{E2} = \int d^4 x \ d^2 \theta \ d^2 \mu \ \exp(-S_{E2}) \ \exp(Z'_0(E2)) \ A_{F_a^2}(E2, D6_a)
\]

where $A_{F_a^2}(E2, D6_a)$ is the annulus diagram
Corrections to F1 terms

Classically
\[a = Z \]

If \(a = 0 \) classically for all branes, then no F1-term is generated at one-loop. (Lawrence, McGreevy, hep-th/0409284)

But if \(b_6 = 0 \) then a F1-term is generated on a D6-brane at one-loop.

Expect also E2-brane instanton corrections!

Stability of D-branes
Corrections to FI terms

Classically

\[\xi_a = \int_{\Pi_a} \mathcal{S}(\Omega_3). \]

If \(\xi_a = 0 \) classically for all branes, then no FI-term is generated at one-loop. (Lawrence, McGreevy, hep-th/0409284)
Corrections to FI terms

Classically

\[\xi_a = \int_{\Pi_a} \mathcal{S}(\Omega_3). \]

If \(\xi_a = 0 \) classically for all branes, then no FI-term is generated at one-loop. (Lawrence, McGreevy, hep-th/0409284)

But if \(\xi_b \neq 0 \) then a FI-term is generated on a D6-brane \(a \) at one-loop

\[\xi_a^{(1)} = \xi_b^{(0)} T^A(D6_a, D6_b) \]
Corrections to FI terms

Classically

\[\xi_a = \int_{\Pi_a} \mathcal{F}(\Omega_3). \]

If \(\xi_a = 0 \) classically for all branes, then no FI-term is generated at one-loop. (Lawrence, McGreevy, hep-th/0409284)

But if \(\xi_b \neq 0 \) then a FI-term is generated on a D6-brane \(a \) at one-loop

\[\xi_a^{(1)} = \xi_b^{(0)} T^A(D6_a, D6_b) \]

Expect also E2-brane instanton corrections \(\rightarrow \) stability of D-branes
Conclusions
Conclusions

• D-brane instanton effects on $\mathcal{N} = 1$ 4D action
Conclusions

- D-brane instanton effects on $\mathcal{N} = 1$ 4D action
- Zero mode structure and possible lifting
Conclusions

- D-brane instanton effects on $\mathcal{N} = 1$ 4D action
 - Zero mode structure and possible lifting
 - CFT instanton calculus
Conclusions

• D-brane instanton effects on $\mathcal{N} = 1$ 4D action
 • Zero mode structure and possible lifting
 • CFT instanton calculus
 • E2-instanton corrections to holomorphic objects W and f

Strings 2007, 25.06.2007 – p.27/27
Conclusions

• D-brane instanton effects on $\mathcal{N} = 1$ 4D action
 • Zero mode structure and possible lifting
 • CFT instanton calculus
 • E2-instanton corrections to holomorphic objects W and f
 • Instanton corrections to D-terms \rightarrow brane stability
Conclusions

• D-brane instanton effects on $\mathcal{N} = 1$ 4D action
 • Zero mode structure and possible lifting
 • CFT instanton calculus
 • E2-instanton corrections to holomorphic objects W and f
 • Instanton corrections to D-terms \rightarrow brane stability
• Instanton effects in realistic D-brane string vacua
Conclusions

- D-brane instanton effects on $\mathcal{N} = 1$ 4D action
 - Zero mode structure and possible lifting
 - CFT instanton calculus
 - E2-instanton corrections to holomorphic objects W and f
 - Instanton corrections to D-terms \rightarrow brane stability
- Instanton effects in realistic D-brane string vacua
 - Generation of closed/open string superpotential \rightarrow moduli stabilisation, inflation
Conclusions

• D-brane instanton effects on $\mathcal{N} = 1$ 4D action
 • Zero mode structure and possible lifting
 • CFT instanton calculus
 • E2-instanton corrections to holomorphic objects W and f
 • Instanton corrections to D-terms \rightarrow brane stability
• Instanton effects in realistic D-brane string vacua
 • Generation of closed/open string superpotential \rightarrow moduli stabilisation, inflation
 • Generation of perturbatively forbidden but phenomenologically desirable matter couplings like Majorana masses for neutrinos, Yukawa couplings for $SU(5)$ models or mass terms for exotic matter.
Conclusions

• D-brane instanton effects on $\mathcal{N} = 1$ 4D action
 • Zero mode structure and possible lifting
 • CFT instanton calculus
 • E2-instanton corrections to holomorphic objects W and f
 • Instanton corrections to D-terms \rightarrow brane stability

• Instanton effects in realistic D-brane string vacua
 • Generation of closed/open string superpotential \rightarrow moduli stabilisation, inflation
 • Generation of perturbatively forbidden but phenomenologically desirable matter couplings like Majorana masses for neutrinos, Yukawa couplings for $SU(5)$ models or mass terms for exotic matter.
 • Stringy derivation of field theory instanton effects