

Detectors at the

Large Hadron Collider

a review and a status report

the countdown has started

Jos Engelen

CERN

Outline

- Detector Design Considerations
- Technical Implementations
- Status & Commissioning Results

The 'general purpose' LHC detectors are radically different from their predecessors at the SppS collider, LEP, SLC, HERA, Tevatron, etc.

They are designed for a luminosity of 10^{34} cm⁻²s⁻¹ for pp collisions at an energy of 14 TeV

Detectors need to be fast, radiation hard (also the electronics) and big

Large Hadron Collider

Luminosity L: collision rate normalized to cross section 10³⁴ cm⁻²s⁻¹

$$L = \frac{N^2 k_b f \gamma}{4\pi \varepsilon_n \beta^*} F$$

 $k_b f = 40$ MHz: bunch crossing frequency, i.e. **25** ns between bunches

The Large Hadron Collider - experiments

Two 'general purpose' 4π detectors are in preparation pp collisions at high L; some capabilities for PbPb ATLAS and CMS

One dedicated PbPb detector with some capabilities for pp
ALICE

One dedicated detector for studying B mesons (CP violation; rare decays), prolifically produced in the forward (backward) hemisphere LHCb $\sigma \approx 500 \, \mu b$

The Large Hadron Collider - experiments

Furthermore:

precision (1%) measurement of total cross section (and more)

TOTEM ($\sigma_{tot} \sim 100 \text{ mb}$) $\sigma_{tot} = \frac{16\pi}{1+\rho^2} \times \frac{(dN/dt)|_{t=0}}{N_{el} + N_{inel}}$

study of forward production of π^0 s LHCf (LHC energy equivalent to 10^{17} eV beam on fixed target – cf cosmic rays)

search for magnetic monopoles Moedal

Experimental Challenge

High Interaction Rate: $N=L_{\odot} = 10^{34} \times 100 \times 10^{-27} = 10^{9} \text{ Hz}$

data for only \sim 100 out of the 40 million crossings can be recorded per sec Level-1 trigger decision will take \sim 2-3 μ s

⇒ electronics need to store data locally (pipelining)

Large Particle Multiplicity

- ~ <20> superposed events in each crossing
- ~ 1000 tracks stream into the detector every 25 ns need highly granular detectors with good time resolution for low occupancy
 - ⇒ large number of channels

High Radiation Levels

⇒ radiation hard (tolerant) detectors and electronics

WW, ZZ fusion

At the LHC the SM Higgs provides a good benchmark to test the performance of a detector

Physics Requirements

Very good muon identification and momentum measurement trigger efficiently and measure sign of a few TeV muons momentum resolution 10% at 1 TeV

High energy resolution electromagnetic calorimettry $\sim 0.5\%$ @ $E_{\tau}{\sim}50$ GeV

Powerful inner tracking systems

factor 10 better momentum resolution than at LEP

Hermetic calorimetry

good missing E_T resolution

(Affordable detector)

Charged particle moving in magnetic field B

$$s = R - R\cos\frac{\theta}{2} \approx R\theta^2 / 8$$

$$p = 0.3BR$$

$$L = R\theta$$

$$s = \frac{0.3BL^2}{8p}$$

Units: Tesla, meter, GeV

Charged particle moving in magnetic field B

Resolution on s determines resolution on p

$$dp/p = (p/F)ds$$
$$F = 0.3BL^2/8$$

ds depends on resolution tracking devices (technology!) 10 μ (Si) – 100 μ (Drift)

F is also determined by state of the art technology: large magnets with high fields (superconducting)

1 – 4 Tesla

Large L better than high B, but the volume of the detector grows as L^3 1 – few Meters

Multiple Scattering

Multiple Coulomb scattering adds an apparent deflection angle, i.e. apparent sagitta

$$\theta_{mlt} = \frac{13.6[\text{MeV}]}{\beta p \, c} Z \sqrt{\frac{L}{X_0}}$$

$$\left(\frac{dp}{p}\right)_{mlt} \approx 0.05 \frac{1}{B\sqrt{LX_0}}$$

Use light material in trackers

Calorimetry

Energy and position measurement of

•photons, electrons, positrons – electromagnetic calorimetry e.m. showers thru Bremsstrahlung, pair creation, etc. Energy E ~ N charged 'ionizing' (or generating scintillation, Cerenkov) light.

$$\Delta E / E = k / \sqrt{E} \oplus \dots$$

 $\Delta E / E = k / \sqrt{E \oplus ...}$ (cf. homogeneous calorimeters) k smaller for more samplings

Calorimeter depth determined by radiation length. Approximately:

$$X_0 = \frac{716.4A}{Z(Z+1)\ln(287/\sqrt{Z})}$$
 [g cm⁻²]

Granularity determined by Molière radius (lateral shower size)

$$\rho_M = 21.2X_0 / \varepsilon_c$$

Calorimetry

hadrons

Energy resolution scales as for e.m. calorimetry but with k typically larger

Calorimeter depth determined by interaction length $\frac{\lambda_{int}}{\lambda_{int}} \propto 1/\sigma$ Courser granularity than e.m.

• jets

Some examples of materials:

	X_0 [cm]	λ_{int} [cm]
Fe	1.76	16.8
Pb	0.56	17.0
PbWO ₄	0.89	18.0

Electromagnetic Calorimetry at LHC

In several scenarios moderate mass narrow states decaying into photons or electrons are expected:

SM : intermediate mass $H \rightarrow \gamma \gamma$, $H \rightarrow Z Z^* \rightarrow 4e$

MSSM: $h \rightarrow \gamma\gamma$, $H \rightarrow \gamma\gamma$, $H \rightarrow Z Z^* \rightarrow 4e$

In all cases the observed width (cf. signal over background) will be determined by the instrumental mass resolution. Need:

good e.m. energy resolution good photon angular resolution good two-shower separation capability

 $M^{2} = 2E_{1}E_{2}(1 - \cos\theta)$ $dM/M \propto d\cos\theta/\cos\theta$ $dM/M \propto dE/E$

$$H_1$$
 θ
 E_2

$$tg(\theta_{\min}/2) = M/2(E_1 + E_2)$$

Hadronic Calorimetry at LHC

Jet energy resolution

- Limited by jet algorithm, fragmentation, magnetic field and energy pileup at high luminosity
- Can use the width of jet-jet mass distribution as a figure of merit
 - Low p, jets: W, Z → Jet-Jet, e.g. in top decays
 - High p, jets: W', Z' → Jet-Jet
- Fine lateral granularity (≤ 0.1) high p, W's, Z's

Missing transverse energy resolution

- · Gluino and squark production
 - Forward coverage up to lηl = 5
 - Hermeticity minimize cracks and dead areas
 - Absence of tails in the energy distribution is more important than a low value for the stochastic term
- Good forward coverage is also required to tag processes initiated vector boson fusion

'Granularity', size of read-out 'cells'

Convenient variable: 'one particle phase space is uniform in rapidity'

inelastic particle production shows a 'rapidity plateau' (from \sim -3 to +3 at LHC)

rapidity has a geometrical interpretation \rightarrow detector 'granularity' corresponding to fixed rapidity intervals (and similarly for ϕ , azimuthal angle, intervals) (cf. calorimeter cell size)

$$d^{4}P\delta(E^{2}-P^{2}-m^{2}) = d\vec{P}/E = P_{T}dP_{T}d\phi dy$$
$$dy = dP_{//}/E$$

For
$$E > m$$
: $y \approx \eta = -\ln \tan \theta / 2$

$$y = \frac{1}{2} \ln \frac{E + p_{//}}{E - p_{//}}$$

Muon spectrometers 1 TeV muon to be measured with 10% resolution

Complementary Conception

ATLAS

Standalone µ momentum measurement; safe for high multiplicities; Air-core toroid Property: $\sigma_{\rm p}$ flat with η

CMS

Measurement of momentum in tracker and B return flux: Solenoid with Fe flux return Property: muon tracks point back to vertex

Tracking at LHC Factors that determine performance

Track finding efficiency – occupancy

Momentum resolution
Secondary vertex reconstruction

Fluence over 10 years

Very recently published in Journal of Instrumentation (JINST):

The CERN Large Hadron Collider: Accelerator and Experiments

LHC Machine

Lyndon Evans and Philip Bryant (editors) 2008 JINST 3 S08001

The ALICE experiment at the CERN LHC

The ALICE Collaboration, K Aamodt *et al* 2008 JINST 3 S08002

The ATLAS Experiment at the CERN Large Hadron Collider

The ATLAS Collaboration, G Aad et al 2008 JINST 3 S08003

The CMS experiment at the CERN LHC

The CMS Collaboration, S Chatrchyan et al 2008 JINST 3 S08004

The LHCb Detector at the LHC

The LHCb Collaboration, A Augusto Alves Jr et al 2008 JINST 3 S08005

The LHCf detector at the CERN Large Hadron Collider

The LHCf Collaboration, O Adriani et al 2008 JINST 3 S08006

The TOTEM Experiment at the CERN Large Hadron Collider

The TOTEM Collaboration, G Anelli *et al* 2008 JINST 3 S08007


```
Tracking (|\eta| < 2.5, B=2T):
 -- Si pixels and strips
 -- Transition Radiation Detector (e/\pi separation)
                                                     ATLAS
Calorimetry (|n|<5):
-- EM: Pb-LAr
-- HAD: Fe-scintillator (central), Cu/W-LAr (fwd)
Muon Spectrometer (|\eta| < 2.7):
air-core toroids with muon chambers (standalone capabilities)
Tracking (|n| < 2.5, B=4T): Si pixels and strips
Calorimetry (|\eta|<5):
                                                       CMS
-- EM: PbWO4 crystals
-- HAD: brass-scintillator (central+ end-cap),
   Fe-Quartz (fwd)
Muon Spectrometer (|\eta|<2.5): return yoke of
solenoid instrumented with muon chambers
```


Magnets 20 kA s.c.; GJ's stored energy

ATLAS unique objects!

CMS

4 T

Status - Commissioning

From talks at ICHEP2008 by

Martine Bosman (ATLAS)

and

Austin Ball (CMS)

I have made a selection, impossible to be even nearly complete in finite amount of time; even after selection I may have to skip some of the material 'on the fly'

ATLA proje

Inner Detector

Tracking $|\eta|$ <2.5 B=2T

Silicon pixels (Pixel): $0.8 ext{ } 10^8 ext{ } \text{channels}$ Silicon strips (SCT): $6 ext{ } 10^6 ext{ } \text{channels}$ Transition Radiation Tracker (TRT): straw tubes (Xe), $4 ext{ } 10^5 ext{ } \text{channels}$ e/π separation

 $\sigma/p_{T} \sim 5x10^{-4} p_{T} \oplus 0.01$

Calorimetry

Electromagnetic Calorimeter

barrel, endcap: Pb-LAr

~10%/√E energy resolution e/γ

180000 channels: longitudinal segmentation

Hadron Calorimeter

barrel Iron-Tile EC/Fwd Cu/W-LAr (~20000 channels)

 σ /E ~ 50%/ \sqrt{E} \oplus 0.03 pion (10 λ)

Trigger for e/γ , jets, Missing E_T

Muon System

Stand-alone momentum resolution Δpt/pt < 10% up to 1 TeV

2-6 Tm $|\eta|$ <1.3 4-8 Tm 1.6< $|\eta|$ <2.7

short history of the construction & installation

JUNE 2003

Cavern 92m underground

55m long 32m wide 35m high

Today ATLAS is built

November 2005

Hardware Readiness

- All hardware is essentially ready and installed – very few dead channels – some refurbishment was necessary
- Beam pipe baked out
- Magnet system tested (central solenoid 8 barrel toroids – 2 x 8 end-cap toroids

Trigger / DAQ

to Computer Center
.. Pbytes stored / year

36

Trigger / DAQ / Control

Full Online system being exercised since ~2 years

H/w now being completed - Ready for data-taking

NETWORK L1	READY	ОК	4		
L1TRIGGER	READY	ОК	4		
DAQ	READY	ОК	4)		
TGC	READY	ОК	4)		
MDT	READY	ОК	4		
TILE	READY	ОК	4		
3CM RADMON	READY	ОК	4		
ASS	READY	ОК	4		
DSS	READY	ОК	1		
TRT	READY	ОК	4		
DCS	READY	OK	4		
LHCF	READY	ОК	2		
MUON	READY	ОК	4		
CCC I	DEADY	OK	4		
Slow Control					
O.OW	001111	<u> </u>	4		
RPC	READY	ОК	2)		

Towards data-taking: Cosmic Muons

Simulated cosmics flux in the ATLAS cavern

Real Cosmic Event

Muon impact points extrapolated to surface as measured by Muon Trigger chambers (RPC)

(Calorimeter trigger also available)

Rate ~100 m below ground: ~ O(15 Hz) crossing Inner Detector

Commissioning with Cosmics

Measure t0 and (r,t) relation
Alignement of chambers
To reach 40 μm will need large samples
of tracks B field ON and OFF

Conclusion

- ATLAS is built and installed
- Cavern in restricted access mode since 24th July
- Intense on-going commissioning activities
- Will continue with single beam

Ready for collisions!

- Proceed with detector calibration
- Study SM processes

and start searching for new physics

CMS Assembly Sequence

SURFACE: independent of underground Civil Engineering

- *construct magnet barrel yoke & pre-cable
- * prepare solenoid vac tanks
- * construct endcap yoke & pre-cable
- * assemble hadron calorimeters
- * install muon chambers (barrel+ec) in yoke
- * assemble coil & insert in vac tank
- * insert HCAL inside coil
- Test magnet + parts of all subsystems
- *separate elements and lower sequentially

UNDERGROUND:

- * re-install HCAL
- * install ECAL barrel & cable central wheel
- * install Tracker & cable
- * install beampipe & bake-out
- * install ECAL endcaps
- * close & finish commissioning

2000-2007

modular: ease of surface pre-assembly

: lowering as 15 large modules

: rapid access for maintenance

Surface & Underground 2001-2

Surface & Underground 2003-4

Surface & Underground 2004-5

First Closure of CMS (2006)

In preparation for surface testing and field mapping of the 4T solenoid magnet

Full rehearsal of:

- ECAL, HCAL & Tracker installation.
- -Closure of barrel and endcaps

Air-pads, grease pads & locking jacks proven to work

3 days to open or close endcap

Magnet Test & "Cosmic Challenge" 2006

Surface testing and field-mapping of magnet

Parasitic system test, with elements of all subsystems plus central trigger & DAQ at nominal field

(Investment in surface infrastructure, DAQ, rack & control rooms)

1'st CMS system test

"Cosmic Challenge" 2006

Cosmic muon data normalised to Monte Carlo simulation

Reasonable agreement between data and simulation.

Tested nearly all aspects of final CMS from detector through DAQ, controls & DQM to the software framework and gave the first "physics" result

Cosmic in TK, ECAL, HCAL, Mu

15 objects in total: 350-2000 t each

Heavy Lowering Nov 2006-Jan 2008

#1

Connected to pre-installed cable chains

HF- (Nov'06)

Surveyed & aligned: few x 0.1mm few x 0.1 m rad

YE-1 (Jan 08)

Connected to pre-installed cable chains

Underground installation: barrel calorimeters

Two ½ barrels (removed for heavy lowering, following surface test). (weight restrictions on central section)

ECAL

Two ½ barrels, each installed as 18 pre-tested supermodules (~1800 crystals each)

Central wheel (YB0) services May-Dec 07

Estimated ~50,000 man-hours of work on critical path!!

Completion triggered Tracker installation, then beampipe installation

Tracker Installation & Connection

Pre-cabling of services to patch panels inside the solenoid vacuum tank simultaneous with Si-strip Tracker surface pre-commissioning.

Speeded up the final connections, completed in 4 months

Muon System: Barrel Drift Tubes

Underground re-commissioning

250 chambers in 5 wheels of 12 sectors each ~172200 channels (0.2% inoperative)

DAQ & trigger fully integrated providing reliable "trigger service" for ECAL/HCAL/Tracker Total rate stable at ~200Hz

Residual distributions in the 4 layers of a sector

Single hit resolution $\leq 250 \mu m$ as anticipated

Electromagnetic Calorimeter, ECAL

Surface: 36/36 barrel supermodules calibrated using cosmics ~1.5% crystal intercalibration 9/36 also beam calibrated

Underground: All 36 barrel supermodules readout 84/61200 (0.14%) masked channels Commissioning with cosmics (typically 250MeV mip deposit)

Track-cluster association

17.4/10.2 fps

μ trigger: 288GeV cluster!

Tracker: underground recommissioning

Delayed 2-3 months due to failures & subsequent repairs of cooling plant

Noise and S/N performance from surface confirmed as typical ~95% of ~29k optical readout channels worked first try DAQ fully integrated

System Integration: global cosmic runs

Programme for remainder of 2008: I

Prior to beam: the last few moves

Complete cabling & tests of recently installed detectors (pixel, EE)

Close magnet yoke

Continue local & global detector commissioning with cosmics (in parallel)

Re-confirm magnet operation up to 4T

Configure forward detectors & shielding for beam

Magnet

Overview of current cycles for magnet re-commissioning in UXC5

Cryogenics:

Cooldown complete.

Stable at operating temperature 15

Mechanical Tests: all OK.

Electrical System:

All connections made and tested 5 Power converter tested.

Control and safety systems:

Tested & working

Programme for remainder of 2008: II

From first beam up to 10pb⁻¹, p-p collisions at (900GeV) & 10 TeV:

Commission beam radiation monitoring system including abort

Tune operating procedures for beam operation

Establish (lack of) effect of solenoid field on beams

Synchronize detectors using beam timing

Commission beam trigger, start "physics commissioning":

Align and calibrate with beam-halo events, min-bias events, etc

Measure jet and lepton rates; observe W, Z, top

First look for possible extraordinary signatures...

Conclusion

- Construction of the CMS experiment is almost completed.
- Commissioning work already carried out gives confidence that CMS detectors will operate with the expected performance.
- Integrated operation of subdetectors and central systems using cosmic triggers is routine with near-final complexity and functionality.
- Challenges conducted around the clock @ 100% of 2008 load show that Computing, Software & Analysis tools are ready for early data.
- Preparations for the rapid extraction of physics are being made.
- Later this month, CMS will be closed with magnetic field on, taking cosmic data, in (eager!) anticipation of beam.

ALICE Detector

59 24/10/2007 23rd RRB J. Schukraft

LHCb Spectrometer

Collisions: a physics Roadmap

Residual / Back up

ATLA proje

Hardware Readiness Liquid Argon Calorimeters

Installation in the cavern Barrel in October 2004, End-caps by 2006

Electronics equipment completed

Back-End May 2007 Front-End April 2008 (some refurbishment was needed)

Since May 2008

full calorimeter up, integrated in DAQ, slow control in steady running mode

~190.000 channels read-out

~0.02% dead (isolated) channels
+ ~1.5% (½ barrel module - power supply control lost)
will be repaired during shutdown
Commissioning on-going

Hardware Readiness Tile Calorimeter

Installation in the cavern

Ext. Barrel C December 2004 Barrel October 2005

Ext. Barrel A May 2006

full calorimeter up and running, integrated in DAQ

~10000 PMTs → 5000 cells

~0.2% dead (isolated) cells ~0.2% 1ext.barrel – power supply problem

will be repaired during shutdown

Electronics equipment completed May 2008 (some refurbishment was needed)

Hardware Readiness: Inner detector

TRT/SCT installed Aug 2006

Pixel installed June 2007

TRT operational and in test mode

SCT sign-off tests (with cooling)

Only few weeks of running Barrel: May 07, Apr 08 Endcap A: Jan08 Endcap C Feb 08

6 days Pixel sign-off test

end April 2008

interrupted by cooling plant incident

ID volume sealed complex End-Plate with 1000 feed-throughs

needed to achieve closing ATLAS by end of June

Hardware Readiness: Inner Detector

- Solenoid field: mapping done with precision ~10-4
- Pixel ~0.6% dead/problematic channels except EndCap wheel A: ~4.2% (+ 8.3% if cooling loop inoperable)
- SCT barrel ~0.35%, end-caps ~0.26% dead/problematic channels except EndCap wheel C: ~1.6% (1.3% due to cooling loop failure)
- TRT: dead channels 1.2-2.0%, delivery of some readout elements being completed run with Xenon or not – to be decided

Cooling plant repair completed on 23rd July

→on time for beam pipe bake-out (done succesfully 29-31 July)

- Pixel resumes commissioning:
 ~4 weeks standalone commissioning before joining common ATLAS running
- SCT will join for limited periods and depending on the overall tune-in progress
- TRT commissioning proceeds steadily

Hardware Readiness: Muon system

Last Muon Chamber

Installed July 1rst 08

All chambers installed (few chambers staged 09)

All wheels in final position.

Most alignment rays are operational

Good results: ~200 μm

Magnetic field measurement < 5% of probes lost expect $\Delta B/B=1.5\%$ at day-1

> Very few bad channels Few chambers with problem (gas leak, overpressure accident,...) Some loss of redundancy but no acceptance hole

Finishing up connections in barrel RPC and final alignment of a few chambers TGC: now running with n-Pentane

68

Toroids & Solenoid Magnet System

- Central Solenoid up to full field at 7.73 kA nominal in Aug 06
- Barrel Toroid up to full field at 20.5 kA nominal in Nov 06

Combined test June 08 OK

- EndCap-C Toroid up to full field at 20.5 kA nominal in June 08
- EndCap-A Toroid

Leak in electrical pipe isolators - 23rd May Toroid warmed-up/repaired/cooled - 20th July EndCap-A tested up to 21kA – 23rd July Combined test of 3 magnets at 15kA - 31rst July

Beampipe insertion & bake-out

Endcap disks closed along beampipe for bakeout bakeout complete 25 Jun

4m long Be central section braised to stainless steel cones connecting to endcap cones

Pixel Tracker installation

3 cylindrical layers at 4,7,11 cm mounted on 2 half-shells

At each end, 2 disks of over-lapping blades Mounted on two half-shells

66 mega pixels!!

ECAL Endcap Installation

24 Jul 08

moved along beampipe

Tracker: surface commissioning

Signal/Noise > 25/1 in "Peak" Readout Mode

Performance check at -15°C

