Holographic recipes at finite density and temperature

Andrei Starinets
IAS and U. Southampton

STRINGS-2008
CERN
August 21, 2008
Holographic recipes at finite density and temperature
Outline

Part I: A (very short) summary of a subset of the gauge/gravity duality results for strongly coupled gauge theories at finite temperature/density

- thermodynamics
- first- and second-order transport coefficients
- RHIC elliptic flow and viscosity/entropy ratio

Part II: Holographic recipes for quantum liquids

- specific heat in the low temperature limit
- zero sound excitation

Over the last several years, holographic (gauge/gravity duality) methods were used to study strongly coupled gauge theories at finite temperature and density. These studies were motivated by the heavy-ion collision programs at RHIC and LHC (ALICE detector) and the necessity to understand hot and dense nuclear matter in the regime of intermediate coupling. As a result, we now have a better understanding of thermodynamics and especially kinetics (transport) of strongly coupled gauge theories. Of course, these calculations are done for theoretical models such as N=4 SYM and its cousins (including non-conformal theories etc). We don't know...
Over the last several years, holographic (gauge/gravity duality) methods were used to study strongly coupled gauge theories at finite temperature and density.

These studies were motivated by the heavy-ion collision programs at RHIC and LHC (ALICE detector) and the necessity to understand hot and dense nuclear matter in the regime of intermediate coupling $\alpha_s(T_{\text{RHIC}}) \sim O(1)$.

As a result, we now have a better understanding of thermodynamics and especially kinetics (transport) of strongly coupled gauge theories.

Of course, these calculations are done for theoretical models such as N=4 SYM and its cousins (including non-conformal theories etc).

We don’t know for QCD.
Heavy ion collision experiments at RHIC (2000-current) and LHC (2008-??) create hot and dense nuclear matter known as the “quark-gluon plasma”

(note: qualitative difference between p-p and Au-Au collisions)

Evolution of the plasma “fireball” is described by relativistic fluid dynamics (relativistic Navier-Stokes equations)

Need to know

thermodynamics (equation of state)
kinetics (first- and second-order transport coefficients)
in the regime of intermediate coupling strength:

\[\alpha_s(T_{\text{RHIC}}) \sim O(1) \]

initial conditions (initial energy density profile)
thermalization time (start of hydro evolution)
freeze-out conditions (end of hydro evolution)
Heavy ion collision experiments at RHIC (2000-current) and LHC (2008-??) create hot and dense nuclear matter known as the "quark-gluon plasma." Evolution of the plasma "fireball" is described by relativistic fluid dynamics (note: qualitative difference between p-p and Au-Au collisions).

Need to know thermodynamics (equation of state), kinetics (first- and second-order transport coefficients) in the regime of intermediate coupling strength: (relativistic Navier-Stokes equations) initial conditions (initial energy density profile), thermalization time (start of hydro evolution), freeze-out conditions (end of hydro evolution).

Figure: an artistic impression from Myers and Vazquez, 0804.2423 [hep-th]
First-order transport (kinetic) coefficients

Shear viscosity \(\eta \)

Bulk viscosity \(\zeta \)

Charge diffusion constant \(D_Q \)

Supercharge diffusion constant \(D_s \)

Thermal conductivity \(\kappa_T \)

Electrical conductivity \(\sigma \)

* Expect Einstein relations such as \(\frac{\sigma}{e^2 \Xi} = D_{U(1)} \) to hold
Computing transport coefficients from dual gravity

Assuming validity of the gauge/gravity duality, all transport coefficients are completely determined by the lowest frequencies in quasinormal spectra of the dual gravitational background

This determines kinetics in the regime of a thermal theory where the dual gravity description is applicable

Transport coefficients and quasiparticle spectra can also be obtained from thermal spectral functions
First-order transport coefficients in $N = 4$ SYM

in the limit $N_c \to \infty$, $g_{YM}^2 N_c \to \infty$

Shear viscosity

$$\eta = \frac{\pi}{8} N_c^2 T^3 \left[1 + O \left(\frac{1}{(g^2 N_c)^{3/2}}, \frac{1}{N_c^2} \right) \right]$$

Bulk viscosity

$$\zeta = 0$$

for non-conformal theories see Buchel et al; G.D.Moore et al Gubser et al.

Charge diffusion constant

$$D_R = \frac{1}{2\pi T} + \cdots$$

Supercharge diffusion constant

$$D_s = \frac{2\sqrt{2}}{9\pi T}$$

Thermal conductivity

$$\frac{\kappa_T}{\eta T} = 8\pi^2 + \cdots$$

Electrical conductivity

$$\sigma = e^2 \frac{N_c^2 T}{16 \pi} + \cdots$$

(G.Policastro, 2008)
Electrical conductivity in $\mathcal{N} = 4$ SYM

Weak coupling: $\lambda \ll 1$

$$\sigma = 1.28349 \frac{e^2 (N_c^2 - 1) T}{\lambda^2 [\ln \lambda^{-1/2} + O(1)]}$$

Strong coupling: $\lambda \gg 1$

$$\sigma = \frac{e^2 N_c^2 T}{16 \pi} + O\left(\frac{1}{\lambda^{3/2}}\right)$$

* Charge susceptibility can be computed independently: $\Xi = \frac{N_c^2 T^2}{8}$

D.T.Son, A.S., hep-th/0601157

Einstein relation holds: $\frac{\sigma}{e^2 \Xi} = D_{U(1)} = \frac{1}{2\pi T}$
Shear viscosity in $\mathcal{N} = 4$ SYM

\[\frac{\eta}{s} \sim \frac{1}{\lambda^2 \log \frac{1}{\lambda}} \]

perturbative thermal gauge theory

Correction to $\frac{1}{4\pi}$: Buchel, Liu, A.S., hep-th/0406264
Buchel, 0805.2683 [hep-th]; Myers, Paulos, Sinha, 0806.2156 [hep-th]
Second-order transport coefficients in $N = 4$ SYM

in the limit $N_c \to \infty$, $g_{YM}^2 N_c \to \infty$

Relaxation time

Here we also used results from: S.Bhattacharyya,V.Hubeny,S.Minwalla,M.Rangamani, 0712.2456 [hep-th]

Generalized to CFT in D dim: Haack & Yarov, 0806.4602 [hep-th];

Finite 't Hooft coupling correction computed: Buchel and Paulos, 0806.0788 [hep-th]

Question: does this affect RHIC numerics?
Hydrodynamics: fundamental d.o.f. = densities of conserved charges

Need to add constitutive relations!

Example: charge diffusion

Conservation law
\[\partial_t j^0 + \partial_i j^i = 0 \]

Constitutive relation
\[j_i = -D \partial_i j^0 + O[(\nabla j^0)^2, \nabla^2 j^0] \]

Diffusion equation
\[\partial_t j^0 = D \nabla^2 j^0 \]

Dispersion relation
\[\omega = -i D q^2 + \cdots \]

Expansion parameters: \(\omega \ll T, \quad q \ll T \)
Hydrodynamics: fundamental d.o.f. = densities of conserved charges

Need to add constitutive relations!

Example: charge diffusion

\[\text{Fick's law (1855)} \]

Conservation law

Constitutive relation

Diffusion equation

Dispersion relation

Expansion parameters:

0123

\[p_T [\text{GeV}] \]

\[v_2 \text{(percent)} \]

\[\eta/s=10^{-4} \]

\[\eta/s=0.08 \]

\[\eta/s=0.16 \]

\[\eta/s=0.24 \]

STAR non-flow corrected (est).

STAR event-plane

CGC

Luzum and Romatschke, 0804.4015 [nuc-th]
Elliptic flow with Glauber initial conditions

Glauber

- STAR non-flow corrected (est.)
- STAR event-plane

\[v_2 \text{ (percent)} \]

\[p_T \text{ [GeV]} \]

\[\eta/s = 10^{-4} \]
\[\eta/s = 0.08 \]
\[\eta/s = 0.16 \]

Luzum and Romatschke, 0804.4015 [nuc-th]
Viscosity/entropy ratio in QCD: current status

Theories with gravity duals in the regime where the dual gravity description is valid

Kovtun, Son & A.S; Buchel; Buchel & Liu, A.S

(universal limit)

QCD: RHIC elliptic flow analysis suggests

QCD: (Indirect) LQCD simulations

H.Meyer, 0805.4567 [hep-th]

Trapped strongly correlated cold alkali atoms

T.Schafer, 0808.0734 [nucl-th]

Liquid Helium-3
Now consider strongly interacting systems at finite density and LOW temperature
This part of the talk -

“Holographic recipes at finite density and low temperature”

- is based on the paper

“Zero Sound from Holography”

arXiv: 0806.3796 [hep-th]

by

Andreas Karch

Dam Thanh Son

A.S.
Probing quantum liquids with holography

<table>
<thead>
<tr>
<th>Quantum liquid in $p+1$ dim</th>
<th>Low-energy elementary excitations</th>
<th>Specific heat at low T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Bose liquid</td>
<td>phonons</td>
<td></td>
</tr>
<tr>
<td>Quantum Fermi liquid (Landau FLT)</td>
<td>fermionic quasiparticles + bosonic branch (zero sound)</td>
<td></td>
</tr>
</tbody>
</table>

Departures from normal Fermi liquid occur in

- 3+1 and 2+1 –dimensional systems with strongly correlated electrons
- In 1+1 –dimensional systems for any strength of interaction (Luttinger liquid)

One can apply holography to study strongly coupled Fermi systems at low T
Probing quantum liquids with holography

Quantum liquid

in \(p+1 \) dim

Low-energy elementary excitations

Specific heat

at low \(T \)

Quantum Bose liquid

Quantum Fermi liquid

(Landau FLT)

phonons

fermionic quasiparticles +

bosonic branch

(zero sound)

Departures from normal Fermi liquid occur in

- \(3+1 \) and \(2+1 \) –dimensional systems with strongly correlated electrons

- In \(1+1 \) –dimensional systems for any strength of interaction

One can apply holography to study strongly coupled Fermi systems at low \(T \)

L.D.Landau (1908-1968)

Fermi Liquid Theory: 1956-58
The simplest candidate with a known holographic description is at finite temperature T and nonzero chemical potential associated with the “baryon number” density of the charge.

There are two dimensionless parameters:

- is the baryon number density
- is the hypermultiplet mass

The holographic dual description in the limit is given by the D3/D7 system, with D3 branes replaced by the AdS-Schwarzschild geometry and D7 branes embedded in it as probes.

Karch & Katz, hep-th/0205236
The simplest candidate with a known holographic description is at finite temperature T and nonzero chemical potential associated with the "baryon number" density of the charge.

There are two dimensionless parameters:
- The baryon number density
- The hypermultiplet mass

The holographic dual description in the limit is given by the D3/D7 system, with D3 branes replaced by the AdS-Schwarzschild geometry and D7 branes embedded in it as probes.

Karch & Katz, hep-th/0205236

AdS-Schwarzschild black hole (brane) background

D7 probe branes

The worldvolume U(1) field couples to the flavor current at the boundary.

Nontrivial background value of corresponds to nontrivial expectation value of

We would like to compute
- the specific heat at low temperature
- the charge density correlator
The specific heat (in $p+1$ dimensions):

(note the difference with Fermi and Bose systems)

The (retarded) charge density correlator has a pole corresponding to a propagating mode (zero sound) - even at zero temperature

(note that this is NOT a superfluid phonon whose attenuation scales as

New type of quantum liquid?
Conclusions

The program of computing first- and second-order transport coefficients in N=4 SYM at strong coupling and large number of colors is essentially complete.

These calculations are helpful in numerical simulations of non-equilibrium QCD and stimulated developments in other fields such as LQCD, pQCD, condmat.

Need better understanding of
- thermalization, isotropisation, and time evolution [Janik et al.]
- corrections from higher-derivative terms [Kats & Petrov; Brigante, Myers, Shenker, Yaida]
 [Buchel, Myers, Paulos, Sinha, 0808.1837 [hep-th]]

LHC (ALICE) will provide more data at higher T.

At low temperature and finite density, does holography identify a new type of quantum liquid?

(perturbative study of SUSY models at finite temperature and density would be very helpful)
THANK YOU
Is the bound dead?

- Y.Kats and P.Petrov, 0712.0743 [hep-th]
 “Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory”

\[\frac{\eta}{s} = \frac{1}{4\pi} \left(1 - \frac{1}{2N} \right) \quad \mathcal{N} = 2 \quad \text{superconformal Sp(N) gauge theory in d=4} \]

\[S = \int d^D x \sqrt{-g} \left(R - 2\Lambda + c_1 R^2 + c_2 R_{\mu\nu}R^{\mu\nu} + c_3 R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} + \cdots \right) \]

But see A.Buchel, 0804.3161 [hep-th]

- M.~Brigante, H.~Liu, R.~C.~Myers, S.~Shenker and S.~Yaida,
 “The Viscosity Bound and Causality Violation," 0802.3318 [hep-th],

- The “species problem”
Second-order hydrodynamics

Hydrodynamics is an effective theory, valid for sufficiently small momenta

\[k l_{mfp} \ll 1 \]

First-order hydro eqs are parabolic. They imply instant propagation of signals.

This is not a conceptual problem since hydrodynamics becomes “acausal” only outside of its validity range but it is very inconvenient for numerical work on Navier-Stokes equations where it leads to instabilities [Hiscock & Lindblom, 1985]

These problems are resolved by considering next order in derivative expansion, i.e. by adding to the hydro constitutive relations all possible second-order terms compatible with symmetries (e.g. conformal symmetry for conformal plasmas)
Second-order hydrodynamics in $4d \ N = 4$ SYM

Second-order conformal hydrodynamics can be systematically constructed

Using AdS/CFT, all new transport coefficients for N=4 SYM can be computed

$$\eta = \frac{\pi}{8} N_c^2 T^3, \quad \tau_1 = \frac{2 - \ln 2}{2\pi T}, \quad \kappa = \frac{N_c^2 T^2}{8}$$

$$\lambda_1 = \frac{\eta}{2\pi T}, \quad \lambda_2 = -\frac{\eta \ln 2}{\pi T}, \quad \lambda_3 = 0$$

Here we also used results from: S.Bhattacharyya,V.Hubeny,S.Minwalla,M.Rangamani, 0712.2456 [hep-th]

Generalized to CFT in D dim: Haack & Yarom, 0806.4602 [hep-th];

Finite 't Hooft coupling correction computed: Buchel and Paulos, 0806.0788 [hep-th]

Question: does this affect RHIC numerics?
Second-order conformal hydrodynamics

\[\Delta^{\mu\nu} = g^{\mu\nu} + u^\mu u^\nu \]

\[\sigma^{\mu\nu} = 2 \nabla^{<\mu} u^{\nu>} \quad u^\mu u_\mu = -1 \]

\[D \equiv u^\mu \nabla_\mu \]

\[\Omega^{\mu\nu} = \frac{1}{2} \Delta^{\mu\alpha} \Delta^{\nu\beta} \left(\nabla_\alpha u_\beta - \nabla_\beta u_\alpha \right) \]

\[A^{<\mu\nu>} = \frac{1}{2} \Delta^{\mu\alpha} \Delta^{\nu\beta} \left(A_{\alpha\beta} + A_{\beta\alpha} \right) - \frac{1}{d-1} \Delta^{\mu\nu} \Delta^{\alpha\beta} A_{\alpha\beta} \]
Derivative expansion in hydrodynamics: first order

Hydrodynamic d.o.f. = densities of conserved charges

$$\partial_\mu T^{\mu\nu} = 0 \quad T^{00}, \ T^{0i} \quad \text{or} \quad \varepsilon, \ u^\mu$$

(4 equations) \hspace{1cm} (4 d.o.f.)

$$T^{\mu\nu} = \varepsilon u^\mu u^\nu + P(\varepsilon) \Delta^{\mu\nu} + \Pi^{\mu\nu}$$

$$\Pi^{\mu\nu} = -\eta(\varepsilon) \sigma^{\mu\nu} - \zeta(\varepsilon) \Delta^{\mu\nu} (\nabla \cdot u) + \cdots$$

$$\Delta^{\mu\nu} = g^{\mu\nu} + u^\mu u^\nu \quad \sigma^{\mu\nu} = 2\nabla^{<\mu} u^{\nu>}$$

$$A^{<\mu\nu>} = \frac{1}{2} \Delta^{\mu\alpha} \Delta^{\nu\beta} (A_{\alpha\beta} + A_{\beta\alpha}) - \frac{1}{d-1} \Delta^{\mu\nu} \Delta^{\alpha\beta} A_{\alpha\beta}$$

$$u^\mu u_\mu = -1$$
Supersymmetric sound mode ("phonino") in $4d \mathcal{N} = 4$ SYM

Conserved charge \implies Hydrodynamic mode (infinitely slowly relaxing fluctuation of the charge density) \implies Hydro pole in the retarded correlator of the charge density

\[
\partial_{\mu} T^{\mu\nu} = 0 \quad T^{\mu\nu}_{\text{equib}} + \delta T^{\mu\nu} \quad \langle T_{\mu\nu}(-k) T_{\rho\sigma}(k) \rangle
\]

Sound wave pole: $\omega = \pm v_s q - i \frac{2}{3sT} \left(\eta + \frac{3}{4} \zeta \right) q^2 + \cdots \quad v_s = \sqrt{\frac{\partial P}{\partial \epsilon}}$

\[
\partial_{\mu} S^{\mu}_{\alpha} = 0 \quad S^{\mu}_{\alpha} + \delta S^{\mu}_{\alpha} \quad \langle \bar{S}^{\mu}_{\alpha}(-k) S^{\nu}_{\beta}(k) \rangle
\]

Supersound wave pole:

Lebedev & Smilga, 1988 (see also Kovtun & Yaffe, 2003)
Sound and supersymmetric sound in $4d \ N = 4$ SYM

In 4d CFT

Sound mode:

Supersound mode:

Quasinormal modes in dual gravity

Graviton:

Gravitino:
Second-order conformal hydrodynamics

\[T^{\mu\nu}_{\text{conformal}} = \varepsilon u^\mu u^\nu + \frac{\varepsilon}{d-1} \Delta^{\mu\nu} + \Pi^{\mu\nu} \]

\[\Pi^{\mu\nu} = -\eta \sigma^{\mu\nu} - \tau \Pi \left[D \Pi^{<\mu\nu>} + \frac{d}{d-1} \Pi^{\mu\nu} (\nabla \cdot u) \right] \]

\[+ \kappa \left[R^{<\mu\nu>} - (d - 2) u_\alpha R^{\alpha<\mu\nu>\beta} u_\beta \right] \]

\[+ \frac{\lambda_1}{\eta^2} \Pi^{<\mu\nu>\lambda} - \frac{\lambda_2}{\eta} \Pi^{<\mu\Omega^\nu>\lambda} + \lambda_3 \Omega^{<\mu\Omega^\nu>\lambda} \]

\[D \equiv u^\mu \nabla_\mu \quad \Omega^{\mu\nu} = \frac{1}{2} \Delta^{\mu\alpha} \Delta^{\nu\beta} \left(\nabla_\alpha u_\beta - \nabla_\beta u_\alpha \right) \]
Second-order Israel-Stewart conformal hydrodynamics

\[T_{\text{conformal}}^{\mu\nu} = \varepsilon u^\mu u^\nu + \frac{\varepsilon}{d-1} \Delta^{\mu\nu} + \Pi^{\mu\nu} \]

\[\Pi^{\mu\nu} = -\eta \sigma^{\mu\nu} - \tau \nabla \left[D \Pi^{<\mu\nu>} + \frac{d}{d-1} \Pi^{\mu\nu} (\nabla \cdot u) \right] \]

\[+ \kappa \left[R^{<\mu\nu>} - (d-2) u_\alpha R^{\alpha<\mu\nu>\beta} u_\beta \right] \]

\[+ \frac{\lambda_1}{\eta^2} \Pi^{<\mu\nu>} \lambda_1 - \frac{\lambda_2}{\eta} \Pi^{<\mu} \Omega^{\nu>\lambda} + \lambda_3 \Omega^{<\mu} \Omega^{\nu>\lambda} \]

\[D \equiv u^\mu \nabla_\mu \]

\[\Omega^{\mu\nu} = \frac{1}{2} \Delta^{\mu\alpha} \Delta^{\nu\beta} \left(\nabla_\alpha u_\beta - \nabla_\beta u_\alpha \right) \]
First-order conformal hydrodynamics

Weyl transformations: \[g_{\mu\nu} \rightarrow e^{-2\omega} g_{\mu\nu} \]

\[T^{\mu\nu} \rightarrow e^{(d+2)\omega} T^{\mu\nu} \]

\[T_{\mu}^{\mu} = 0 \]

In first-order hydro this implies: \[\varepsilon = (d - 1)P, \ \zeta = 0 \]

\[u^{\mu} \rightarrow e^{\omega} u^{\mu} \quad T \rightarrow e^{\omega} T \quad \sigma^{\mu\nu} \rightarrow e^{3\omega} \sigma^{\mu\nu} \]

Thus, in first-order hydro:

\[T^{\mu\nu}_{\text{conformal}} = \varepsilon u^{\mu} u^{\nu} + \frac{\varepsilon}{d - 1} \Delta^{\mu\nu} - \eta \sigma^{\mu\nu} \]
Still, acausality is unpleasant, especially for numerical simulations, where it leads to instabilities.

It would be convenient to have a UV completion (at strong and weak coupling).

Israel-Stewart theory is such a completion built with e.g. Boltzmann eq.

AdS/CFT shows that at strong coupling, I-S theory is incomplete.
A viscosity bound conjecture

\[\frac{\eta}{s} \geq \frac{\hbar}{4\pi k_B} \approx 6.08 \cdot 10^{-13} \, K \cdot s \]

Minimum of \(\frac{\eta}{s} \) in units of \(\frac{\hbar}{4\pi k_B} \):

- Xe 84
- Kr 57
- CO\textsubscript{2} 32
- H\textsubscript{2}O 25
- C\textsubscript{2}H\textsubscript{5}OH 22
- Ne 17
- He 8.8

A viscosity bound conjecture

Chernai, Kapusta, McLerran, nucl-th/0604032

\[(\eta/s)_{\text{min}} \sim 25 \text{ in units of } \frac{\hbar}{4\pi k_B}\]
A hand-waving argument

\[\eta \sim \rho v l \sim \rho v^2 \tau \sim n m v^2 \tau \sim n \epsilon \tau \]

\[s \sim n \]

Thus

\[\frac{\eta}{s} \sim \epsilon \tau \geq \hbar \]

Gravity duals fix the coefficient:

\[\frac{\eta}{s} \geq \frac{\hbar}{4\pi} \]
The “species problem”

Classical dilute gas with a LARGE number of components

has a large Gibbs mixing entropy

\[
s = n \ln \left[\frac{1}{n} \left(\frac{m k_B T}{2 \pi \hbar^2} \right)^{3/2} \right] + \frac{5}{2} n + n \ln N_f
\]

\[
\eta \sim \frac{\sqrt{m k_B T}}{d^2}
\]

To have \(\frac{\eta}{s} < \frac{\hbar}{4\pi k_B} \) with \(C_{60} \)

need \(N_f > 10^{4000} \) (Dam Son, 2007)

To have \(\frac{\eta}{s} \sim 8.8 \frac{\hbar}{4\pi k_B} \) need

\(N_f \sim 10^{450} \) species

Buckminsterfullerene \(C_{60} \)
a.k.a. “buckyball”

A.Dobado, F.Llanes-Estrada, hep-th/0703132

T.Cohen, hep-th/0702136
Can we test experimentally?

\[\eta/s \geq 1/4\pi \pm ? \]

A characteristic feature of systems saturating the bound: strong interactions

- Heavy ion collisions - experiments at RHIC
- (Indirect) lattice QCD simulations
- Trapped atoms – strongly interacting Fermi systems
QCD kinetics

Viscosity is ONE of the parameters used in the hydro models describing the azimuthal anisotropy of particle distribution at RHIC

\[\frac{d^2 N_i}{dp_T d\phi} = N_0^i \left[1 + 2v_2^i(p_T) \cos 2\phi + \cdots \right] \quad v_2^i(p_T) \text{-elliptic flow for particle species “i”} \]

Elliptic flow reproduced for

\[0 < \eta/s \leq 0.3 \]

e.g. Baier, Romatschke, nucl-th/0610108

Perturbative QCD:

\[\eta/s (T_{RHIC}) \approx 1.6 \sim 1.8 \]

Chernai, Kapusta, McLerran, nucl-th/0604032

SYM:

\[\eta/s \approx 0.09 \sim 0.28 \]
Elliptic flow from relativistic hydro simulations
(Israel-Stewart formalism)

Experimental and theoretical motivation

Heavy ion collision program at RHIC, LHC (2000-2008-2020 ??)

Studies of hot and dense nuclear matter

Abundance of experimental results, poor theoretical understanding:

- the collision apparently creates a fireball of “quark-gluon fluid”
- need to understand both thermodynamics and kinetics
 - in particular, need theoretical predictions for parameters entering equations of relativistic hydrodynamics – viscosity etc – computed from the underlying microscopic theory (thermal QCD)
- this is difficult since the fireball is a strongly interacting nuclear fluid, not a dilute gas

\[\text{Cu+Cu, } b=7 \text{ fm, SM-EOS Q, } \pi^- \]

\[\eta/s=0.08, \quad \tau_\pi=3\eta/sT \]
\[\eta/s=0.08, \quad \tau_\pi=1.5\eta/sT \]

H. Song and U. Heinz, 0712.3715 [nucl-th]
Experimental and theoretical motivation

- Heavy ion collision program at RHIC, LHC (2000-2008-2020 ??)

- Studies of hot and dense nuclear matter

- Abundance of experimental results, poor theoretical understanding:
 - the collision apparently creates a fireball of “quark-gluon fluid”
 - need to understand both thermodynamics and kinetics

- in particular, need theoretical predictions for parameters entering equations of relativistic hydrodynamics – viscosity etc – computed from the underlying microscopic theory (thermal QCD)

- this is difficult since the fireball is a strongly interacting nuclear fluid, not a dilute gas
Predictions of the second-order conformal hydrodynamics

Sound dispersion: \[\omega_{1,2} = \pm c_s q - i \Gamma q^2 \pm \Gamma \left(c_s^2 \tau_\Pi - \frac{\Gamma}{2} \right) q^3 + O(q^4) \]

\[\Gamma = \frac{d - 2}{d - 1} \frac{\eta}{\epsilon + P} \]

Kubo: \[G^{xy,xy}_{\vec{R}}(\omega, q) = P - i \eta \omega + \eta \tau_\Pi \omega^2 - \frac{\kappa}{2} \left[(d - 3) \omega^2 + q^2 \right] \]
New transport coefficients in $\mathcal{N} = 4$ SYM

Sound dispersion:
$$\omega = \pm \frac{1}{\sqrt{3}} q - \frac{i}{6\pi T} q^2 + \frac{3 - 2 \ln 2}{24\pi^2 \sqrt{3} T^2} q^3 + \cdots$$

Kubo:
$$G^{x_{yi},x_{iy}}_R(\omega, q) = -\frac{\pi^2 N_c^2 T^4}{4} \left[iw - w^2 + k^2 + w^2 \ln 2 - \frac{1}{2} \right] + O(w^3, w k^2)$$

$$w = \omega / 2\pi T, \quad k = q / 2\pi T$$

$$P = \frac{\pi^2}{8} N_c^2 T^4, \quad \eta = \frac{\pi}{8} N_c^2 T^3, \quad \tau \Pi = \frac{2 - \ln 2}{2\pi T}, \quad \kappa = \frac{\eta}{\pi T}$$
Sound dispersion in $4d \ \mathcal{N} = 4 \ \text{SYM}$

Re $(\omega)/q$

Im w/q

analytic approximation
The effect of the second-order coefficients

Luzum and Romatschke, 0804.4015 [nuc-th]
Spectral function and quasiparticles in finite-temperature “AdS + IR cutoff” model

\[\chi(\omega) \sim N_c^2 \sum_{n=0}^{\infty} \omega_n^2 \rho(\omega_n) \delta(\omega - \omega_n) \]

\[\chi(\omega) = \frac{N_c^2}{16\pi} \frac{\omega^2 \sinh(\omega/2T)}{\cosh(\omega/2T) - \cos(\omega/2T)} \]

\(\mathcal{N} = 4 \text{ SYM} \)
Computing transport coefficients from dual gravity – various methods

1. Green-Kubo formulas (+ retarded correlator from gravity)

2. Poles of the retarded correlators

3. Lowest quasinormal frequency of the dual background

4. The membrane paradigm
Holographic models with fundamental fermions

Additional parameter m_F/T makes life more interesting...

R.Myers, A.S., R.Thomson, 0706.0162 [hep-th]
Example: stress-energy tensor correlator in $4d$ $\mathcal{N} = 4$ SYM in the limit
\[N_c \to \infty, \quad g_{YM}^2 N_c \to \infty \]

Zero temperature, Euclid:
\[G_{E}(k) = \frac{N_c^2 k_E^4}{32\pi^2} \ln k_E^2 \]

Finite temperature, Mink:
\[< T_{tt}(-\omega, -q), T_{tt}(\omega, q) > \text{ret} = \frac{3N_c^2 \pi^2 T^4 q^2}{2(\omega^2 - q^2/3 + i\omega q^2/3\pi T')} + \ldots \]

(in the limit $\omega/T \ll 1, \quad q/T \ll 1$)

The pole (or the lowest quasinormal freq.)
\[\omega = \pm \frac{1}{\sqrt{3}} q - \frac{i}{6\pi T} q^2 + \frac{3 - 2\ln 2}{24\pi^2 \sqrt{3} T^2} q^3 + \ldots \]

Compare with hydro:
\[\omega = \pm v_s q - \frac{i}{2sT} \left(\zeta + \frac{4}{3} \eta \right) q^2 + \ldots \]

In CFT:
\[v_s = \frac{1}{\sqrt{3}}, \quad \zeta = 0 \quad \Rightarrow \quad \eta = \pi N_c^2 T^3 / 8 \]

Also, $s = \pi^2 N_c^2 T^3 / 2$ (Gubser, Klebanov, Peet, 1996)
Example 2 (continued): stress-energy tensor correlator in

4d $\mathcal{N} = 4$ SYM in the limit $N_c \to \infty, \quad g_{YM}^2 N_c \to \infty$

Zero temperature, Euclid:

$$G_E(k) = \frac{N_c^2 k_E^4}{32 \pi^2} \ln k_E^2$$

Finite temperature, Mink:

$$< T_{tx}(-\omega, -q), T_{tx}(\omega, q) > \text{ret} \sim \frac{N_c^2 T^4 \omega^2}{\omega - i q^2/4 \pi T} + \cdots$$

(in the limit $\omega/T \ll 1$, $q/T \ll 1$)

The pole (or the lowest quasinormal freq.)

$$\omega = -\frac{i}{4 \pi T} q^2 - \frac{i (1 - \ln 2)}{32 \pi^3 T^3} q^4 + \cdots$$

Compare with hydro:

$$\omega = -\frac{i \eta}{s T} q^2 + \cdots$$

$$s = \pi^2 N_c^2 T^3 / 2 \quad \Rightarrow \quad \eta = \pi N_c^2 T^3 / 8$$
Example 2 (continued): stress-energy tensor correlator in
the limit of

Finite temperature, Mink:

Zero temperature, Euclid:

The pole (or the lowest quasinormal freq.)

Compare with hydro:

Viscosity-entropy ratio of a trapped Fermi gas

$\eta/s \sim 4.2$ in units of $\frac{\hbar}{4\pi k_B}$

T. Schafer, cond-mat/0701251

(based on experimental results by Duke U. group, J.E. Thomas et al., 2005-06)
Viscosity is one of the parameters used in the hydro models describing the azimuthal anisotropy of particle distribution, specifically elliptic flow for particle species i.

Elliptic flow reproduced for...

$$(\eta/s)_{\text{min}} \sim 8.8$$ in units of $\frac{\hbar}{4\pi k_B}$
Viscosity “measurements” at RHIC

Viscosity is ONE of the parameters used in the hydro models describing the azimuthal anisotropy of particle distribution

\[
d\frac{d^2 N_i}{dp_T d\phi} = N_0^i \left[1 + 2v_2^i(p_T) \cos 2\phi + \cdots \right] \quad v_2^i(p_T) \text{-elliptic flow for particle species “i”}
\]

Elliptic flow reproduced for

\[
0 < \frac{\eta}{s} \leq 3.8 \times \frac{\hbar}{4\pi k_B}
\]

Is it so? Heinz and Song, 2007

Perturbative QCD:

\[
\eta/s (T_{RHIC}) \approx (20 \sim 23) \times \frac{\hbar}{4\pi k_B}
\]

Chernai, Kapusta, McLerran, nucl-th/0604032

SYM:

\[
\eta/s \approx (1.1 \sim 3.5) \times \frac{\hbar}{4\pi k_B}
\]
Two-point correlation function of stress-energy tensor

Field theory

Zero temperature: \[\langle T_{\mu\nu}T_{\alpha\beta}\rangle_{T=0} = \Pi_{\mu\nu,\alpha\beta} F(k^2) + Q_{\mu\nu,\alpha\beta} G(k^2)\]

Finite temperature: \[\langle T_{\mu\nu}T_{\alpha\beta}\rangle_{T} = S_{\mu\nu,\alpha\beta}^{(1)} G_1(\omega, q) + S_{\mu\nu,\alpha\beta}^{(2)} G_2(\omega, q) + S_{\mu\nu,\alpha\beta}^{(3)} G_3(\omega, q) + S_{\mu\nu,\alpha\beta}^{(4)} G_4 + S_{\mu\nu,\alpha\beta}^{(5)} G_5\]

Dual gravity

- Five gauge-invariant combinations \(Z_1, Z_2, Z_3, Z_4, Z_5\) of \(h_{\mu\nu}\) and other fields determine \(G_1, G_2, G_3, G_4, G_5\)
- \(Z_1, Z_2, Z_3, Z_4, Z_5\) obey a system of coupled ODEs
- Their (quasinormal) spectrum determines singularities of the correlator
Computing finite-temperature correlation functions from gravity

- Need to solve 5d e.o.m. of the dual fields propagating in asymptotically AdS space
- Can compute Minkowski-space 4d correlators
- Gravity maps into real-time finite-temperature formalism (Son and A.S., 2001; Herzog and Son, 2002)

Schwinger–Keldysh contour
Outlook

- Gravity dual description of thermalization?

- Beyond hydrodynamics: AdS/CFT vs Israel-Stewart
 Baier, Romatschke, Stephanov, Son, A.S., to appear

- Understanding 1/N corrections

- Phonino

- The role of membrane paradigm?
Outlook! Gravity dual description of thermalization?

Beyond hydrodynamics: AdS/CFT vs Israel-Stewart

Baier, Romatschke, Stephanov, Son, A.S., to appear

Understanding 1/N corrections

Phonino

The role of membrane paradigm

Holographically dual system in thermal equilibrium

\(T_{\text{Hawking}}\) \(S_{\text{Bekenstein-Hawking}}\)

10-dim gravity

4-dim gauge theory – large N, strong coupling

Gravitational fluctuations

\[g^{(0)}_{\mu\nu} + h_{\mu\nu} \]

\[~ \]

+ fluctuations of other fields

\["\Box" \ h_{\mu\nu} = 0 \] and B.C.

Quasinormal spectrum

Deviations from equilibrium

\[j_i = -D \partial_i j^0 + \cdots \]

\[\partial_t j^0 + \partial_i j^i = 0 \]

\[\partial_t j^0 = D \nabla^2 j^0 \]

\[\omega = -i D q^2 + \cdots \]
Now look at the correlators obtained from gravity. The correlator has poles at... The speed of sound coincides with the hydro prediction!
Now look at the correlators obtained from gravity

$$\langle T_{00}(k)T_{00}(-k) \rangle = \frac{3N^2\pi^2T^4q^2}{2(\omega^2 - q^2/3 + i\omega q^2/3\pi T)} + \cdots$$

The correlator has poles at

$$\omega = \pm \frac{q}{\sqrt{3}} - i\frac{q^2}{6\pi T} + \cdots$$

The speed of sound coincides with the hydro prediction!

$$\eta = \frac{\pi N^2 T^3}{8}$$

$$s = \frac{\pi^2}{2} N^2 T^3$$

$$\eta \quad \frac{1}{s} \quad \frac{1}{4\pi}$$
Similarly, one can analyze another conserved quantity – energy-momentum tensor:

\[\partial_\mu T^{\mu\nu} = 0 \]

This is equivalent to analyzing fluctuations of energy and pressure

\[\langle T^{00} \rangle = \epsilon \quad \langle T^{ij} \rangle = P \delta^{ij} \]

We obtain a dispersion relation for the sound wave:

\[
\omega = \pm \nu_s q - \frac{i}{2(\epsilon + P)} \left(\frac{4}{3} \eta + \zeta \right) q^2
\]
Universality of η/s

Theorem:

For a thermal gauge theory, the ratio of shear viscosity to entropy density is equal to $1/4\pi$ in the regime described by a dual gravity theory.

(e.g. at $g_{YM}^2 N_c = \infty$, $N_c = \infty$ in $\mathcal{N} = 4$ SYM)

Remarks:

• Extended to non-zero chemical potential:

 Benincasa, Buchel, Naryshkin, hep-th/0610145

• Extended to models with fundamental fermions in the limit $N_f/N_c \ll 1$

 Mateos, Myers, Thomson, hep-th/0610184

• String/Gravity dual to QCD is currently unknown
Three roads to universality of η/s

- **The absorption argument**
 D. Son, P. Kovtun, A.S., hep-th/0405231

- **Direct computation of the correlator in Kubo formula from AdS/CFT**
 A. Buchel, hep-th/0408095

- **“Membrane paradigm” general formula for diffusion coefficient + interpretation as lowest quasinormal frequency = pole of the shear mode correlator + Buchel-Liu theorem**
 P. Kovtun, D. Son, A.S., hep-th/0309213, A.S., to appear,
Universality of shear viscosity in the regime described by gravity duals

\[ds^2 = f(\omega) \left(dx^2 + dy^2 \right) + g_{\mu\nu}(\omega)d\omega^\mu d\omega^\nu \]

\[
\eta = \lim_{\omega \to 0} \frac{1}{2\omega} \int dt \, dx e^{i\omega t} \langle [T_{xy}(t, x), T_{xy}(0, 0)] \rangle
\]

\[
\sigma_{abs} = -\frac{16\pi G}{\omega} \text{Im} G^R(\omega)
\]

\[
= \frac{8\pi G}{\omega} \int dt \, dx e^{i\omega t} \langle [T_{xy}(t, x), T_{xy}(0, 0)] \rangle
\]

Graviton's component \(h^x_y \) obeys equation for a minimally coupled massless scalar. But then \(\sigma_{abs}(0) = A_H \).

Since the entropy (density) is \(s = A_H / 4G \) we get

\[
\frac{\eta}{s} = \frac{1}{4\pi}
\]
Hydrodynamics predicts that the retarded correlator has a "sound wave" pole at
Moreover, in conformal theory

Predictions of hydrodynamics

\[(\eta/s)_{\text{min}} \sim 23 \text{ in units of } \frac{\hbar}{4\pi k_B}\]

Chernai, Kapusta, McLerran, nucl-th/0604032
Predictions of hydrodynamics

Hydrodynamics predicts that the retarded correlator

$$\langle T_{00}(k) T_{00}(-k) \rangle$$

has a “sound wave” pole at

$$\omega = v_s q - \frac{i}{2(\epsilon + P)} \left(\frac{4}{3} \eta + \zeta \right) q^2$$

Moreover, in conformal theory

$$\epsilon = 3P \implies v_s^2 = \frac{\partial P}{\partial \epsilon} = \frac{1}{3}$$
QCD thermodynamics

Energy density vs temperature

QCD deconfinement transition (lattice data)

\[\alpha_s(T_{\text{RHIC}}) \sim O(1) \]
Computing transport coefficients from “first principles”

Fluctuation-dissipation theory
(Callen, Welton, Green, Kubo)

Kubo formulae allows one to calculate transport coefficients from microscopic models

\[\eta = \lim_{\omega \to 0} \frac{1}{2\omega} \int dt \, d^3x \, e^{i\omega t} \langle [T_{xy}(t, x), T_{xy}(0, 0)] \rangle \]

In the regime described by a gravity dual the correlator can be computed using the gauge theory/gravity duality