F-theory Compactifications for SUSY GUTs

Sakura Schäfer-Nameki

based on work with Joe Marsano and Natalia Saulina

Talk at Strings 2009, Roma, 24. June 2009

MSS-N: 0808.1571, 0904.3932, 0906.nnnn

Plan

- 1. Features of Local F-theory GUTs
- 2. Refined Local Models
 - Monodromies and Spectral Cover
 - Factorized Spectral Cover and Constraints
- 3. A Compact Geometry
- 4. Outlook

1. Features of Local F-theory GUTs [cf. talks by Vafa and Heckman]

F-theory GUTs [Donagi, Wijnholt] [Beasley, Heckman, Vafa]:

F-theory on $\mathbb{R}^{1,3} \times X_4$, X_4 = elliptically fibered CY4 over B_3 :

$$\mathbb{E}_{ au}
ightarrow X_4$$

$$\downarrow$$

$$B_3 \supset S_{\text{GUT}}$$

Locally: ALE fibration over 4-cycle S_{GUT} .

- Local *SU*(5) singularity: GUT gauge degrees of freedom
- Matter and Higgs fields: rank 1 enhancements along curves

$$SU(6): \overline{\mathbf{5}}_{M}, \mathbf{5}_{H}, \overline{\mathbf{5}}_{H}$$

$$SO(10):$$
 10_M

• Yukawas: rank 2 enhancements SO(12) and E_6 enhancement

$$W \supset \lambda_{\text{bottom}} \, \overline{\mathbf{5}}_{H} \times \overline{\mathbf{5}}_{M} \times \mathbf{10}_{M} + \lambda_{\text{top}} \, \mathbf{5}_{H} \times \mathbf{10}_{M} \times \mathbf{10}_{M}$$

• Flavor structure: most natural to have all generations arise from single matter curves [Heckman, Vafa]

$$\Sigma_{\overline{\mathbf{5}}_M}: \quad 3 \times \overline{\mathbf{5}}_M, \qquad \quad \Sigma_{\mathbf{10}_M}: \quad 3 \times \mathbf{10}_M$$

• GUT-breaking by hypercharge flux F_Y requires

$$F_Y|_{\Sigma_M} = 0, \qquad F_Y|_{\Sigma_{5_H}} = +1, \qquad F_Y|_{\Sigma_{\overline{5}_H}} = -1$$

Masslessness of $U(1)_{\gamma}$: [Buican, Malyshev, Morrison, Verlinde, Wijnholt]

 \Rightarrow F_Y is dual in S_{GUT} to 2-cycle, that is homologically trivial in B_3

• Absence of dimension 4 proton decay operators:

$$\mathbf{10}_M \times \overline{\mathbf{5}}_M \times \overline{\mathbf{5}}_M$$
 and $\mathbf{10}_M \times \overline{\mathbf{5}}_H \times \overline{\mathbf{5}}_H$

• Absence of tree-level μ -term $\mu H\bar{H}$: $U(1)_{PO}$

[Marsano, Saulina, SS-N][Heckman, Vafa]

What controls the superpotential?

In local models:

superpotential dictated by independent U(1) gauge symmetries

In a global setup:

identifications of U(1)s by monodromies

⇒ Spectral Cover keeps track of all symmetries underlying the theory

2. Refined Local Models [Donagi, Wijnholt]

Favorable Flavor: *E*₈ gauge symmetry

$$E_8 o SU(5)_{\perp} imes SU(5)_{\text{GUT}}$$
248 $o (24, 1) + (1, 24) + (\overline{10}, 5) + (\overline{5}, \overline{10}) + (10, \overline{5}) + (5, 10)$
 $SU(5)_{\perp} ext{ weights:}$ 5: $\lambda_i = \sum_{k=1}^i \alpha_{5-k} ext{ with } \sum_{i=1}^5 \lambda_i = 0$, 10: $\lambda_i + \lambda_i$

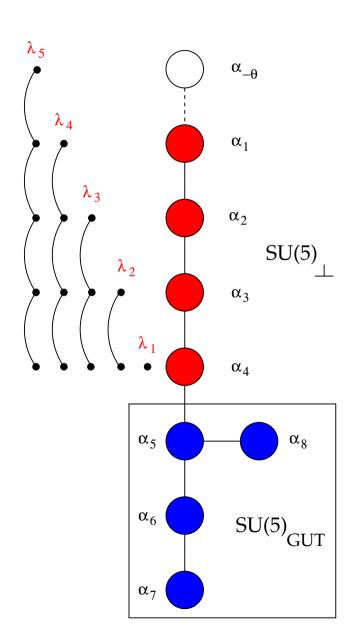
• Matter/Higgses:

10: SO(10): λ_i $\overline{5}$: SU(6): $\lambda_i + \lambda_j$

• <u>Yukawas</u>:

Bottom: SO(12): $(\lambda_i + \lambda_j) \cdot (\lambda_k + \lambda_l) \cdot (\lambda_m)$ Top: E_6 : $(\lambda_i) \cdot (\lambda_j) \cdot (-\lambda_i - \lambda_j)$

• Flavor (CKM, PMNS): *E*₈ [Heckman, Tavanfar, Vafa]



Geometric implementation

Our starting point:

Local Geometry over S_{GUT} is deformed E_8 singularity

$$y^2 = x^3 + b_5 xy + b_4 x^2 z + b_3 yz^2 + b_2 xz^3 + b_0 z^5$$

- λ_i : encode volumes of blow-up \mathbb{P}^{1} 's
- b_n depend on canonical and normal bundle of S_{GUT} and are related to volumes of \mathbb{P}^{1} 's by

$$b_n(\lambda_i) = e_n(\lambda_i)b_0$$

 e_n = elementary symmetric polys

Geometric implementation

Deformed E_8 singularity

$$y^2 = x^3 + b_5 xy + b_4 x^2 z + b_3 yz^2 + b_2 xz^3 + b_0 z^5$$

Various enhancement loci translate into:

[Andreas, Curio]

```
SU(5): Resolve \mathbb{P}^1 associated to \alpha_{5,6,7,8}
```

SO(10): **10** matter $0 = b_5 \sim \prod_i \lambda_i$

SU(6): $\overline{\bf 5}$ matter $0 = P = b_0 b_5^2 - b_2 b_3 b_5 + b_3^2 b_4 \sim \prod (\lambda_i + \lambda_j)$

SO(12): Bottom: $0 = b_5 = b_3$

 E_6 : Top: $0 = b_5 = b_4$

 E_8 : $0 = b_2 = b_3 = b_4 = b_5$

Monodromies

 $E_8 \rightarrow SU(5) \times U(1)^4$: naively expect four U(1) gauge symmetries.

However geometry specified by $b_n = b_0 e_n(\lambda_i)$

- \Rightarrow Inversion $\lambda_i(b_n)$ generically has branch-cuts
- \Rightarrow monodromy group $G \subset S_5$ = Weyl group of $SU(5)_{\perp}$ acts on λ_i
- ⇒ Spectral cover encodes monodromies

$$C_{10}: b_0 s^5 + b_2 s^3 + b_3 s^2 + b_4 s + b_5 \sim b_0 \prod_{i=1}^5 (\lambda_i + s) = 0$$

[Hayashi, Kawano, Tatar, Watari] [Donagi, Wijnholt]

Projectivized version:

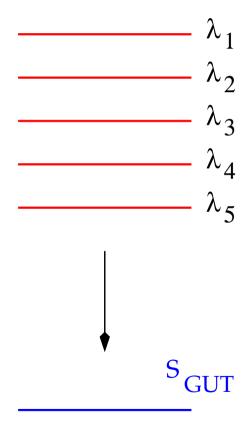
$$C_{10}: b_0 U^5 + b_2 V^2 U^3 + b_3 V^3 U^2 + b_4 V^4 U + b_5 V^5 = 0$$

Spectral Cover and U(1) gauge symmetries

- Spectral cover is an auxiliary space, encodes all monodromies.
- C_{10} is 5-fold cover of S_{GUT} :

$$b_0 U^5 + b_2 V^2 U^3 + b_3 V^3 U^2 + b_4 V^4 U + b_5 V^5 = 0$$

• Monodromy group $G \subset S_5$ acts on sheets and identifies U(1)'s.



Matter Curves in C_{10}

Matter curves naturally live inside C_{10} :

$$b_0 U^5 + b_2 V^2 U^3 + b_3 V^3 U^2 + b_4 V^4 U + b_5 V^5 = 0$$

10 matter curve:
$$b_5 = 0 \Leftrightarrow C_{10} \cap (U = 0)$$

- $\overline{\underline{5}}$ matter curve: $\overline{\underline{5}}$ matter curve in anti-symmetric spectral cover C_5
 - Want to keep track of charges of 5 fields
 - Embed into C_{10} :

Auto
$$\tau: \lambda_i \to -\lambda_i$$
 or $V \to -V$. Fixed locus:

$$\mathcal{C}_{\mathbf{10}} \cap \tau \mathcal{C}_{\mathbf{10}} = (\lambda_i = 0) \quad \cup \quad (\lambda_i + \lambda_j = 0) \quad \cup \quad (\lambda_i \to \infty) \\
= \Sigma_{\mathbf{10}} \quad \cup \quad \Sigma_{\overline{\mathbf{5}}} \quad \cup \quad \Sigma_{\infty} \\
= \mathcal{C}_{\mathbf{10}} \cap (U) \quad \cup \quad \mathcal{C}_{\mathbf{10}} \cap (\mathcal{C}_{\mathbf{10}} - (U) - (3V)) \quad \cup \quad \mathcal{C}_{\mathbf{10}} \cap (3V)$$

Factorization of Spectral Cover

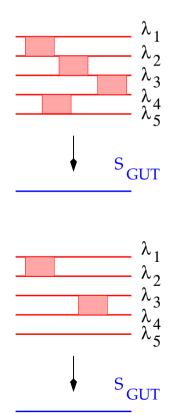
[Tatar, Tsuchiya, Watari], [Marsano, Saulina, SS-N]

First thing to read off from the spectral cover:

Independent gauged U(1) symmetries are encoded in # factors of C_{10}

U(1) gauge bosons are elements in Cartan subalgebra:

- G = transitive subgroup of S_5 : only invariant combination is $\sum_{i=1}^5 \lambda_i = 0$ \Rightarrow no gauged U(1)
- λ_i in reducible representation of G: C_{10} factors into N components $\Rightarrow (N-1)$ gauged U(1)s



Refined structure from Spectral Cover

Example: $G = \mathbb{Z}_4 = <(1234)>:$

Decomposition of λ_i under $G = C_4$:

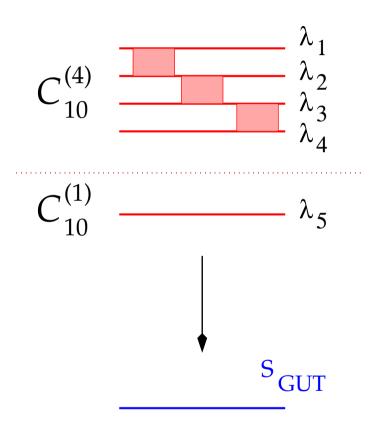
$$\begin{aligned} \{\lambda_i\} \; \to \; \mathbf{10}_{\lambda_1, \lambda_2, \lambda_3, \lambda_4}^{(1)} + \mathbf{10}_{\lambda_5}^{(2)} \\ \{\lambda_i + \lambda_j\} \; \to \; \mathbf{\overline{5}}_{\lambda_1 + \lambda_2, \dots}^{(1)} + \mathbf{\overline{5}}_{\lambda_1 + \lambda_3, \dots}^{(2)} + \mathbf{\overline{5}}_{\lambda_1 + \lambda_5, \dots}^{(3)} \end{aligned}$$

 E_6 and SO(12) points yield:

$$\mathbf{10}^{(1)} \times \mathbf{10}^{(1)} \times \mathbf{5}^{(1)}$$
, $\mathbf{10}^{(1)} \times \mathbf{10}^{(1)} \times \mathbf{5}^{(2)}$

$${f 10}^{(2)} imes {f \overline{5}}^{(1)} imes {f \overline{5}}^{(1)} \, , \quad {f 10}^{(2)} imes {f \overline{5}}^{(2)} imes {f \overline{5}}^{(2)} \, ,$$

But: $\mathbf{10}^{(2)} \times \overline{\mathbf{5}}^{(1)} \times \overline{\mathbf{5}}^{(2)}$ forbidden.



We can assign U(1) charges to get all the allowed couplings. But there is no assignment of charges that excludes $\mathbf{10}^{(2)} \times \overline{\mathbf{5}}^{(1)} \times \overline{\mathbf{5}}^{(2)}$. This requires knowledge of the monodromies.

Putting the spectral cover to use:

Phenomenological wish list:

- no exotics, 3-generations
- top and bottom Yukawas
- flavor structure
- no tree-level μ -term...

 \Rightarrow What do these constraints imply for the spectral cover C_{10} ?

Constraints on C_{10}

[Marsano, Saulina, SS-N]

1. Top-Yukawa $\mathbf{10}_M \times \mathbf{10}_M \times \mathbf{5}_H$:

$$(\lambda_i) = (\lambda_j) = (\lambda_i + \lambda_j) = 0$$

- \Rightarrow \mathcal{C}^{10_M} at least rank 2 and contains Σ_{5_H}
- \Rightarrow **10**_M and **5**_H in same component of C_{10}

2. Hypercharge Flux Constraint:

No exotics

$$\Rightarrow F_Y|_{\mathbf{10}^i} = 0, \quad \forall i$$

 $\Rightarrow F_Y|_{\overline{5}} = 0$ on net $\overline{5}$ on each factor of C

$$\Rightarrow$$
 10_M, **5**_H, $\overline{\bf 5}_H$ from single component \mathcal{C}^{10_M}

NB: Higgses arise from a single matter curve, which then has to factor further, in H_u and H_d .

$$\begin{array}{c|c}
10\\M\\10\\M
\end{array} \begin{array}{c}
\\
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\\
\end{array} \begin{array}{c}
\\
\end{array} \begin{array}{c}
\\
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\\
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\\
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}$$
 \\ \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
 \\ \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \end{array} \begin{array}{c}
\end{array} \begin{array}{c}

Constraints on C_{10} (cont.)

3. Bottom-Yukawa $\overline{\bf 5}_H \times \overline{\bf 5}_M \times {\bf 10}$:

$$(-\lambda_i - \lambda_i) = (-\lambda_k - \lambda_l) = (\lambda_m) = 0$$

- \Rightarrow From 2.) $\overline{\bf 5}_H$ in same component of C_{10}
- $\Rightarrow \mathcal{C}^{10_{\rm M}}$ has to have at least 3 sheets

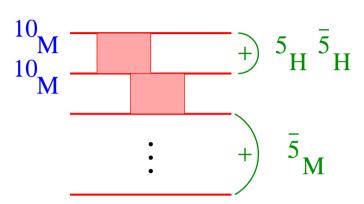
4. Absence of tree-level μ -term:

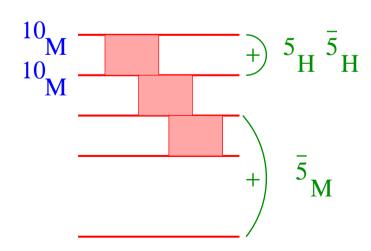
Exclude tree-level $\mu H_u H_d$

⇒ Only factorization realizing this is

$$C_{10} = C_{10}^{(4)} + C_{10}^{(1)}$$

Accidental global $U(1)_{PQ}$: $PQ(H_u) = PQ(H_d)$





Constraints on C_{10} (cont.)

Summary:

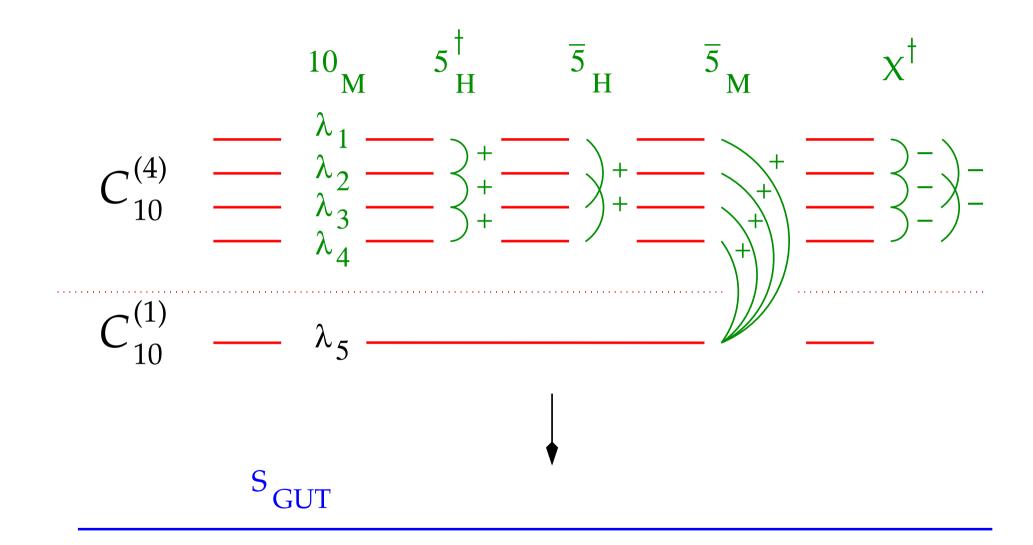
[Marsano, Saulina, SS-N]

Yukawas, no exotics and no tree-level $\mu \Rightarrow 4+1$ factorization $C_{10}^{(4)} + C_{10}^{(1)}$

Comments:

- Absence of tree-level μ -term requires : $G = D_4$ or \mathbb{Z}_4 or Klein₄
- Only one U(1) gauge symmetry, combination of $U(1)_Y$ and $U(1)_{B-L}$
- No gauged $U(1)_{PQ}$
- Problems with neutrinos
 - \Rightarrow Can we relax some constraint?
 - ⇒ Different mechanism for removing exotics?

4+1 Factorized Spectral Cover: $G = \mathbb{Z}_4$



Charges: **10**: $\lambda_1, \lambda_2, \lambda_3, \lambda_4$, **5**_H: $(-\lambda_1 - \lambda_2), (-\lambda_2 - \lambda_3), (-\lambda_3 - \lambda_4)$, etc.

Properties of the 4 + 1 factorized spectral cover

$$C^{(4)} + C^{(1)}$$
: $(a_0U^4 + a_1U^3V + a_2U^2V^2 + a_3UV^3 + a_4V^4)(d_0U + V) = 0$

with $b_1 = a_0 + a_1 d_0 = 0$.

Matter curves:

10:
$$a_4 = 0$$
, $\overline{5}$: $P = (a_3(a_2 + a_3d_0) - a_1a_4)(a_2 + d_0(a_3 + a_4d_0)) = 0$

Note: Automatically factorized $\overline{5}$ matter curve: $P = P_H P_M$.

Yukawas:

$$SO(12): \quad a_4 = a_2 + a_3 d_0 = 0, \qquad E_6: \quad a_4 = a_3 = 0$$

⇒ This factorization automatically guarantees correct Yukawa couplings

Yukawa couplings in 4+1 factorization

$$C_{10}^{(4)} = \begin{bmatrix} C_{10}^{(4)} & C_$$

$$\int d^2\theta \left(\mathbf{10}_M \times \mathbf{10}_M \times \mathbf{5}_H + \overline{\mathbf{5}}_H \times \overline{\mathbf{5}}_M \times \mathbf{10}_M \right) + \int d^4\theta \frac{1}{M_{\text{GUT}}} X^{\dagger} H \bar{H}$$

Summary so far

General semi-local analysis:

- Starting point: Deformed E_8 singularity over S_{GUT} : b_i
- Spectral cover: $\prod (s + \lambda_i) = 0$
- Monodromies act on spectral cover
- Independent *U*(1) gauge symmetries encoded in # of factors of spectral cover
- Fundamental phenomenological requirements for SU(5) GUTs \Rightarrow 4+1 factorized spectral cover

3. A Compact Geometry

[Marsano, Saulina, SS-N]

Aim: Explicit realization of 4+1 model in compact CY four-fold

 \Rightarrow specify explicit sections b_n

Recall: X_4 = elliptically fibered CY4 with three-fold base B_3 :

$$\mathbb{E}_{ au}
ightarrow X_4 \ \downarrow \ B_3 \supset S_{ ext{GUT}}$$

Constraints on B_3 :

- X_4 Calabi-Yau $\Rightarrow B_3$ Fano i.e. $K_{B_3}^{-1}$ ample
- Hypercharge constraint: F_Y dual in S_{GUT} to class that is trivial in B_3
- S_{GUT} is a del Pezzo surface

Hypercharge flux constraint

[Buican, Malyshev, Morrison, Verlinde, Wijnholt]

[Beasley, Heckman, Vafa], [Donagi, Wijnholt]

Let $S = dP_n$ and

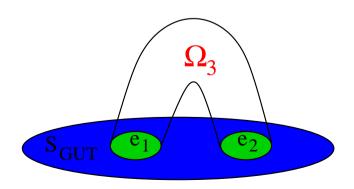
$$H_2(dP_n,\mathbb{Z}) = \langle h, e_1, \cdots, e_n \rangle$$
, $h^2 = 1$, $e_i \cdot e_j = -\delta_{ij}$

Representative for hypercharge flux

$$[F_Y] = e_1 - e_2$$

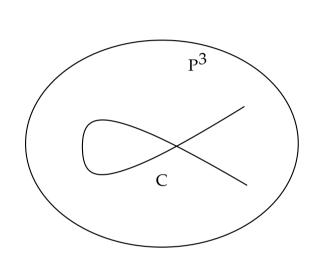
Hypercharge $U(1)_Y$ remains massless if there is a 3-chain Ω_3 in B_3 :

$$\partial \Omega_3 = e_1 \cup (-e_2)$$

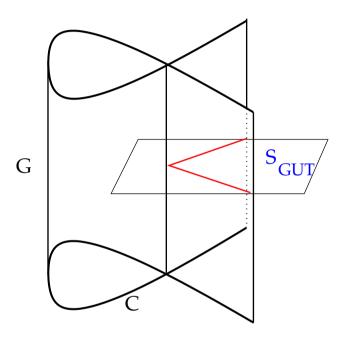


Three-Fold Construction

[Marsano, Saulina, SS-N]







1. Starting point: nodal curve *C*, locally

$$xy = z = 0$$

2. Blowup along *C*: Conifold singularity

$$xy = zu$$

3. Blowup conifold to $S_{GUT} = \mathbb{P}^1 \times \mathbb{P}^1$ \mathbb{P}^1 's homologous in 3-fold

Local construction embeddable into \mathbb{P}^3 . B_3 automatically Fano.

Exceptional divisor $S_{\text{GUT}} = \mathbb{P}^1_{(1)} \times \mathbb{P}^1_{(2)}$ has required properties of S_{GUT} :

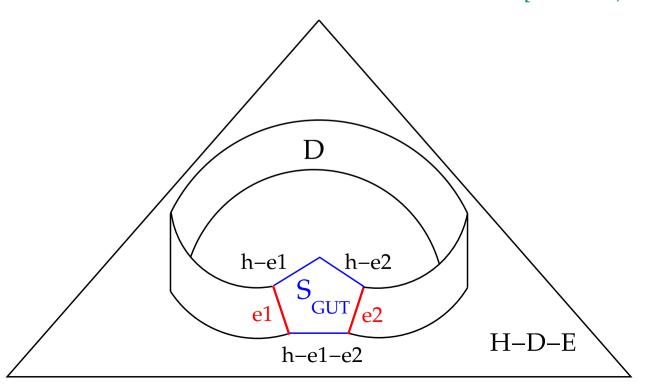
$$\mathbb{P}^1_{(1)} \sim \mathbb{P}^1_{(2)}$$
 in $H_2(B_3, \mathbb{Z})$

NB: Flopping the curve G yields dP_2 divisor with same property.

Divisors: $H = dP_3$, $D = \mathbb{F}_4$, $E = S_{GUT} = dP_2$

Final 3-fold: All holomorphic sections explicitly constructed

[Marsano, Saulina, SS-N]



Three-Generation Model

[Marsano, Saulina, SS-N]

Consider now 4+1 factorized model in this geometry.

Matter curves:

10:
$$a_4 = 0$$
, $\overline{\bf 5}$: $(a_3(a_2 + a_3d_0) - a_1a_4)(a_2 + d_0(a_3 + a_4d_0)) = P_H P_M = 0$

Classes of a_i are fixed in terms of $K_{S_{GUT}}$ and $N_{S_{GUT}|B_3}$.

In our explicit example these are given by:

$$[\Sigma_{10}]|_{S_{GUT}} = 2h - (e_1 + e_2)$$

 $[\Sigma_{5,H} + \Sigma_{\bar{5},H}]|_{S_{GUT}} = 13h - 5(e_1 + e_2)$
 $[\Sigma_{5,M}]|_{S_{GUT}} = 8h - 3(e_1 + e_2)$

G-fluxes naturally come from spectral cover

[Donagi, Wijnholt]

Constructed fluxes in spectral cover s.t. $3 \times 10_M$ and $3 \times \overline{5}_M$, no net chiral matter on Higgs curve. [Marsano, Saulina, SS-N]

 \Rightarrow 3-generation SU(5) GUT in compact CY4.

4. Dones...

All following features are realized in our compact geometry:

- Exotic-free SU(5) GUT
- 3 generations of 10 and of $\bar{5}$ on single matter curve, each
- GUT-breaking by hypercharge flux F_Y
- $U(1)_Y$ is ensured to remain massless
- No dimension 4 proton decay

... and ToDos

- $G = S_4$ so far: require refinement to $G = D_4, \mathbb{Z}_4$, Klein₄
 - \Rightarrow global $U(1)_{PQ}$ yet
 - $\Rightarrow \mu$ -problem, dimension 5 proton decay
 - ⇒ technical obstruction: further refinement of spectral cover so that
 - $G = D_4, \mathbb{Z}_4, Klein_4$
- Relax constraints on factorization?
 - ⇒ Requires different mechanism to lift exotics
 - \Rightarrow Could yield gauged $U(1)_{PQ}$
- SUSY breaking: further effects due to gravity mediation?
- Moduli stabilization

Thank