

# 40 years of high-energy string collisions

Gabriele Veneziano

(CERN & Collège de France)



# 40 years of string theory\*

\* Nuovo Cim. 57A (1st Sept. 1968); submitted 29.07.'68

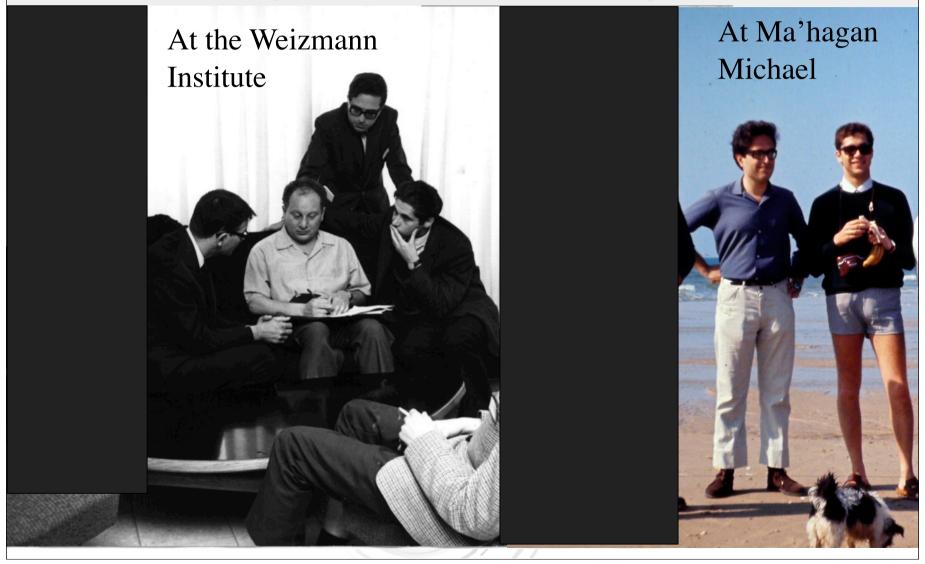
G. Veneziano# CERN-Geneva

# On leave from WIS, on the way to MIT

## Outline

- \* HE string collisions 40 years ago (very briefly)
- \* HE string collisions 20 years ago (briefly)
- \* HE string collisions 2008 (??)

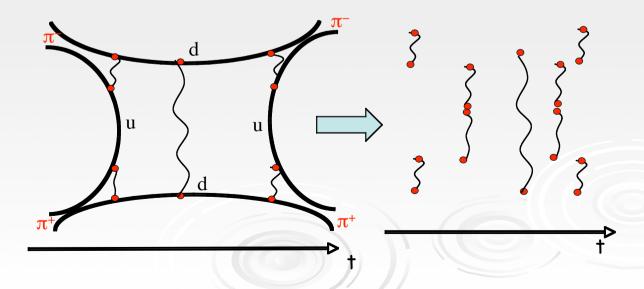
# 40 years ago: no strings attached yet! (ARVV, 1967-'68)



- Strong interactions @ "high" energy: resonances in s-channel vs. Regge poles in t-channel
- To sum or not to sum?
- DHS duality (1967) gave the correct (-ve) answer
- DRM and linear Regge trajectories: a first (missed) hint of an underlying string?

$$\alpha' = dJ/dM^2 = dl/dE = 1/T$$
 (N.B. no  $\hbar!$ )

#### Duality diagrams A second missed hint?



# 20 years later/ago

- QCD well established
- DRM (= String Theory) reinterpreted as a TOE, in particular of quantum gravity. Huge rescaling needed:

$$\alpha' \to 10^{-38} \alpha'$$
 ,  $l_s \to 10^{-19} l_s$ 

- HE => transplackian-energy (TPE); semiclassical analysis should be reliable, reproduce GR, but
  - Naive tree-level turns out to be bad:
    - Partial-wave unitarity violated at TPE
    - Fixed-angle too much suppressed (wrt GR)
- Qs: 1. Can loops come to the rescue?
  - 2. Is a semiclassical approximation still meaningful?

Examples of GR expectations based on the construction of Closed Trapped Surfaces (CTS)

# 0805.3880 [gr-qc] 26 May 2008, 594 pages THE FORMATION OF BLACK HOLES IN GENERAL RELATIVITY

#### Demetrios Christodoulou

#### May 18, 2008

#### Chapter 14: The 1st Order Weyl Current Error Estimates

- 14.1 Introduction
- 14.2 The error estimates arising from  $J^1$
- 14.3 The error estimates arising from  $J^2$
- 14.4 The error estimates arising from  $J^3$

#### Chapter 15: The 2nd Order Weyl Current Error Estimates

- 15.1 The 2nd order estimates which are of the same form as the 1st order estimates
- 15.2 The genuine 2nd order error estimates

#### Chapter 16: The Energy-Flux Estimates. Completion of the Continuity Argument

- 16.1 The energy-flux estimates
- 16.2 Higher order bounds
- 16.3 Completion of the continuity argument
- 16.4 Restatement of the existence theorem

#### Chapter 17: Trapped Surface Formation

## CTS (sufficiency) criteria => bounds

- Point-particle collisions:
- 1. Penrose ('74), b=0:  $M_{BH} > E/\sqrt{2} \sim 0.71E$
- 2. D'Eath & Payne ('92), Pretorius ('08):  $M_{BH} \sim 0.86~E$
- 3. Eardley and Giddings, b≠0, gr-qc/0201034:

$$\left(\frac{R}{b}\right)_{cr} \le 1.25 \; , \; D = 4 \qquad (R = 2G\sqrt{s} = 4GE_1 = 4GE_2)$$

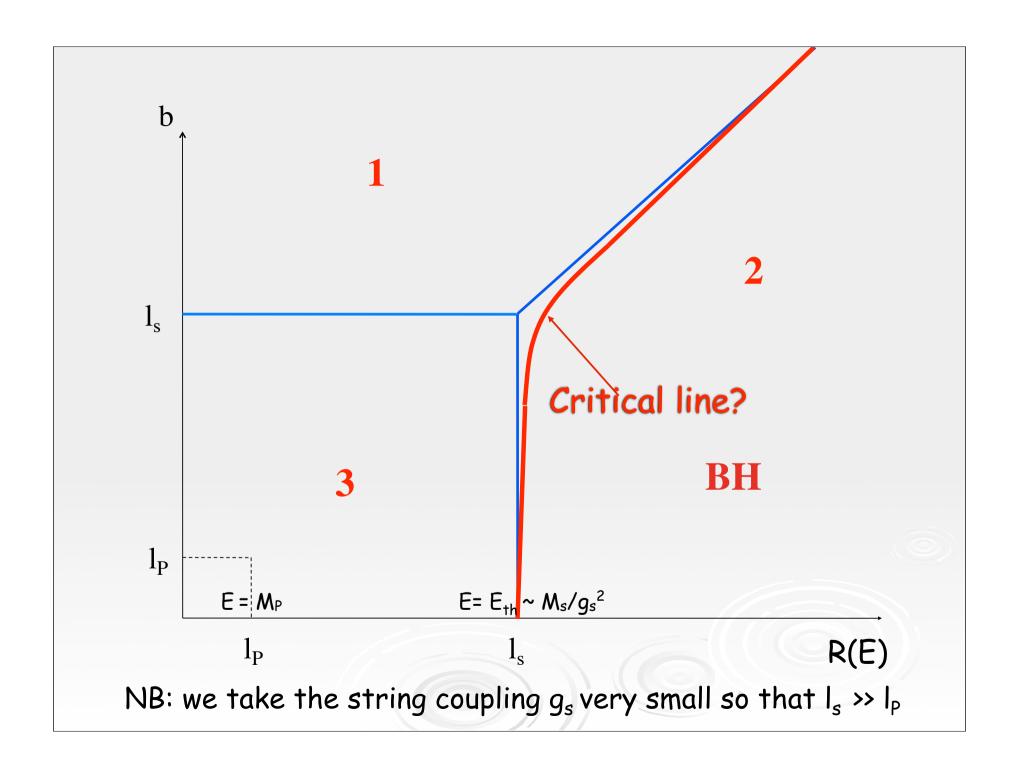
- > Extended sources:
- 1. Yurtsever ('88) gave arguments for critical size O(R)
- 2. Kohlprath and GV, gr-qc/0203093, using EG method: e.g.

$$\left(\frac{R}{L}\right)_{cr} \leq 1 \; , \; D=4 \qquad \mbox{for central collision of 2 homogeneous null beams of radius L}$$

The string length parameter  $l_s$  plays the role of the beam size! 3 length scales: b, R and  $l_s$  =>

# 3 broad-band regimes in trans-Planckian superstring scattering

- 1) Small angle scattering (b  $\gg$  R,  $I_s$ )
- 2) Large angle scattering (b ~ R >  $I_s$ ), collapse (b,  $I_s$  < R)
- 3) Stringy  $(I_s > R, b)$

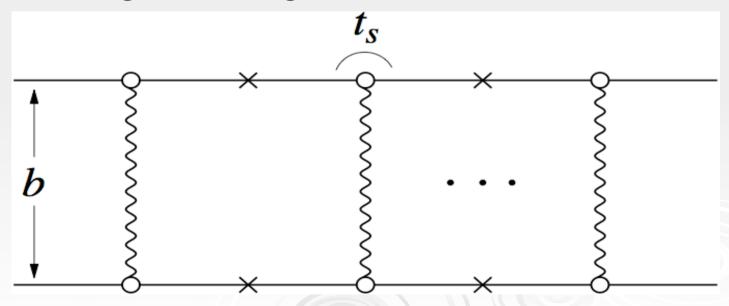


#### The semiclassical S-matrix

General arguments as well as string-loop calculations suggest the following form for the TPE S-matrix:

$$S(E,b) \sim exp\left(i\frac{A_{cl}}{\hbar}\right) \; ; \; \frac{A_{cl}}{\hbar} \sim \frac{Gs}{\hbar}c_Db^{4-D}\left(1 + O((R/b)^{2(D-3)}) + O(l_s^2/b^2) + O((l_s/b)^{D-2})\right) + \dots\right)$$

Leading eikonal diagrams (crossed ladders included)

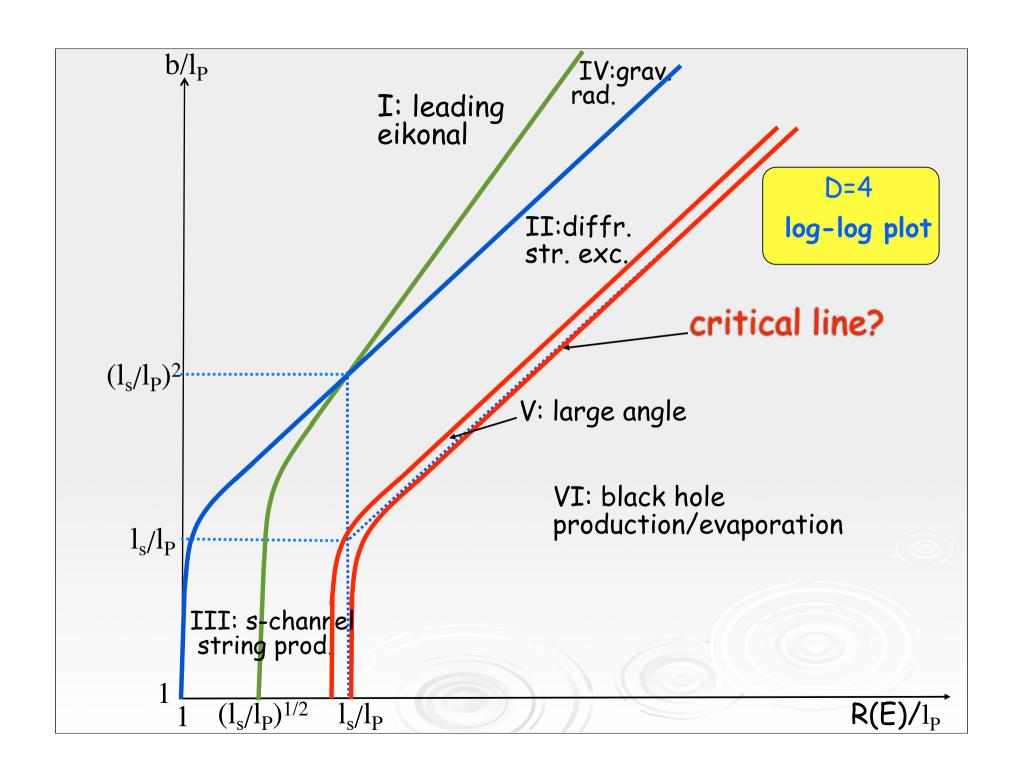


NB: For Im Acl some terms may be more than just corrections...

# Two examples of string corrections (controlled by Is) 1. Diffractively(tide)-excited strings => Im Acl 2. Heavy strings produced in s-ch. => Im Acl (cut gravi-reggeons) exchanged gravi-reggeons Classical corrections (controlled by R/b) to be discussed later

The existence of these corrections complicates the previous diagram with new regions appearing in our parameter space. We may roughly distinguish 6 (increasingly difficult) regimes:

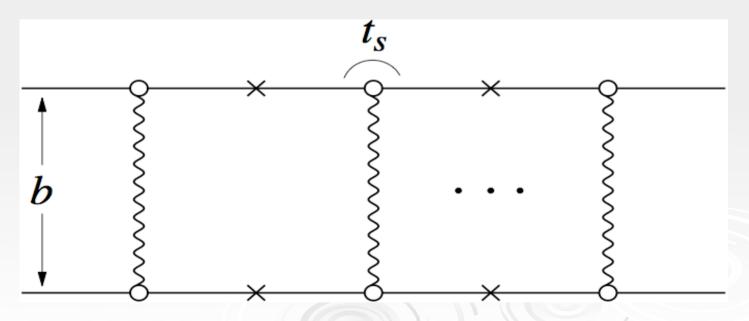
- I) Small-angle elastic scattering (leading eikonal)
- II) Small-angle inelastic scattering (a.string excitation)
- III) Small-angle inelastic scattering (b.string formation)
- IV) Small-angle inelastic scattering (c.graviton emission)
- V) Large-angle inelastic scattering
- VI) Classical Collapse



# I: Small-angle elastic scattering (leading eikonal)

$$S(E,b) \sim exp\left(i\frac{A_{cl}}{\hbar}\right) \; ; \; \frac{A_{cl}}{\hbar} \sim \frac{Gs}{\hbar}c_Db^{4-D}\left(1 + O((R/b)^{2(D-3)}) + O(b^2/b^2) + O((L/b)^{D-2}) + \dots\right)$$

Leading eikonal diagrams (crossed ladders included)



### Recovering CGR expectations @ large distance

$$S = e^{2i\delta} \qquad Re\delta \sim Gsb^{4-D}$$

$$\delta(E,b) = \int d^{D-2}q \frac{A_{tree}(s,t)}{4s} e^{-iqb}, \quad s = E^2, \quad t = -q^2$$

$$\operatorname{Im}\delta \sim \frac{G_D \ s \ l_s^2}{(Yl_s)^{D-2}} e^{-b^2/b_I^2} \ , \ b_I^2 \equiv l_s^2 Y^2 \ , \ Y = \sqrt{\log(\alpha' s)}$$

For b  $\gg$  l<sub>s</sub>y (Region I), we can forget about Im  $\delta$ 

Going over to scattering angle  $\theta$ , we find a saddle point at

$$b_s^{D-3} \sim \frac{G\sqrt{s}}{\theta} \; ; \; \theta \sim \left(\frac{R_S}{b}\right)^{D-3}$$

corresponding precisely to the relation between impact parameter and deflection angle in the (AS) metric generated by a relativistic point-particle of energy E.

# II: Small-angle inelastic scattering

(a. diffractive/tidal string excitation)

When a string moves in an AS metric it suffers tidal forces as a result of its finite size (Giddings 0604072) Grav. counterpart to diffractive excitation?

When does DE kick-in? Tidal-force argument (SG/GV):

$$\theta_1 \sim G_D E_2 b^{3-D} \Rightarrow \Delta \theta_1 \sim G_D E_2 l_s b^{2-D}$$

This angular spread provides an invariant mass:

$$M_1 \sim E_1 \Delta heta_1 \sim G_D \ s \ l_s \ b^{2-D} = M_2$$
 strings get excited if

$$M_{1,2}\sim M_s=\hbar l_s^{-1}\Rightarrow b=b_D\sim \left(rac{Gsl_s^2}{\hbar}
ight)^{rac{1}{D-2}}$$
 ... as in ACV '87

Also:

$$\sigma_{el} \sim \exp(-S(M)) \sim \exp(-M/M_s) \sim \exp(-rac{Gs}{\hbar} rac{l_s^2}{b^{D-2}})$$

# III: Small-angle inelastic scattering

(b. string formation @ b, R < Is)

Because of Im  $\delta \neq 0$ ,  $S_{el}$  is suppressed as exp(-2 Im  $\delta$ ):

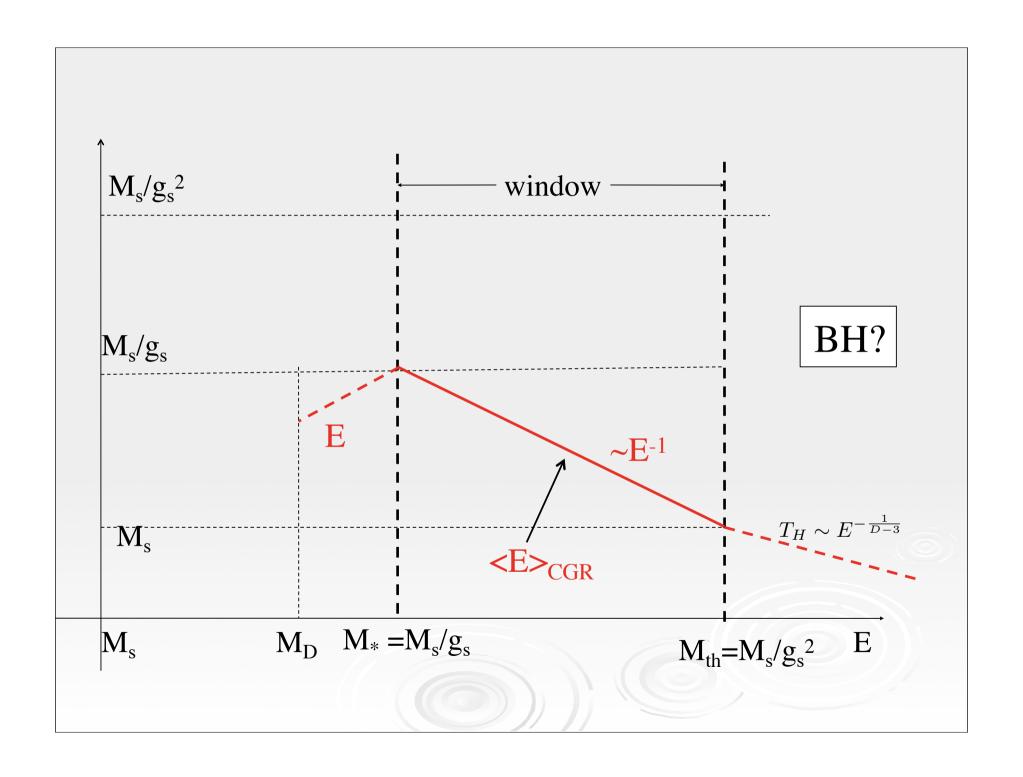
$$\sigma_{\rm el} \sim \exp(-4 {\rm Im} \delta) = \exp\left[-\frac{G_D \ s \ l_s^2}{(Y l_s)^{D-2}}\right] \equiv \exp\left[-\frac{s}{M_*^2}\right]$$

$$M_*=\sqrt{M_sM_{th}}\sim M_sg_s^{-1}$$
 If we go to E= E<sub>th</sub> = M<sub>s</sub>/g<sub>s</sub><sup>2</sup> we find:  $\sigma_{\rm el}\sim \exp(-g_s^{-2})\sim \exp(-S_{sh})$ 

where  $S_{sh}$  is the common entropy of a BH/string of mass  $E_{th}$ 

Also: 
$$\langle N_{\rm CGR} \rangle = 4 {
m Im} \delta = \frac{G_D \ s \ l_s^2}{(Y l_s)^{D-2}} \ = O\left(\frac{s}{M_*^2}\right)$$
 and thus:

$$\langle E \rangle_{\text{CGR}} = \frac{\sqrt{s}}{\langle N_{\text{CGR}} \rangle} \sim M_s Y^{D-2} \left(\frac{l_s}{R_S}\right)^{D-3} \sim T_{\text{eff}} \equiv \frac{M_*^2}{E} = \frac{M_s^2}{g_s^2 E}$$



# And today?

# An additional phenomenological motivation?

Finding signatures of string/quantum gravity @ LHC

- \* In KK models with large extra dimensions;
- \* In brane-world scenarios; in general:
- \* If we can lower the true QG scale to O(TeV)

NB: In the most optimistic situation the LHC will be very marginal for producing BH, let alone semiclassical ones

Find precursors of BH behaviour even below the expected production threshold

#### An additional theoretical motivation: AdS/CFT

Hopes that a suitable generalization of AdS/CFT may lead to a good string model for QCD (back to the old game!). IR problems afflicting the early attempts to describe highenergy soft hadronic scattering should be absent.

Interesting recent developments include:

- \* Models for the soft Pomeron and connection to gravitational processes in AdS (Janik & Peschanski; Brower, Strassler, Polchinski & Tan; Cornalba, Costa, & Penedones...)
- \* Models for the BFKL (hard) Pomeron and connection between parton-saturation and critical collapse a la Choptuik (Alvarez-Gaume, Gomez, Vasquez-Mozo,...)

Is the old program of a string-based approach to highenergy soft hadronic scattering also to be revived?

# IV: Small-angle inelastic scattering (ACV-90's)

(graviton emission)

=> Classical corrections to leading eikonal

$$S(E,b) \sim exp\left(i\frac{A_{cl}}{\hbar}\right) \sim exp\left(-i\frac{Gs}{\hbar}(logb^2 + O(R^2/b^2) + O(l_s^2/b^2) + O(l_p^2/b^2) + \dots)\right)$$

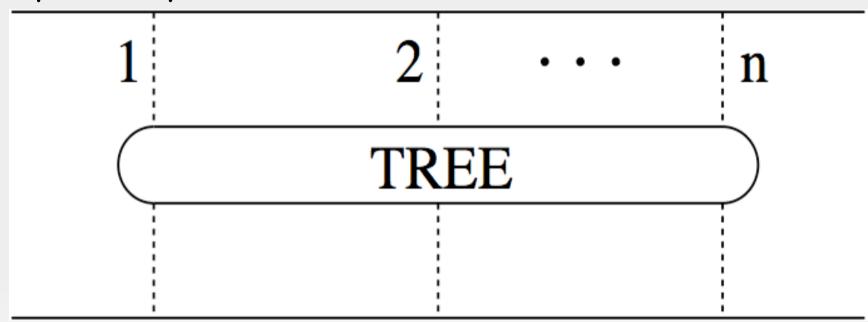
V: Large-angle inelastic scattering VI: Collapse?

=> Resumming classical corrections

(ACV, hep/th-0712.1209, MO, VW, CC...'08)

D=4 hereafter

Classical corrections characterized by absence of h. Not surprisingly, they are related to tree diagrams once the coupling to the external energetic particles is replaced by a classical source

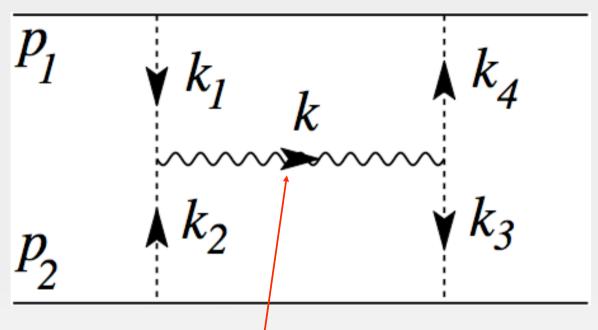


When considering the exponent (the "phase") one should restrict to connected trees

Power counting for connected trees:

$$\delta(E,b) \sim G^{2n-1}s^n \sim Gs \ R^{2(n-1)} \to Gs \ (R/b)^{2(n-1)}$$

#### Next to leading order: the H diagram



$$\sim G^3 s^2 = Gs \ G^2 s = Gs R^2 \to Gs \ (R/b)^2$$

One of the produced graviton's polarizations ("TT") is IR-safe the other ("LT") is not

## Reduced effective action & field equations

There is a simple D=2 effective action generating the leading diagrams (Lipatov, ACV '93)

Neglecting the IR-unsafe (LT) polarization, it contains: a and \$\bar{a}\$, representing the longitudinal (++ and --) components of the gravitational field, coupled to the corresponding components of the EMT;

 $\phi$ , representing the TT graviton-emission field. Besides source and kinetic terms there is a trilinear derivative coupling of a,  $\bar{a}$  and  $\phi$ 

#### The 2D action

$$\frac{\mathcal{A}}{2\pi Gs} = \int d^2x \left[ a(x)\bar{s}(x) + \bar{a}(x)s(x) - \frac{1}{2}\nabla_i\bar{a}\nabla_i a \right] 
+ \frac{(\pi R)^2}{2} \int d^2x \left( -(\nabla^2\phi)^2 + 2\phi\nabla^2\mathcal{H} \right) ,$$

$$-\nabla^2\mathcal{H} \equiv \nabla^2 a \nabla^2\bar{a} - \nabla_i\nabla_j a \nabla_i\nabla_j\bar{a} ,$$

#### and the corresponding eom

$$\nabla^2 a + 2\delta(x) = 2(\pi R)^2 (\nabla^2 a \nabla^2 \phi - \nabla_i \nabla_j a \nabla_i \nabla_j \phi), \quad \bar{a}(x) = a(b - x)$$
$$\nabla^4 \phi = -(\nabla^2 a \nabla^2 \bar{a} - \nabla_i \nabla_j a \nabla_i \nabla_j \bar{a})$$

Semiclassical approximation corresponds to solving the eom and computing the classical action on the solution.

Too hard for analytic study, numerically doable (see below)

# Axisymmetric Solutions

(ACV07, J. Wosiek & G.V. 08/1 & 08/2)

# I. Particle-particle collisions @ b=0

Equations can be studied (ACV, 07121209) but are unreliable: lesson unclear

## II. Central beam-beam collisions

One example in ACV07, more systematically explored in VW (0804.3321 & 0805.2973)

# Central beam-beam collisions

A rich problem in spite of restrictive symmetry:

- 1. The two beams contain several parameters (total intensity, shape; same or different) & we can look for critical surfaces in their multi-dim. all space
- 2. The CTS criterion is simple (see below)
- 3. Numerical results should be next on line (Cf. recent talks by Choptuik & Pretorius)

Two major simplifications occur in ACV eqns:

- 1. PDEs become ODEs
- 2. The IR-singular polarization is just not produced

# Axisymmetric action and eqns $(t=r^2)$

$$\frac{\mathcal{A}}{2\pi^2 G s} = \int dt \left[ a(t)\bar{s}(t) + \bar{a}(t)s(t) - 2\rho \dot{a}\dot{a} \right] 
- \frac{2}{(2\pi R)^2} \int dt (1-\dot{\rho})^2 
\rho = t \left( 1 - (2\pi R)^2 \dot{\phi} \right) \qquad \pi \int^t dt' s_i(t') = R_i(t)/R 
\dot{a}_i = -\frac{1}{2\pi \rho} \frac{R_i(r)}{R} 
\ddot{\rho} = \frac{1}{2} (2\pi R)^2 \dot{a}_1 \dot{a}_2 = \frac{1}{2} \frac{R_1(r)R_2(r)}{\rho^2} \qquad \rho(0) = 0 \quad ; \quad \dot{\rho}(\infty) = 1$$

2nd order ODE w/ Sturm-Liouville-like b. conditions

# CTS criterion (KV gr-qc/0203093)

If there exists an r<sub>c</sub> such that

$$R_1(r_c)R_2(r_c) = r_c^2$$

we can construct a CTS and therefore expect a BH to form.

Theorem (VW08): whenever the KV criterion holds\*) the ACV field equations do not admit regular (at r=0) real solutions. Thus:

KV criterion ==> ACV criterion

but of course not the other way around!

\*) actually the r.h.s. can be replaced by  $\frac{2}{3\sqrt{3}}r_c^2$ 

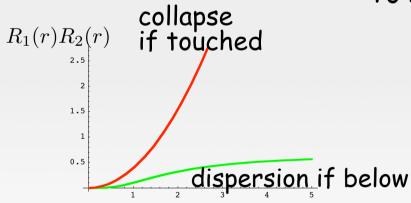
## A sufficient criterion for dispersion

(P.-L. Lions, private comm.)

If 
$$R_1(r)R_2(r) \le \frac{8}{27} \frac{r^4}{(1+r^2)^2} \left[ 1 + \frac{1}{2} \left( 1 - \frac{\log(1+r^2)}{r^2} \right) \right]^2$$

the ACV eqns do admit regular, real solutions.

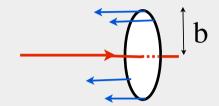
To summarize



clearly, there is room for improvement...

# 3 examples (if time/chair allows...)

## Example 1: particle-scattering off a ring



Can be dealt with analytically:

$$\ddot{\rho} = \frac{R^2}{2\rho^2} \Theta(r^2 - b^2) \qquad \qquad \begin{array}{rcl} \rho & = & \rho(0) + r^2 \dot{\rho}(0) & , & (r < b) \\ \dot{\rho} & = & \sqrt{1 - R^2/\rho} & , & (r > b) \end{array}$$

Since  $\rho(0) = 0$ :

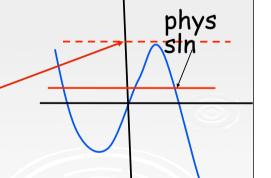
$$\rho(b^2) = b^2 \dot{\rho}(b^2) = b^2 \sqrt{1 - R^2/\rho(b^2)}$$

This (cubic) equation has positive real solutions iff

$$b^2 > \frac{3\sqrt{3}}{2}R^2 \equiv b_c^2$$
  $b_c \sim 1.61R$ , CTS:  $b_c > R$ 

# Amusing analogy with turning point in Schwarzschild metric

$$\frac{R}{b} = x - x^3, x \equiv \frac{r*}{b} \Rightarrow b > b_c = \frac{3\sqrt{3}}{2}R^2$$



## Example 2: Two hom. beams of radius L.

The equation for  $\rho$  becomes

$$\ddot{\rho}(r^2) = \frac{R^2}{2\rho^2}\Theta(r - L) + \frac{R^2r^4}{2L^4\rho^2}\Theta(L - r)$$

We can compute the critical value numerically:

$$\left(\frac{R}{L}\right)_{cr} \sim 0.47$$

It is compatible with (and close to) the CTS upper bound of KV:

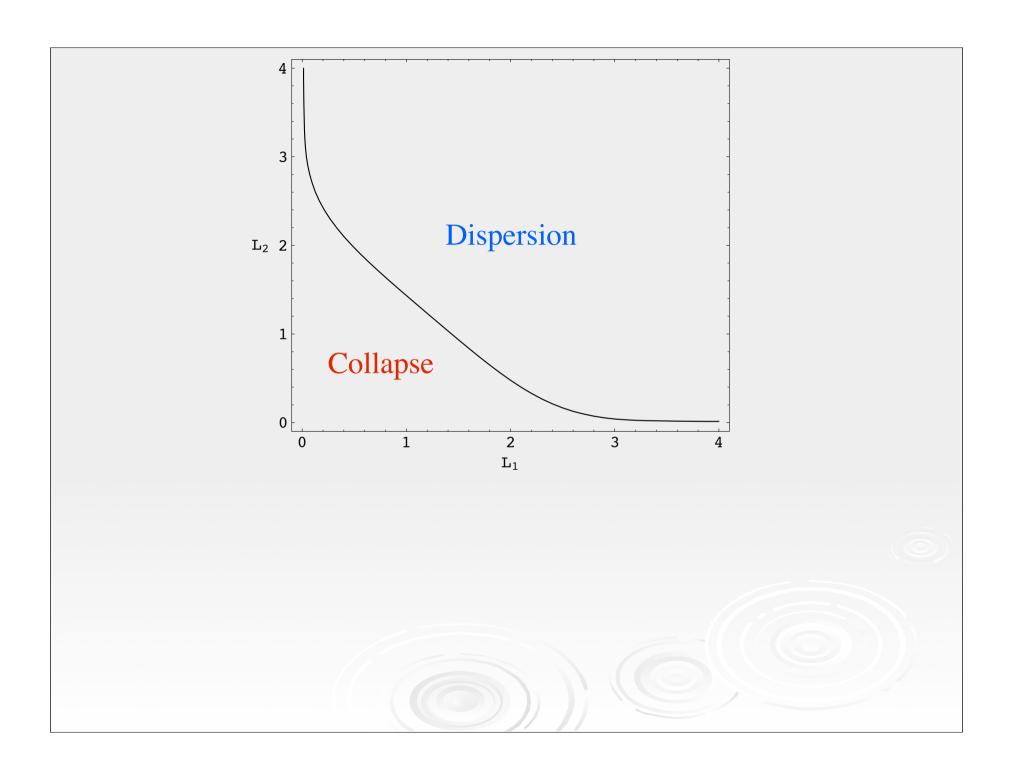
$$\left(\frac{R}{L}\right)_{cr} < 1.0$$

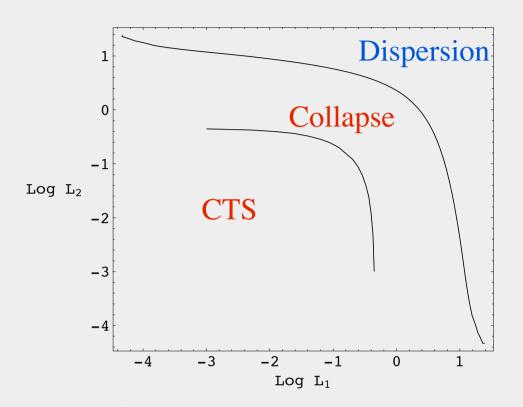
# Example 3: Two different Gaussian Beams (V&Wosiek '08)

Two Gaussian profiles with widths L1 and L2

$$s_i(t) = \frac{1}{2\pi L_i^2} exp\left(-\frac{t}{2L_i^2}\right) \quad , \quad \frac{R_i(t)}{R} = 1 - exp\left(-\frac{t}{2L_i^2}\right)$$

We determined the critical line in the  $(L_1 , L_2)$  plane and compared it with the one coming from the CTS criterion.





Many other examples: find agreement w/ CTS suff. criteria and numerical values within a factor 1.5 to 2.5

## Particle-particle collisions at finite b

#### Numerical solutions

(G. Marchesini & E. Onofri, 0803.0250)

Solve directly PDEs by FFT methods in Matlab Result: real solutions only exist only for

$$b > b_c \sim 2.28R$$

Compare with EG's CTS lower bound on bc

$$b_c > 0.80R$$

# Particle Spectra

(ACV07, VW08/2, & Ciafaloni GV in progress)

We can study the spectrum of the produced particles by looking at various contributions to the imaginary part of the elastic amplitude at fixed E & b (E-cons. important)

The final spectrum is roughly as follows (for extended sources b--> beam size):

$$\frac{1}{\sigma} \frac{d\sigma}{d^2k dy} = \frac{Gs}{\hbar} R^2 \exp\left(-\frac{|k||b|}{\hbar} (1 + \cosh y \ R^3/b^3)\right)$$

This shows that, while for b >> R gravitons are produced at small angles, as b ->  $b_c \sim R$  their distribution becomes more and more spherical w/ <n> ~ Gs and characteristic energy  $O(1/R \sim T_H)$ 

# Near & beyond bc

Leaving aside imaginary part due to graviton production, for  $b-->b_c^+$  the on-shell action behaves as

$$\frac{A - A_c}{Gs} = \sqrt{3} \left( 1 - \frac{b^2}{b_c^2} \right) + \frac{2\sqrt{2}}{3} \left( \frac{b^2}{b_c^2} - 1 \right)^{3/2}$$

The elastic amplitude picks up an extra damping below  $b_c$  meaning that new channels have opened up.

Q: Do these correspond to the formation of BHs?

Ciafaloni and Colferai (08.07.2117) have formulated this as a QM tunneling problem ( $w/r^2$  playing role of time)

Just below  $b_c$  the new imaginary part of the action behaves like

$$ImA \sim Gs(1 - J/Gs)^{3/2}$$
,  $\sigma_{el} \sim exp(-ImA)$ 

Q: Can we make the identification:

$$\sigma_{el} \sim \exp(-S_{BH})$$
?

A: If we can the mass of the BH should go to zero for  $b->b_c$  (Type-II critical collapse) as:

$$M_{BH} \sim \sqrt{s}(1 - b/b_c)^{3/4}$$

fixing the value of Choptuik's exponent to about twice his 0.37 (known to depend on  $w = p/\rho$ )

# Conclusions

- Gedanken HE collisions (e.g.  $\pi\pi$ -> $\pi\omega$ ) have played an important role in the early developments of ST.
- •After the 1984 revolution TPE collisions may well play a similar role for understanding whether & how QM & GR are mutually compatible in a string theory framework
- •Superstring theory in flat space-time (and in other consistent backgrounds) offers a concrete framework where the quantum scattering problem is well-posed.
- •The problem simplifies by considering Gs/h >> 1 so that a suitable semiclassical approximation can be justified. Within that inematical constraint we have considered various regimes, roughly classified as follows:

- A large impact parameter regime, where an eikonal approximation w/ small corrections holds and GR expectations are recovered (AS effective metric..)
- A stringy regime, where one finds an approximate Smatrix with some characteristics of BH-physics as the expected BH threshold is approached from below
- A strong-gravity (large R) regime where an effective action approach can be (partly) justified and tested

- •Critical points (lines) have emerged matching well CTSbased GR criteria
- •As the critical line is approached, the final state starts resembling a Hawking-like spectrum: a fast growth ( $\sim E^2$ ) of multiplicity w/ a related softening of the final state.
- Progress was made towards constructing a unitary Smatrix and understanding the physics of the process as the critical surface is reached and possibly crossed
- •Much more work remains to be done, but an understanding of the quantum analog/replacement of GR's gravitational collapse does no-longer look completely out of reach...

# Thank you!