2d CFTs from 4d $\mathcal{N}=2$ gauge theories

Yuji Tachikawa

L. F. Alday and D. Gaiotto,and on discussions with many others

Message

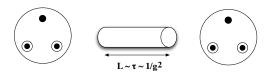
By wrapping N M5-branes on $X_4 \times C_2$,

Physical quantity calculated on X_4

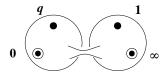
= Physical quantity calculated on C_2

Ingredients and Combination

- Want to make a SU(N) with 2N fundamentals?
- Take N fundamental hypers, gauge fields, another N fundamental hypers, constructed from M5-branes



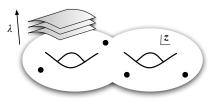
• Connect!



• $q \sim \exp(i\tau)$.

More precisely

- 11d spacetime is $\mathbb{R}^{3,1} \times T^*C \times \mathbb{R}^3$.
- Wrap N M5-branes at $\Sigma \subset T^*C$



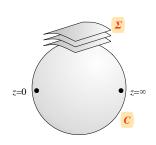
$$\Sigma: \lambda^N + \phi_2(z)\lambda^{N-2} + \dots + \phi_N(z) = 0$$

- Degree-k form ϕ_k = worldvolume fields.
- One-form λ = position along T^*C = Seiberg-Witten differential

Pure SU(N)

$$\Lambda^N(z+rac{1}{z})=y^N+u_2y^{N-2}+\cdots+u_N$$

[Martinec-Warner]



Let
$$\lambda = ydz/z$$
. Then

$$\lambda^N + \phi_2(z)\lambda^{N-2} + \dots + \phi_N(z) = 0$$

where

$$\phi_k(z) = u_k \left(rac{dz}{z}
ight)^k, \qquad \phi_N(z) = (\Lambda^N z + u_N + rac{\Lambda^N}{z}) \left(rac{dz}{z}
ight)^k.$$

4d gauge theory vs 2d CFT

• We now have a map

 G_N : Riemann surface C with punctures \longrightarrow 4d field theory

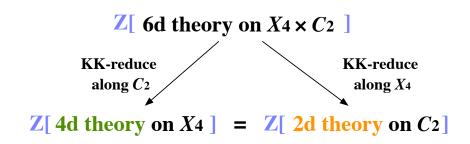
- G_N behaves nicely under degenerations of C
 i.e. if you split C, an SU(N) becomes weak,
 and the gauge theory is also split.
- Take whatever physical quantity Z calculable in 4d:

Z: 4d field theory \longrightarrow number

- Then, $Z(G_N(C))$ factorizes under degenerations of C,
- This morally means that $Z \circ G_N$ gives a **2d CFT**.

6d, 4d and 2d

- N M5-branes wrapped on $X_4 imes C_2$
- Consider a physical quantity Z of the 6d theory,
- Assume **Z** is protected in some sense, so that it can be evaluated by KK reduction.



6d, 4d and 2d

- N M5-branes wrapped on $X_4 imes C_2$
- Consider a physical quantity Z of the 6d theory,
- Assume Z is protected in some sense, so that it can be evaluated by KK reduction.

 $\mathbb{Z}[4d \text{ theory on } X_4] = \mathbb{Z}[2d \text{ theory on } C_2]$

4d vs 2d

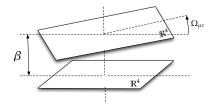
- Full partition function on S⁴

 → the Liouville/Toda correlation function at b = 1.
- 4d anomaly polynomial
 ← 2d anomaly polynomial
 [Bonelli-Tanzini, Alday-Benni-YT]

Nekrasov's instanton partition function

$$Z(a;\epsilon_1,\epsilon_2) = \exp(rac{\mathcal{F}(a)}{\epsilon_1\epsilon_2} + \cdots)$$

- Take 5d version of the theory
- 2 Put it on a circle of length β .



6 Glue the two ends by

4d rotation
$$\Omega = e^{\beta \epsilon_1 L_{12} + \beta \epsilon_2 L_{34}}$$
 and gauge rotation $g = \mathbf{diag}(e^{\beta a_1}, \dots, e^{\beta a_N})$

 \blacksquare Take $\beta \to 0$.

Localization

$$egin{aligned} Z(a) &= \sum_k q^k \int_{\mathcal{M}_{N,k}} & ext{(something complicated)} \ &= \sum_k q^k \sum_{ ext{fixed point } oldsymbol{p} ext{ on } \mathcal{M}_{N,k}} & ext{(contribution from } oldsymbol{p}) \end{aligned}$$

- $\mathcal{M}_{N,k}$: k-instanton moduli of $\mathbf{U}(N)$ gauge theory.
- SO(4) and SU(N) act on $\mathcal{M}_{N,k}$.
- Fixed points on the moduli space =

Localization

$$egin{aligned} Z(a) &= \sum_k q^k \int_{\mathcal{M}_{N,k}} (ext{something complicated}) \ &= \sum_k q^k \sum_{ ext{fixed point } oldsymbol{p} ext{ on } \mathcal{M}_{N,k}} (ext{contribution from } oldsymbol{p}) \end{aligned}$$

- $\mathcal{M}_{N,k}$: k-instanton moduli of $\mathbf{U}(N)$ gauge theory.
- SO(4) and SU(N) act on $\mathcal{M}_{N,k}$.
- Fixed points on the moduli space =



$$Z(a) = \sum_{ec{Y}} q^{|ec{Y}|} \cdot (ext{contribution from } ec{Y})$$

Pure SU(2)

$$Z(a) = \sum_{ec{Y}} \Lambda^{4|ec{Y}|} rac{1}{G_a(ec{Y})}$$

 $G_a(\vec{Y})$: contribution from the Gauge multiplet. Consider the vector space

$$|V_a \ni |v
angle
angle = (v_{(0,0)};\ v_{(0,\square)},\ v_{(\square,0)};\ v_{(0,\square)},\ v_{(0,\square)},\ v_{(\square,\square)},\ \ldots)$$

Introduce the inner product via

$$\langle\!\langle v|w
angle\!
angle = \sum_{ec{Y}} rac{v_{ec{Y}} \ w_{ec{Y}}}{G_a(ec{Y})}$$

Consider this stupid vector

$$|w_a\rangle\rangle = (1; \Lambda^2, \Lambda^2; \Lambda^4, \Lambda^4, \ldots)$$

then

$$Z(a) = \langle \langle w_a | w_a \rangle \rangle$$

SU(2) with 4 flavors

Let $H_m: V_{a'} \to V_a$ be such that for $v \in V_{a'}$

$$(\mathbf{H}_{m}v)_{\vec{Y}} = \sum_{\vec{Y}'} \frac{\mathbf{H}_{a}{}^{m}{}_{a'}(\vec{Y}, \vec{Y}') \, v_{\vec{Y}'}}{G_{a'}(\vec{Y}')}$$

then

$$Z = \langle \langle a | \mathbf{H}_m q^N \mathbf{H}_{m'} | a'' \rangle \rangle$$

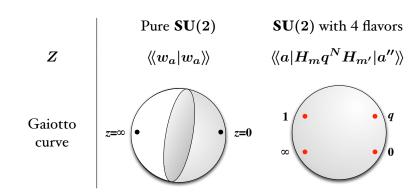
where N counts the number of boxes and

$$|a\rangle\rangle = (1; 0, 0; 0, 0, \ldots) \in V_a.$$

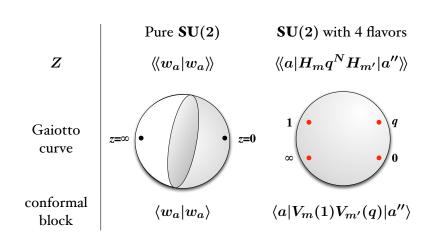
Summary so far & observation

	Pure SU (2)	SU(2) with 4 flavors
\boldsymbol{Z}	$\langle\!\langle w_a w_a angle\! angle$	$\langle\!\langle a H_mq^NH_{m'} a''\rangle\!\rangle$

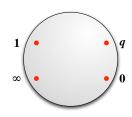
Summary so far & observation



Summary so far & observation



Mapping: two M5-branes



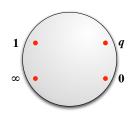
- SW curve was
- $\lambda^2 = \phi_2(z).$

CFT has

T(z).

• Both have spin-2.

Mapping: two M5-branes



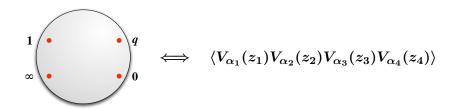
- SW curve was $\lambda^2 = \phi_2(z)$.
- CFT has T(z).
- Both have spin-2.

$$\langle T(z) \rangle dz^2 o \phi_2(z)$$
 when $\epsilon_{1,2} o 0$

where

$$c=1+6Q^2, \qquad Q^2=rac{(\epsilon_1+\epsilon_2)^2}{\epsilon_1\epsilon_2}$$

SU(2) with four flavors

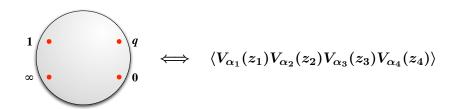


• What are the operators $V_{\alpha}(z)$?

$$ullet \ \phi_2(z) \sim rac{m_i^2 dz^2}{(z-z_i)^2} \quad \Longleftrightarrow \quad rac{T(z) V_lpha(z_i) \sim rac{m_i^2}{(z-z_i)^2} V_lpha(z_i)$$

Strings 2010

SU(2) with four flavors

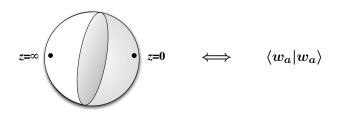


• What are the operators $V_{\alpha}(z)$?

$$ullet \phi_2(z) \sim rac{m_i^2 dz^2}{(z-z_i)^2} \quad \Longleftrightarrow \quad {f T}(z) V_lpha(z_i) \sim rac{m_i^2}{(z-z_i)^2} V_lpha(z_i)$$

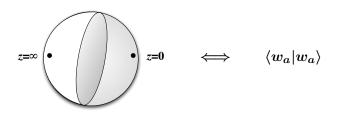
• $V_{\alpha_i}(z)$ is a **primary state** with dimension m_i^2 .

Pure SU(2)



- What's the state $|w_a\rangle$?
- $\begin{array}{l} \bullet \ \lambda^2=\phi_2(z) \ \text{where} \ \phi_2(z)\sim (\frac{u}{z^2}+\frac{\Lambda^2}{z^3})dz^2 \ \text{around} \ z=0. \\ \\ \bullet \ \ \text{Recall} \qquad \frac{T(z)dz^2}{z}\sim (\cdots+\frac{L_0}{z^2}+\frac{L_1}{z^3}+\cdots)dz^2. \end{array}$

Pure SU(2)

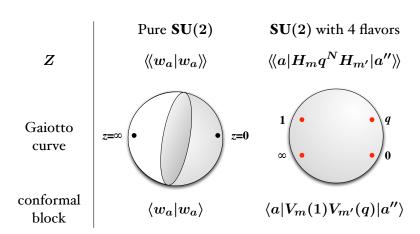


- What's the state $|w_a\rangle$?
- $\lambda^2=\phi_2(z)$ where $\phi_2(z)\sim (\frac{u}{z^2}+\frac{\Lambda^2}{z^3})dz^2$ around z=0.
- ullet Recall $T(z)dz^2\sim (\cdots+rac{L_0}{z^2}+rac{L_1}{z^3}+\cdots)dz^2.$

$$igsplus L_0|w
angle = (rac{Q^2}{\Lambda} - a^2)|w
angle, \quad L_1|w
angle = \Lambda^2|w
angle, \quad L_{n\geq 2}|w
angle = 0.$$

• $|w_a\rangle$ is the **coherent state** of the Virasoro algebra!

The Relation



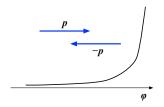
Z = conformal block

A word on Liouville

- Virasoro algebra emerged.
- What do we get from 2 M5-branes as the CFT?

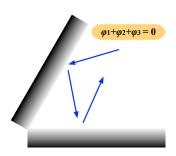
- Each channel is labeled by one variable a with the identification $a \sim -a$.
- Such 2d CFT is bound to be Liouville [Teschner] [Pakman]
- Indeed, using [Pestun], we do get Liouville if we're on S^4

Liouville



- Reflection off an exponential wall $V(\varphi) = e^{2b\varphi}$
- $c=1+6Q^2$ where the background charge is Q=b+1/b
- $b^2 = \epsilon_1/\epsilon_2$.
- DOZZ 3pt functions
 = one-loop factors in Nekrasov's partition function.
- Liouville reflection $p \sim -p \leftrightarrow$ Weyl reflection $a \sim -a$

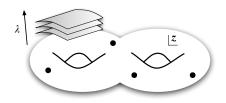
Toda



- Waves in $\varphi_1 + \varphi_2 + \cdots + \varphi_N = 0$.
- Reflection off exponential walls at $\varphi_i = \varphi_{i+1}$.
- Not just a CFT with T(z), but has W_N symmetry.

$$W_2(z) = T(z), \quad W_3(z), \quad \ldots, \quad W_N(z)$$

Mapping: N M5-branes



- SW curve was $\lambda^N + \phi_2(z)\lambda^{N-2} + \cdots + \phi_N(z) = 0.$
- W-generators: $W_2(z) = T(z), W_3(z), ..., W_N(z)$

$$\langle W_k(z) \rangle dz^k o \phi_k(z)$$
 when $\epsilon_{1,2} o 0$

under vev
$$\vec{a} \leftrightarrow$$
 momentum $\vec{p}, \qquad \frac{\epsilon_1}{\epsilon_2} \leftrightarrow b^2$

• Weyl reflection = Toda reflection

Status concerning conformal blocks

- Many checks for **SU(2)**. [Marshakov,Mironov²,Morozov²],...
- [Fateev-Litvinov] proved the equality

Z of SU(2) with massive adjoint = torus one-point conformal block

by showing boths sides satisfy the same non-linear relation cf. [Poghossian], [Hadasz,Jaskólski,Suchanek]

• **SU**(*N*) relation is not as much studied. [Wyllard], [Mironov,Morozov], [Taki], ...,

How about U(1)?

- Mathematicians [Carlsson-Okounkov] had done that in 2008!
- They proved that

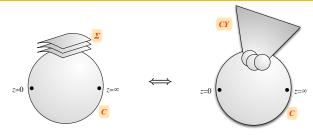
Nekrasov function of U(1) quiver = correlator of a free boson

• We introduced the space

$$V_a\ni|v\rangle\rangle=(v_{(0,0)};\ v_{(0,\square)},\ v_{(0,\square)};\ v_{(0,\square)},\ v_{(0,\square)},\ v_{(0,\square)},\ \cdots).$$

It's called the equivariant cohomology of the instanton moduli.

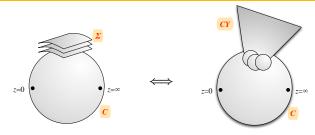
- Our observation **predicts** that
 - 1) V_a is naturally the Verma module of W_N algebra, and
 - 2) hypers should give the vertex operator.



It was known (~ 2007) that when $\epsilon_1 + \epsilon_2 = 0$,

Nekrasov's Z

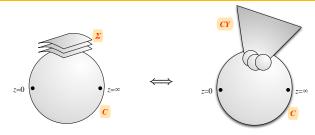
= the part. function of the top. string on CY with $g_s=\epsilon_1$



It was known (~ 2007) that when $\epsilon_1 + \epsilon_2 = 0$,

Nekrasov's Z

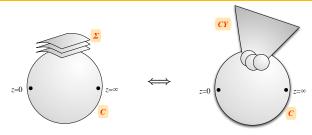
= the part. function of a 'free' chiral boson on Σ



It was known (~ 2007) that when $\epsilon_1 + \epsilon_2 = 0$,

Nekrasov's Z

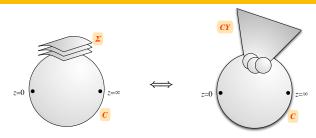
= the part. function of N chiral boson on C



It was known (~ 2007) that when $\epsilon_1 + \epsilon_2 = 0$,

Nekrasov's Z

- = the part. function of N chiral boson on C
- = the part. function of a matrix model



It was known (~ 2007) that when $\epsilon_1 + \epsilon_2 = 0$,

Nekrasov's Z

= the part. function of N chiral boson on C

= the part. function of a matrix model

 $\epsilon_1 + \epsilon_2 \neq 0 \longrightarrow N$ bosons into Liouville/Toda.

Vandermonde deformed. $\prod (\phi_i - \phi_j)^{-2b^2}$

[Dijkgraaf-Vafa], [Wyllard-Schiappa], [Eguchi-Maruyoshi],...

Summary

- Wrap N M5-branes on $X_4 \times C_2$.
- Physical quantity on X_4 gives physical quantity on C_2 .
- $\Sigma: \lambda^N + \phi_2(z)\lambda^{N-2} + \phi_3(z)\lambda^{N-3} + \dots + \phi_N(z) = 0$ $\leftrightarrow W_N$ generators $W_2(z) = T(z), W_3(z), \dots, W_N(z)$
- Many things to be understood. e.g. taking $b \to \infty$, Liouville becomes classical. $e^{2b\varphi}$ should be visible. No one has done that.