Say 'Halo!' to New Indices & New Walls

Strings 2010, Texas A&M, March 15

Gregory Moore

Rutgers University

OUTLINE

Introduction

Part 1: How BPS states in N=2 sugra change

Part II: Line Operators in N=2 Field Theories

Framed BPS states & Protected Spin Characters

New derivation of the ``motivic'' KSWCF

Exact results for line operator vevs in T_{g,n}[A₁] theories

Old Question |

Strings2007: Introduced the semi-primitive WCF.

Final Riddle: Why did the BPS state cross the wall?

We need to understand not just the index but how the space of BPS states change as moduli are varied.

Old Question II

Strings2008: Moduli space \mathcal{M} of an $\mathcal{N}=2$ theory on $\mathbb{R}^3\times S^1$

Darboux/Twistor coordinates $\;\mathcal{X}_{\gamma}\;$ construct a HK metric

Final Promise: These have an interpretation in terms of line operators

Part II: Make good on that promise

N=2: Basic Definitions

Moduli of vacua:

$$\mathcal{B}_{vm} imes \mathcal{M}_{hm}$$

Local system: $\Gamma o {\cal B}_{vm}$

$$\mathcal{H} = \bigoplus_{\gamma \in \Gamma} \mathcal{H}_{\gamma} \supset \bigoplus_{\gamma} h \otimes \mathcal{H}_{\gamma}^{BPS}$$

$$Z:\Gamma \to \mathbb{C}$$
 $E \geq |Z(\gamma;u)|$

$$\langle \cdot, \cdot \rangle : \Gamma \to \mathbb{Z}$$

Old Indices & Old Walls

$${\cal H}_{\gamma}^{
m BPS}$$
 Finite dimensional representation of $SU(2)_{
m space}$

As such: Completely determined by their spin character:

$$s(\gamma, y; m) := \operatorname{Tr}_{\mathcal{H}_{\gamma}}^{\operatorname{BPS}} y^{2J_3}$$

This is not an index: It depends on $m \in \mathcal{B}_{vm} imes \mathcal{M}_{hm}$

Better:
$$\Omega(\gamma;u):=s|_{y=-1}$$

Piecewise constant but can change across:

$$MS(\gamma_1, \gamma_2) := \{ u | Z_1 \parallel Z_2 \}$$

Old Boundstates

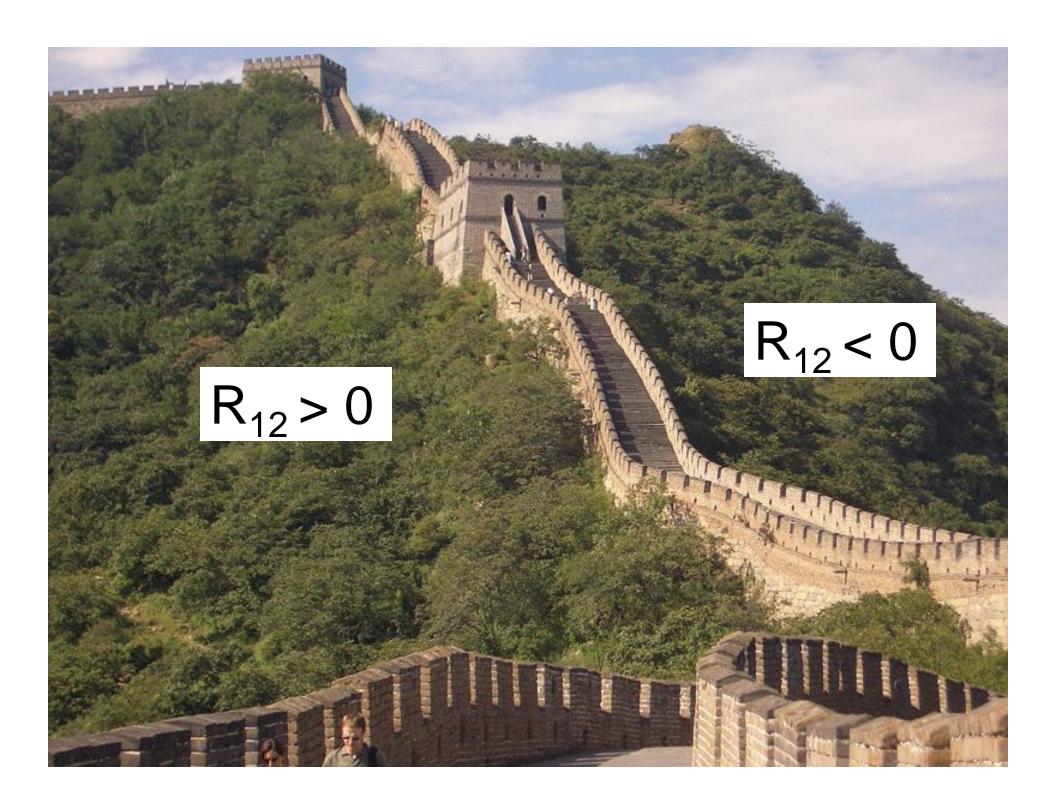
Boundstate radius (Denef)

$$R_{12} = \langle \gamma_1, \gamma_2 \rangle \frac{|Z_1 + Z_2|}{2 \text{Im}(Z_1 Z_2^*)}$$

The Z's are functions of the moduli

$$\langle \gamma_1, \gamma_2 \rangle \operatorname{Im}(Z_1 Z_2^*) > 0$$
 $\langle \gamma_1, \gamma_2 \rangle \operatorname{Im}(Z_1 Z_2^*) < 0$

So the moduli space of vacua is divided into two regions:



Primitive Wall-Crossing

$$R_{12} = \langle \gamma_1, \gamma_2 \rangle \frac{|Z_1 + Z_2|}{2\operatorname{Im}(Z_1 Z_2^*)}$$

Crossing the wall: $\operatorname{Im}(Z_1Z_2^*) o 0$

$$\Delta \mathcal{H} = (J_{12}) \otimes \mathcal{H}(\gamma_1) \otimes \mathcal{H}(\gamma_2)$$

$$2J_{12}+1=|\langle\gamma_1,\gamma_2\rangle|$$

Old Halos

$$\gamma_1$$
 γ_2
 $5\gamma_1$
 γ_1
 γ_2
 $2\gamma_1$

$$\mathcal{H}_{halo}^{BPS} := \mathcal{H}_{\gamma_2}^{BPS} \otimes_{\ell \geq 1} \mathcal{F} \left[(J_{\gamma_2,\ell\gamma_1}) \otimes \mathcal{H}(\ell\gamma_1)
ight]$$

Creation Operators

$$R_{
m halo}
ightarrow \infty$$
 across $MS(\gamma_1, \gamma_2)$

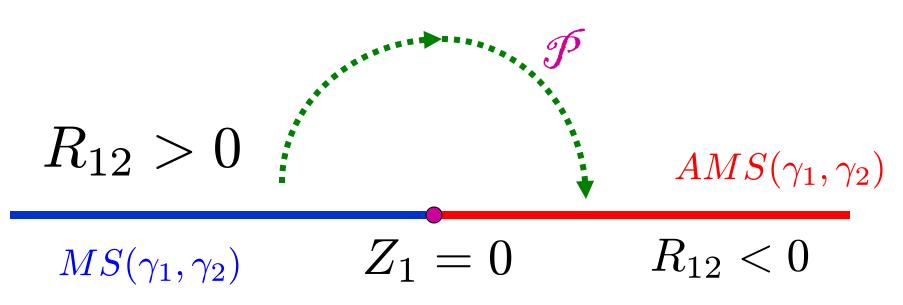
Part 1

Systematic description of how BPS state-spaces change

arXiv:10??.???

E. Andriyash, F. Denef, D. Jafferis,

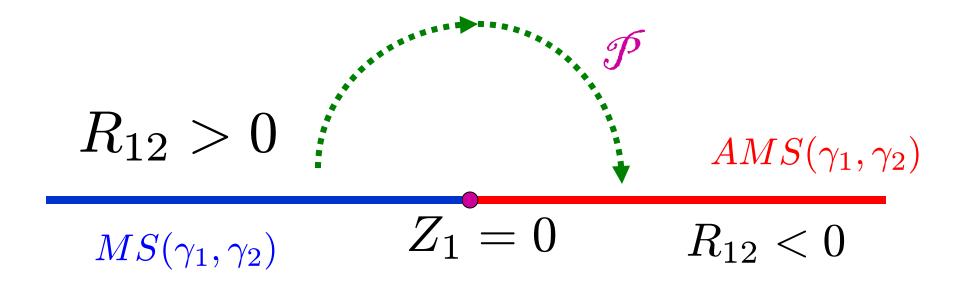
An Old Puzzle



 ${\mathscr P}$ crosses no other walls of MS

Boundstate (γ_1, γ_2) exists near $MS(\gamma_1, \gamma_2)$

Boundstate (γ_1, γ_2) cannot exist near $AMS(\gamma_1, \gamma_2)!$



What happened?

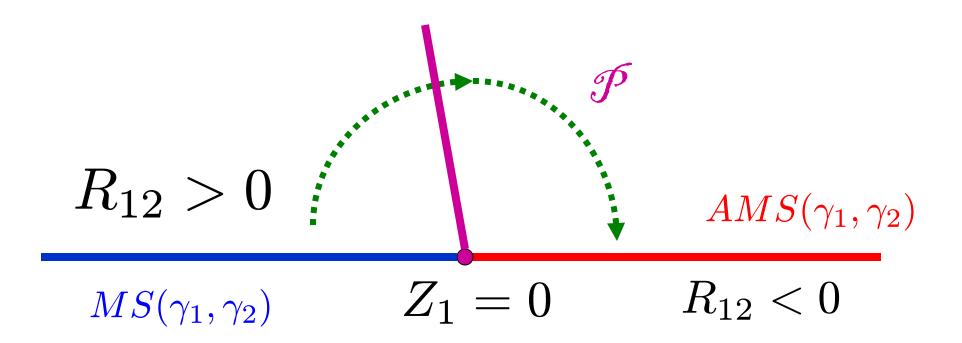
Just got married... VM + HM pair up

$$\Delta\Omega_{vm} + \Delta\Omega_{hm} = 0$$
 (Note: $\Delta s \neq 0$)

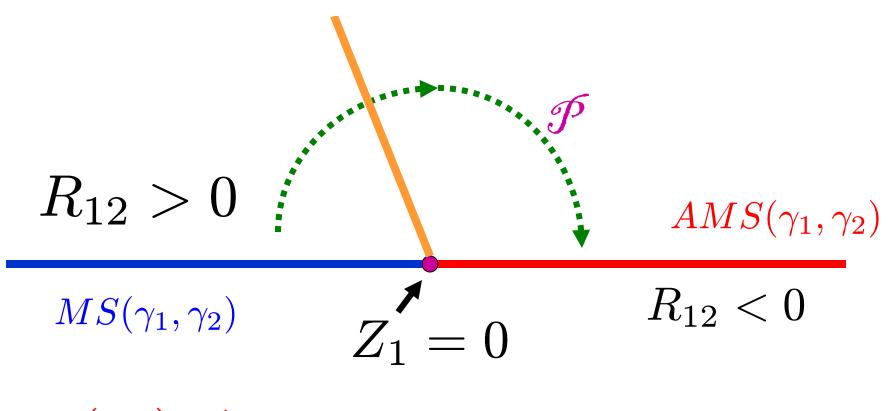
Not the whole story: (γ_1, γ_2)

boundstates contribute to

$$\Omega \neq 0$$



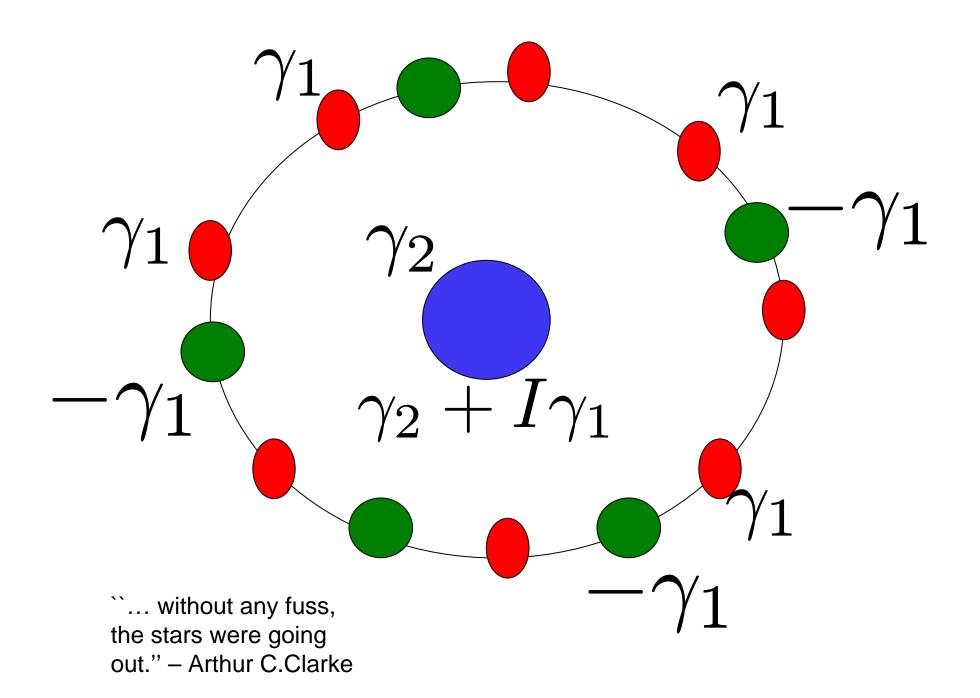
$$\mathcal{H}(\gamma_1)=0$$
 near $Z_1=0$ Recombination wall γ_1 γ_2 γ_2 γ_3 $\gamma_2+\gamma_4$



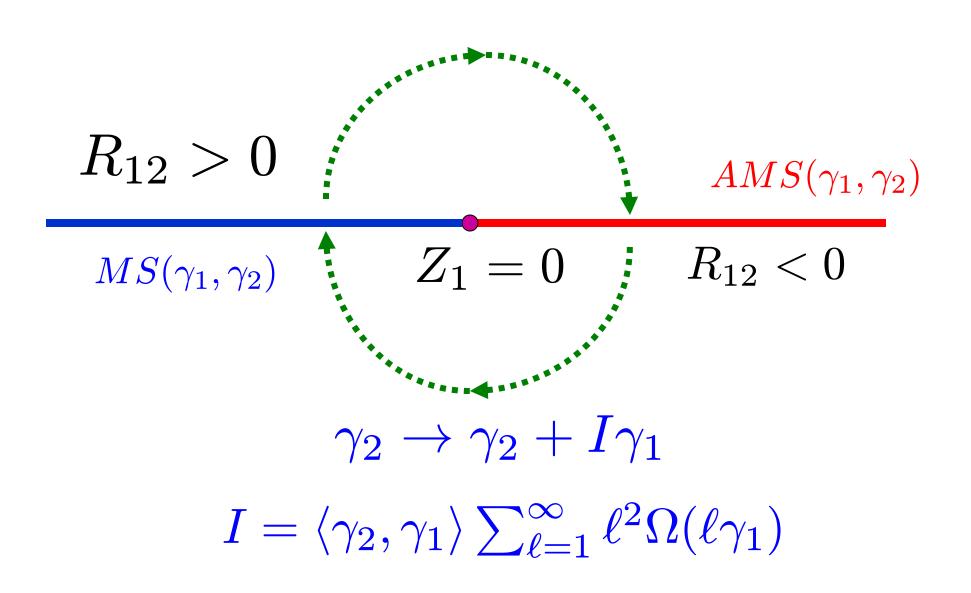
$$\mathcal{H}(\gamma_1) \neq 0$$
 New wall:

$$\{u|(\gamma_1+\gamma_2)$$
 attractor flow crashes on $Z_1=0\}$

$$L_{\text{probe}} \sim |Z(\gamma_1; u(\vec{x}))| [1 - \cos(\alpha_1 - \alpha)]$$



Monodromy



Further Predictions

The halo picture makes some further predictions about the spectrum of light states near a singular point of moduli space.

$$\sum_{\ell=1}^{\infty} \ell^2 \Omega(\ell \gamma_1) > 0$$

$$\prod_{\ell>0} (1-(-1)^{\ell|\langle\gamma_2,\gamma_1\rangle|} q^{\ell})^{\ell|\langle\gamma_2,\gamma_1\rangle|\Omega(\ell\gamma_1)}$$

These appear to contradict some of the literature on geometric engineering and extremal transitions.

We're trying to sort it out.

Part II: N=2 Field Theories

Davide Gaiotto & Andy Neitzke

arXiv:0807.4723 – Hyperkahler metrics and Darboux coordinates

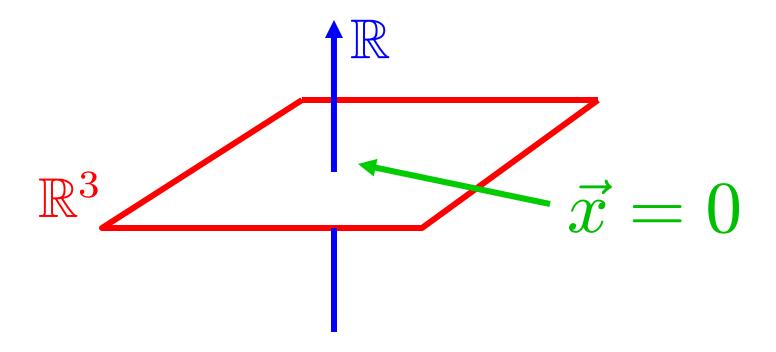
arXiv:0907.3987 BPS Spectrum and Darboux Coordinates for $T_{g,n}[A_1]$

Line Operators & Laminations, arXiv:10??.???

Line Operators

Now focus on d=4 N=2 field theory defined by some su(2,2|2) superconformal fixed point S.

Line operator = boundary condition for S on $AdS_2 imes S^2$ [Kapustin]



Unbroken Susy

 $osp(4^*|2)_{\mathcal{C}}$ Restrict attention to line op's preserving

Fixed points of an involution of su(2,2|2)

$$\vec{x} \rightarrow -\vec{x}$$
 & $U(1)_R$ rotation by ζ

$$osp(4^*|2)^{\mathrm{even}}_{\zeta} = sl(2,\mathbb{R}) \oplus so(3) \oplus su(2)$$

$$\mathcal{R}^{A}_{\alpha} \sim Q^{A}_{\alpha} + \zeta \sigma^{0}_{\alpha\dot{\beta}} \bar{Q}^{\dot{\beta}A}$$

Spatial rotation

R-symmetry

Line operator L of type
$$\,\zeta\,$$
 $\,L_{\zeta}(\cdot\,\cdot\,)$

New BPS Bound

Choose a line operator L preserving $|osp(4^*|2)_{\zeta}|$

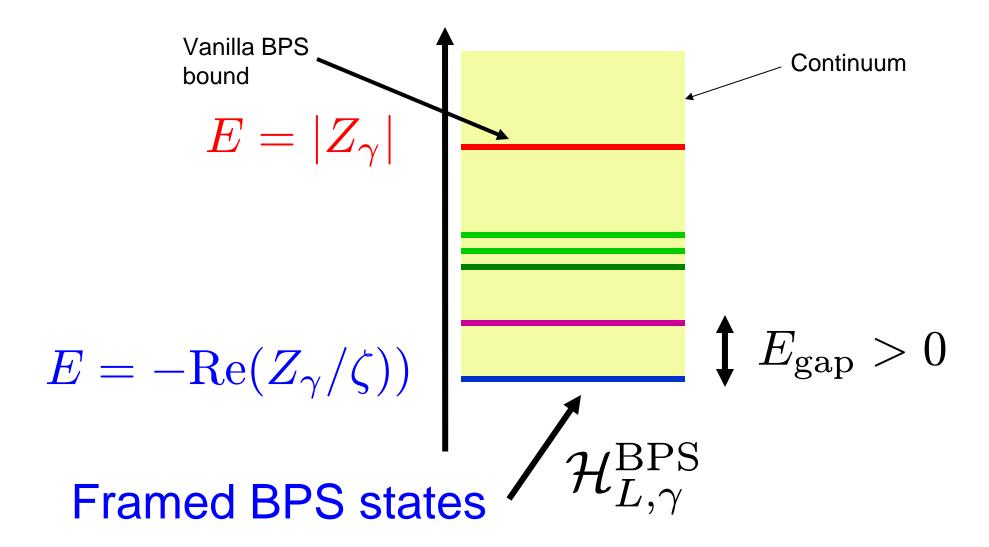
 \mathcal{H}_L Hilbert space in presence of L

$$\mathcal{H}_L = \oplus_{\gamma} \mathcal{H}_{L,\gamma}$$

$$\{\mathcal{R}^{A}_{\alpha}, \mathcal{R}^{B}_{\beta}\} = 4\epsilon_{\alpha\beta}\epsilon^{AB}(E + \text{Re}(Z_{\gamma}/\zeta))$$

$$E \ge -\text{Re}(Z_{\gamma}/\zeta)$$

Framed BPS States



Protected Spin Character

Framed PSC for framed BPS states:

$$\overline{\Omega}(L,\gamma;y) := \operatorname{Tr}_{\mathcal{H}_{L,\gamma}^{\mathrm{BPS}}} y^{2J_3} (-y)^{2I_3}$$

(Thanks to Juan Maldacena for an important suggestion.)

This is an index!

Vanilla PSC for vanilla BPS states:

$$\Omega(\gamma; y) := \operatorname{Tr}_{\mathcal{H}^{\mathrm{BPS}}_{\gamma}} y^{2J_3} (-y)^{2I_3}$$

Also an index.

Closing the Gap

Gap can close when

$$Z_{\gamma_h}/\zeta \in \mathbb{R}_-$$

for <u>some</u> BPS charge

DEF: BPS ray:

$$\ell_{\gamma_h,u} = \{\zeta | Z_{\gamma_h}/\zeta \in \mathbb{R}_-\}$$

 $E_{\mathrm{gap}} \to 0$

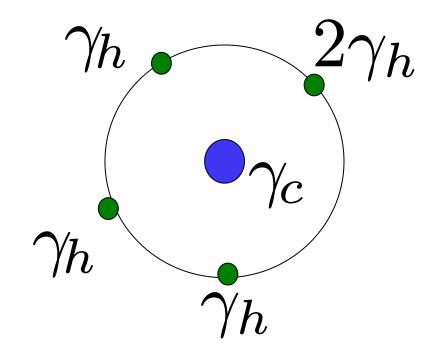
 $-{
m Re}(Z_{\gamma}/\zeta))$

IR Description of Framed BPS States: Say halo!

$$\zeta$$
 near $\ell_{\gamma_h,u}$

A good description of some states in

$$\mathcal{H}_{L,\gamma}^{ ext{BPS}}$$



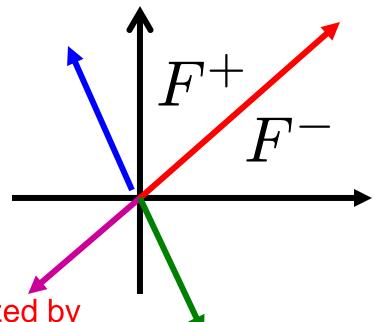
$$r_{
m halo} = rac{\langle \gamma_c, \gamma_h \rangle}{2 {
m Im}(Z_{\gamma_h}/\zeta)}$$

Wall-crossing

 $\ell_{\gamma_h,u}$

$$\zeta$$
 crosses $\ell_{\gamma_h,u}$

We gain & lose halo Fock-spaces, exactly as in the derivation of the semi-primitive WCF!



Wall-crossing is elegantly summarized by introducing a generating function:

$$F = \sum_{\gamma} \overline{\Omega}(L, \gamma; y) X_{\gamma}$$

How is F+ related to F-?

Wall-crossing: Noncommutativity

$$X_{\gamma_1}X_{\gamma_2} = y^{\langle \gamma_1, \gamma_2 \rangle}X_{\gamma_1 + \gamma_2}$$

$$F^+ = S_{\gamma_h} F^- S_{\gamma_h}^{-1}$$

$$S_{\gamma_h}$$
 Product of quantum dilogs $\,\Phi(X_{\gamma_h})$

Wall-Crossing II

$$\Phi(X) = \prod_{k=1}^{\infty} (1 + y^{2k-1}X)$$

$$\Omega(\gamma_h; -y) = \sum_m a_m^{\gamma_h} y^m$$

$$S_{\gamma_h} = \prod_m \Phi((-y)^m X_{\gamma_h})^{a_m^{\gamma_h}}$$

Wall-Crossing III

This result implies the `motivic wall crossing formula' of Kontsevich & Soibelman

Our discussion is consistent with the form of the result as discussed in

Dimofte & Gukov; Cecotti & Vafa; Dimofte, Gukov & Soibelman

Relation to ``Darboux" coordinates on Seiberg-Witten Moduli Spaces

Now we explain how line operators are related to an interesting collection of functions

Lightning review of

Gaiotto, Moore, Neitzke, arXiv:0807.4723

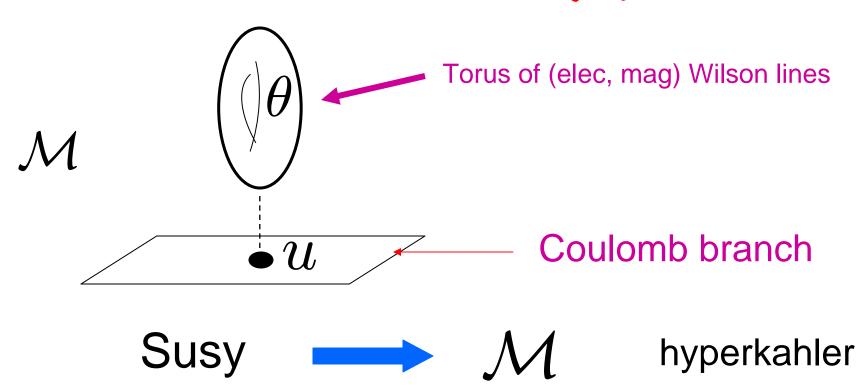
Circle Compactification of N=2

N=2 Supersymmetric theory on

$$\mathbb{R}^3 imes S^1_R$$

Low energies: Sigma model

$$\mathbb{R}^3 o \mathcal{M}$$



"Darboux coordinates"

Giving a HK metric is equivalent to giving holomorphic symplectic structure on

$$\mathcal{M}^{\zeta}$$
 $\zeta \in \mathbb{P}^1$

$$\varpi_{\zeta} = \zeta^{-1}\omega_{+} + \omega_{3} + \zeta\omega_{-}$$

 $\overline{\omega}_{\zeta}$ Is determined from a collection of functions

$$\mathcal{X}_{\gamma}: \mathcal{M}^{\zeta} imes \mathbb{C}^{*} o \mathbb{C} \quad \gamma \in \Gamma$$
 $\mathcal{X}_{\gamma} \mathcal{X}_{\gamma'} = \mathcal{X}_{\gamma + \gamma'}$
 $arpi_{\zeta} = \langle d \log \mathcal{X}_{\gamma}, d \log \mathcal{X}_{\gamma} \rangle$

Constructing \mathcal{X}_{γ}

$$\mathcal{X}_{\gamma}^{\mathrm{sf}} := \exp\left[\frac{\pi R}{\zeta} Z_{\gamma} + i \gamma \cdot \theta + \pi R \zeta \bar{Z}_{\gamma}\right]$$

(Neitzke, Pioline, & Vandoren)

Solve a TBA-like integral equation

$$\log \mathcal{X}_{\gamma} = \log \mathcal{X}_{\gamma}^{\text{sf}} + \\ + \sum_{\gamma'} \Omega(\gamma') K_{\gamma,\gamma'} * \log(1 + \mathcal{X}_{\gamma'})$$

IR Line Operator Expansion

 L_{ζ} wraps circle in $\mathbb{R}^3 imes S^1_R$

$$\langle L_{\zeta}
angle = \sum_{\gamma} \overline{\Omega}(L_{\zeta}, \gamma) \mathcal{X}_{\gamma}$$

Holomorphic on \mathcal{M}^{ζ}

$$\langle L_{\zeta} \rangle = \operatorname{Tr}_{\mathcal{H}_{L_{\zeta}}} (-1)^{F} e^{-2\pi RH} e^{i\theta \cdot \mathcal{Q}}$$

$$\langle L_{\zeta}
angle$$
 Has no wall-crossing!

Six-dimensional (2,0) theory

$$d=6\ (2,0)\ {\mathfrak g}\text{-theory} \\ + \text{topological twist} \\ C\colon \qquad \qquad \mathsf{d=4}\ \mathcal{N}=2 \\ T_{g,n}[\mathfrak{g}]$$

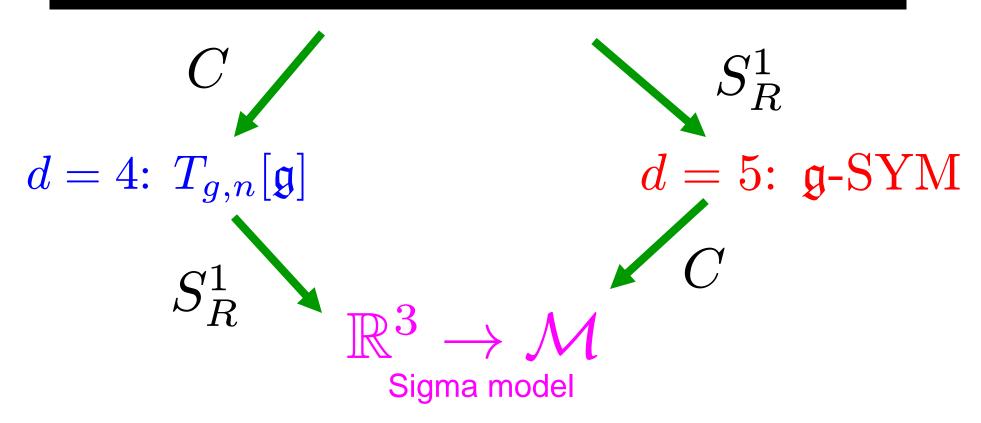
Generalizing a construction of Witten 98, GMN defined these theories in order to study Darboux coordinates, and found an algorithm for computing the BPS spectrum for $T_{g,n}[A_1]$ theories.

They have attracted a lot of attention following the discovery by Gaiotto, arXiv:0904.2715, that they can be described as generalized quiver gauge theories.

6D to 3D

C: Genus g surface with n punctures

$$d=6$$
 (2,0) $\mathfrak{g}\text{-theory}[\mathbb{R}^3 \times S^1_R \times C]$



Hitchin = Seiberg-Witten

$$\mathcal{M}$$
 : $F+R^2[\varphi,\bar{\varphi}]=0$. Hitchin system on C

Spectral curve in
$$T^*C$$
 $\Sigma: \det(\lambda-\varphi)=0$

> Seiberg-Witten differential

Flat Connections

For
$$\zeta \neq 0, \infty$$

$$\mathcal{M}^\zeta =$$
 Moduli of flat \mathfrak{g}_c connections

$$\mathcal{A}_{\zeta} = R\zeta^{-1}\varphi + A + R\zeta\bar{\varphi}$$

For
$$\wp \subset C$$
:....

$$\operatorname{Hol}(\mathcal{R},\wp) := \operatorname{Tr}_{\mathcal{R}} P \exp \oint_{\wp} \mathcal{A}_{\zeta}$$

will be an important holomorphic function for us.

Surface to Line Operators

$$\langle \mathbb{S}(\mathcal{R}, S_R^1 imes \wp)
angle$$
 C
 S_R^1
 $\langle L_{\zeta}(\mathcal{R}, \wp)
angle = \operatorname{Tr}_{\mathcal{R}} P \exp \oint_{\wp} \mathcal{A}_{\zeta}$

$$L_{\zeta}$$
 labeled by $\wp \subset C$ and \mathcal{R} :

Consistent with Drukker, Morrison, Okuda

How to compute $\overline{\Omega}$

$$\langle L_{\zeta} \rangle = \sum_{\gamma} \overline{\Omega}(L_{\zeta}, \gamma) \mathcal{X}_{\gamma}$$

 $\langle L_{\zeta}(\mathcal{R}, \wp) \rangle = \operatorname{Hol}(\mathcal{R}, \wp)$

For $T_{g,n}[A_1]$ theories:

- 1. Expand $Hol(\mathcal{R}, \wp)$ using Fock-Goncharov coordinates \mathcal{X}_E
 - 2. Write \mathcal{X}_{γ} in terms of \mathcal{X}_{E}

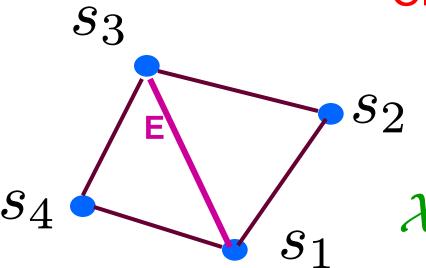
Fock-Goncharov Coordinates

Choose a triangulation of C with vertices at the

punctures:

Coordinates \mathcal{X}_E on \mathcal{M}^{ζ}

Choose flat sections si



$$(d + \mathcal{A}_{\zeta})s_i = 0$$

$$\mathcal{X}_E := -\frac{(s_1 \wedge s_2)(s_3 \wedge s_4)}{(s_2 \wedge s_3)(s_4 \wedge s_1)}$$

Fock-Goncharov gives Darboux

$$_{2:1}$$
 $\Sigma \to C$ $\Gamma = H_1(\Sigma; \mathbb{Z})^-$

Use canonical triangulation of C:

from integral curves of $\,\lambda\,$

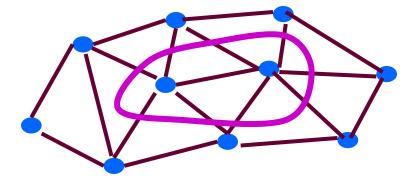
$$\gamma_E$$
 (nice!) basis for Γ $\mathcal{X}_{\gamma_E} := \mathcal{X}_E$

Computing the Holonomy

$$\operatorname{Hol}(\mathcal{R},\wp) = \sum_{\gamma} c_{\gamma} \mathcal{X}_{\gamma}$$

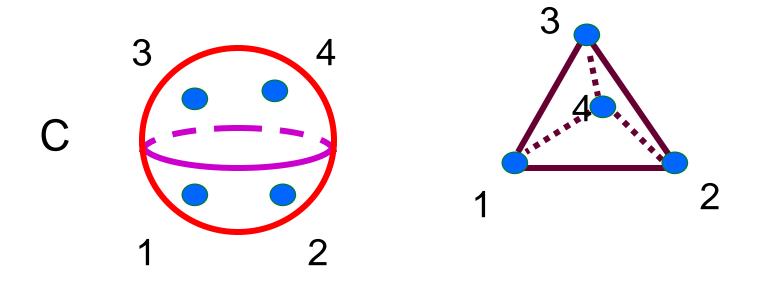
Computable via a simple traffic rule algorithm

$$R = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} \qquad M[x] = \frac{1}{\sqrt{x}} \begin{pmatrix} 0 & -1 \\ -x & 0 \end{pmatrix}$$



$$\overline{\Omega}(L_{\zeta}(\mathcal{R},\wp))$$
 computable for $T_{g,n}[A_1]$

Example: $SU(2) N_f=4$



$$\frac{1 + X_{13} + X_{24} + X_{13}X_{24} + X_{13}X_{14}X_{24} + X_{13}X_{23}X_{24} + X_{13}X_{14}X_{23}X_{24}}{\sqrt{X_{13}X_{14}X_{23}X_{24}}}$$

Would be nontrivial to compute from the geometry of monopole moduli spaces!

Asymptotically Free Theories:

 $T_{q,n}[A_1]$ are perturbations of conformal field theories

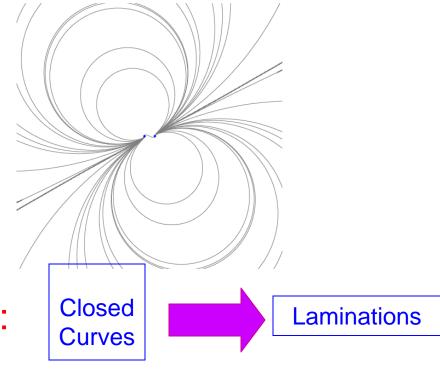
Reach AF theories by decoupling HM's: Send

masses to infinity

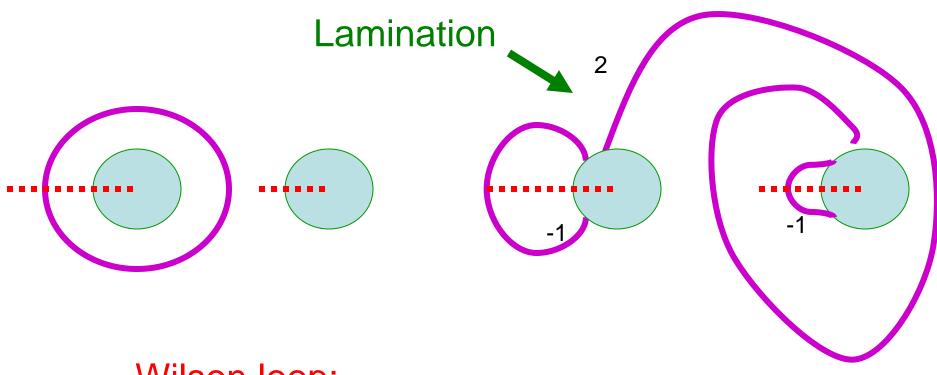
Geometrically:

Collide RSP's to get ISP's

UV labeling of line operators:



Example: $SU(2) N_f=0$



Wilson loop:

Charge (0,1)

't Hooft-Wilson loops:

Charge (1,2n)

N_f=0 Framed BPS Degeneracies

$$\Gamma=\mathbb{Z}^2$$
 $\mathcal{X}_{\gamma}=X^mY^n$ $\mathcal{X}_{\gamma}=X^mY^n$ $\mathcal{X}_{\gamma}=(XY)^{1/2}+(XY)^{-1/2}+\sqrt{rac{X}{Y}}$ Naive

Many elaborate results for lamination vevs

Quantum Holonomy

Classically, we have interpreted the framed BPS indices as traces of holonomy:

$$\operatorname{Hol}(\mathcal{R},\wp) = \sum_{\gamma} \overline{\Omega}(L_{\zeta}(\wp),\gamma)\mathcal{X}_{\gamma}$$

What about the PSC?

Combining with results of Teschner on quantization of Teichmuller space shows that

$$\mathcal{O}(\operatorname{Hol}(\mathcal{R},\wp)) \sim \sum_{\gamma} \overline{\Omega}(L_{\zeta}(\wp),\gamma;y) X_{\gamma}$$

Satisfy the same operator algebra.

Looking Ahead...

There's been lots of progress on $\mathcal{N}=2$, and the progress will surely keep us focused in the near future...

Litmus test: There is no effective algorithm for computing the BPS spectrum of an arbitrary N=2 FT or string cpct.

