Path integrals in 3D gravity

(re-revisited)

Alejandra Castro McGill University

Strings Conference 2012 Ludwig-Maximilians-Universität München

A. Lepage-Jutier, A. Maloney, AC, arXiv: 1012.0598

T. Hartman, A. Maloney, AC, arXiv: 1107.5098

M. Gaberdiel, T. Hartman, A. Maloney, R. Volpato, AC, arXiv: 1111.1987

N. Lashkari, A. Maloney, AC, arXiv:1103.4620

N. Lashkari, A. Maloney, AC, arXiv:1105.4733

AdS/CFT

Searching for a CFT with a pure gravity spectrum.

- it is difficult!
- when we succeeded, it looks silly!

AdS/CFT

Searching for a CFT with a pure gravity spectrum.

- it is difficult!
- when we succeeded, it looks silly!

In General

Identifying and organizing states in quantum gravity.

Understanding the integration contour of the path integral for general relativity.

Move away from Susy and extremality.

Gravitational Path Integrals

$$Z_{\text{Grav}} = \int_{\partial \mathcal{M}} \mathcal{D}g \ e^{-S_{\text{Grav}}[g]}$$

Partition function = sum over geometries, includes perturbative and non-perturbative contributions.

Pure Gravity = Theory with only metric d.o.f.

How to organize Z_grav

Geometrical phase space

in that process define
physical states

dS Gravity

$$Z_{\text{Grav}}(\beta) = \text{Tr}(e^{-\beta H})_{\text{CFT}}$$

AdS Gravity

 $Z_{
m Grav}(\ell_{
m dS})$

≥ oWhat is new?

- * Simplest example of holography: Gravity dual of the Ising Model.
- * Non-perturbative effects in de Sitter gravity.

Conclusions

- * Pure gravity is not an exact theory; it is part of a larger system.
- * Or pure gravity might still be OK; our assumptions are wrong.

Three Dimensional Quantum Gravity

Action

$$S = -\frac{1}{16\pi G} \int_{\mathcal{M}} d^3x \sqrt{g} \left(R - \Lambda \right)$$

$$\Lambda = -\frac{2}{\ell_{\text{AdS}}^2}$$

$$\Lambda = \frac{2}{\ell_{\text{dS}}^2}$$

Coupling

$$k = \frac{\ell}{4G}$$

Features

- *No gravitational waves; simple to identify non-trivial diffeo's.
- *Classification of smooth manifolds.

Assumptions

$$Z_{\text{Grav}} = \int_{\partial \mathcal{M}} \mathcal{D}g \ e^{-S_{\text{Grav}}[g]}$$

Assumptions

$$Z_{\text{Grav}} = \int_{\partial \mathcal{M}} \mathcal{D}g \ e^{-S_{\text{Grav}}[g]}$$

I. Include a sum over topologies

$$Z_{
m Grav} = \sum_{
m C} Z(\mathcal{M})
ightarrow ext{Sum over metrics on M}$$
 topology 3-manifold

2. Include a sum over only classical solutions

$$Z_{\text{Grav}} = \sum_{q_{al}} \exp\left(-kS_E^{(0)} + S_E^{(1)} + \frac{1}{k}S_E^{(2)} + \cdots\right)$$

3. Include only smooth manifolds

AdS Path Integrals

configuration space of all classical excitations of AdS which are continuously connected to the AdS ground state

Classical phase space

configuration space of all classical excitations of AdS which are continuously connected to the AdS ground state

Classical phase space

Boundary Gravitons

J. D. Brown, M. Henneaux (1986)

Black Holes

M. Banados, C. Teitelboim, J. Zanelli (1992)

configuration space of all classical excitations of AdS which are continuously connected to the AdS ground state

Classical phase space

Boundary Gravitons

J. D. Brown, M. Henneaux (1986)

- *Non-trivial diffeo's w finite charge
- *Metric fluctuations
- *Symmetry group = Virasoro with central charge c = 6k

$$\operatorname{Diff}(S^1) \times \operatorname{Diff}(S^1)$$

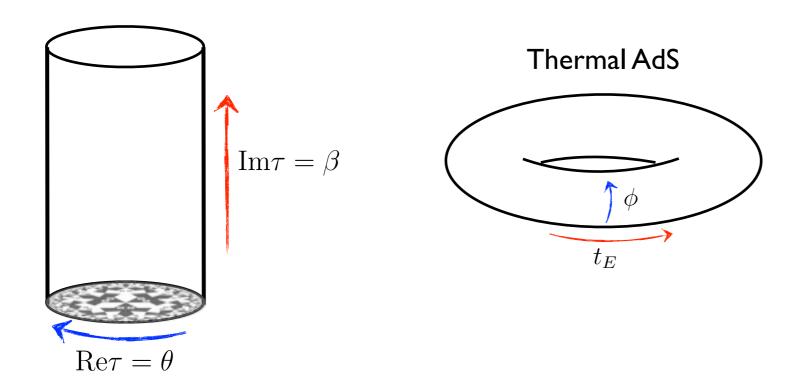
Black Holes

M. Banados, C. Teitelboim, J. Zanelli (1992)

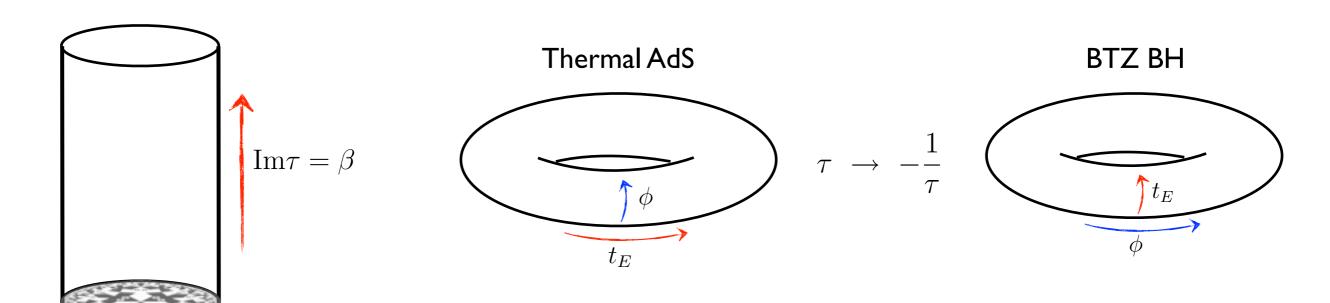
- *Topology differs from empty AdS
- *Non-perturbative states
- *Classical saddle points
- *Carry mass and angular mom.

$$Z_{\text{Grav}}(\tau, \bar{\tau}) = \int_{\partial \mathcal{M} = T^2} \mathcal{D}g \ e^{-S_{\text{Grav}}[g]}$$

$$Z_{\text{Grav}}(\tau, \bar{\tau}) = \int_{\partial \mathcal{M} = T^2} \mathcal{D}g \ e^{-S_{\text{Grav}}[g]}$$



$$Z_{\text{Grav}}(\tau, \bar{\tau}) = \int_{\partial \mathcal{M} = T^2} \mathcal{D}g \ e^{-S_{\text{Grav}}[g]}$$



$$Z_{\text{Grav}}(\tau,\bar{\tau}) = \sum_{\gamma \in \Gamma_c \backslash SL(2,\mathbb{Z})} Z_{\text{vac}}(\gamma\tau,\gamma\bar{\tau})$$

 $Re\tau = \theta$

$$Z_{
m Grav} = \sum_{\gamma \in \Gamma_c \setminus SL(2,\mathbb{Z})} Z_{
m vac}(\gamma au, \gamma ar{ au})$$

Black hole Farey sum

J. Maldacena, A. Strominger (1998) R. Dijkgraaf, J. Maldacena, G. Moore, E. Verlinde (2000) Metric fluctuations; determined by representations of Virasoro algebra.

$$Z_{\text{Grav}}(\tau) = Z_{\text{Grav}}(-1/\tau) = Z_{\text{Grav}}(\tau+1)$$

$$Z_{\text{Grav}} = \sum_{\gamma \in \Gamma_c \setminus SL(2,\mathbb{Z})} Z_{\text{vac}}(\gamma \tau, \gamma \bar{\tau})$$

Black hole Farey sum

J. Maldacena, A. Strominger (1998)

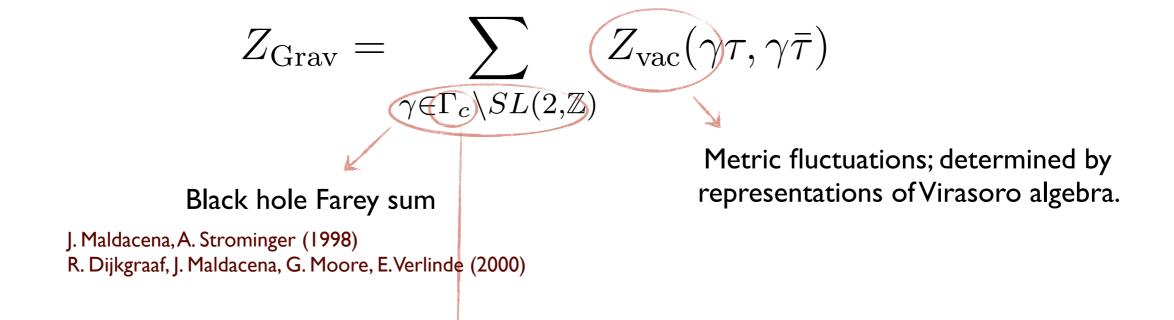
R. Dijkgraaf, J. Maldacena, G. Moore, E. Verlinde (2000)

Metric fluctuations; determined by representations of Virasoro algebra.

Group of trivial gauge transformations.

Those elements that don't change the topology.

$$Z_{\text{Grav}}(\tau) = Z_{\text{Grav}}(-1/\tau) = Z_{\text{Grav}}(\tau+1)$$



Group of trivial gauge transformations.

Those elements that don't change the topology.

$$Z_{\text{Grav}}(\tau) = Z_{\text{Grav}}(-1/\tau) = Z_{\text{Grav}}(\tau+1)$$

Stronger assumption:

For any value of the coupling, the path integral is a sum over smooth topologies that admit a classical solution.

Why didn't you consider large values of c?

$$Z_{\text{Grav}}(\beta) \neq \text{Tr}_{\mathcal{H}}(e^{-\beta H})$$

E.Witten (2007) A. Maloney, E.Witten (2007)

- * There is no semiclassical approximation for c < 1
- * Still, organize the path integral as a sum over smooth geometries with fixed conformal structure.
- * Breakdown of low energy physics: appearance of null states in Fock space of metric excitations.

- * There is no semiclassical approximation for c < 1
- * Still, organize the path integral as a sum over smooth geometries with fixed conformal structure.
- * Breakdown of low energy physics: appearance of null states in Fock space of metric excitations.

$$Z_{\mathrm{Grav}} = \sum_{\gamma \in \Gamma_c \setminus SL(2,\mathbb{Z})} Z_{\mathrm{vac}}(\gamma \tau, \gamma \bar{\tau})$$

Sum is finite, lots of topologies are removed. More transformations are trivial.

Null states in Verma module. Representations of Virasoro are unitary only if

$$c = 1 - \frac{6}{p(p+1)}$$
 $p = 3, 4, \dots$

Searching for a CFT with a gravity spectrum

$$Z_{\text{Grav}}(\tau, \bar{\tau}) \stackrel{?}{=} \text{Tr}(e^{-\beta H - i\theta J})_{\text{CFT}}$$

Searching for a CFT with a gravity spectrum

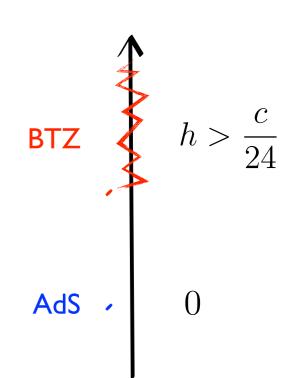
$$Z_{\text{Grav}}(\tau, \bar{\tau}) \stackrel{?}{=} \text{Tr}(e^{-\beta H - i\theta J})_{\text{CFT}}$$

We are looking for

- * All coefficients must be positive integers.
- * An extremal CFT.

Highly non-trivial condition!

E. Witten (2007)M. Gaberdiel (2007)



Searching for a CFT with a gravity spectrum

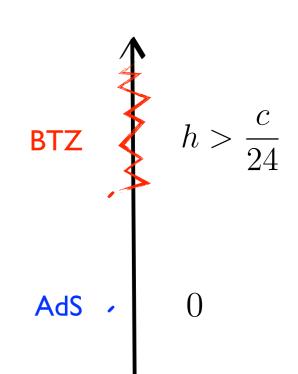
$$Z_{\text{Grav}}(\tau, \bar{\tau}) \stackrel{?}{=} \text{Tr}(e^{-\beta H - i\theta J})_{\text{CFT}}$$

We are looking for

- * All coefficients must be positive integers.
- * An extremal CFT.

Highly non-trivial condition!

E.Witten (2007) M. Gaberdiel (2007)

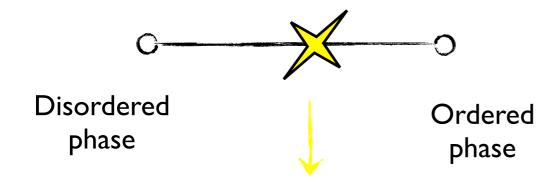


For < 1 we have a complete classification of CFT:

Virasoro Minimal Models.

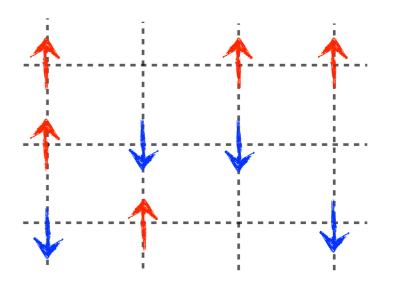
This makes the search systematic!

Ising Model



Virasoro Minimal Model (3,4) c=1/2

Tricritical Ising Model

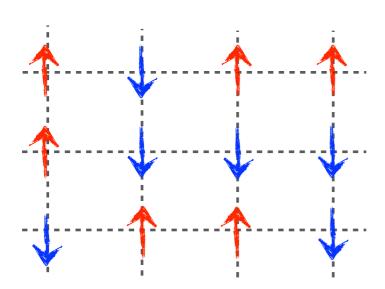


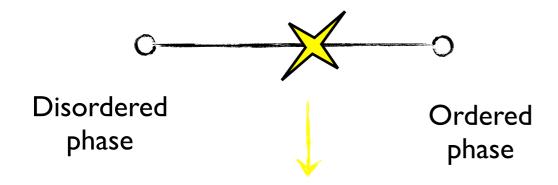
Vacant sites & number of spins fluctuate

Virasoro Minimal Model (4,5) c=7/10

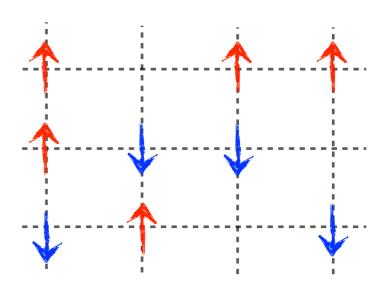
Ising Model

Tricritical Ising Model





Virasoro Minimal Model (3,4) c=1/2



Vacant sites & number of spins fluctuate

Virasoro Minimal Model (4,5) c=7/10

Both CFTs are extremal! $h > \frac{c}{24}$

$$Z_{\text{CFT}}(\tau,\bar{\tau}) = \sum_{h,\bar{h}} N_{h,\bar{h}} \, \chi_h(\tau) \chi_{\bar{h}}(\bar{\tau})$$

Compare to the sum over geometries...

$$Z_{\text{CFT}}(\tau,\bar{\tau}) = \sum_{h,\bar{h}} N_{h,\bar{h}} \, \chi_h(\tau) \chi_{\bar{h}}(\bar{\tau})$$

Compare to the sum over geometries...

$$Z_{\rm Grav} = 8Z_{\rm Ising}$$

$$\ell = \frac{G_N}{3} \qquad c = \frac{1}{2}$$

$$Z_{\text{Grav}} = 48Z_{\text{Tri-Ising}}$$

It works!

$$\ell = \frac{7G_N}{15} \qquad c = \frac{7}{10}$$

$$Z_{\text{CFT}}(\tau,\bar{\tau}) = \sum_{h,\bar{h}} N_{h,\bar{h}} \, \chi_h(\tau) \chi_{\bar{h}}(\bar{\tau})$$

Compare to the sum over geometries...

$$Z_{\rm Grav} = 8Z_{\rm Ising}$$

$$\ell = \frac{G_N}{3} \qquad c = \frac{1}{2}$$

$$Z_{\rm Grav} = 48 Z_{\rm Tri-Ising}$$

It works!

$$\ell = \frac{7G_N}{15} \qquad c = \frac{7}{10}$$

Remarks

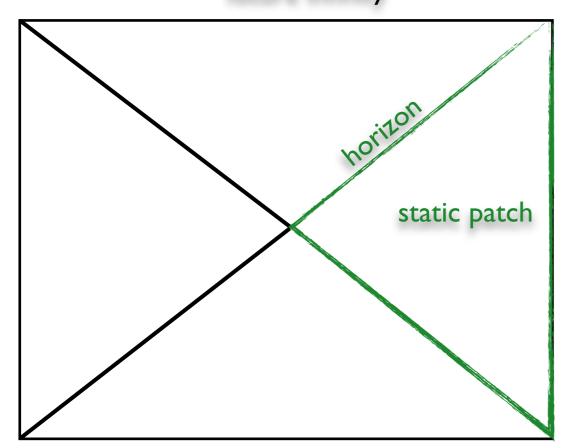
No other minimal model CFT has this property. Ising and Tricritical Ising are special because:

- * Only unitary CFT with a gravity spectrum for c<1
- * Unique theories for fixed c. It had to work.

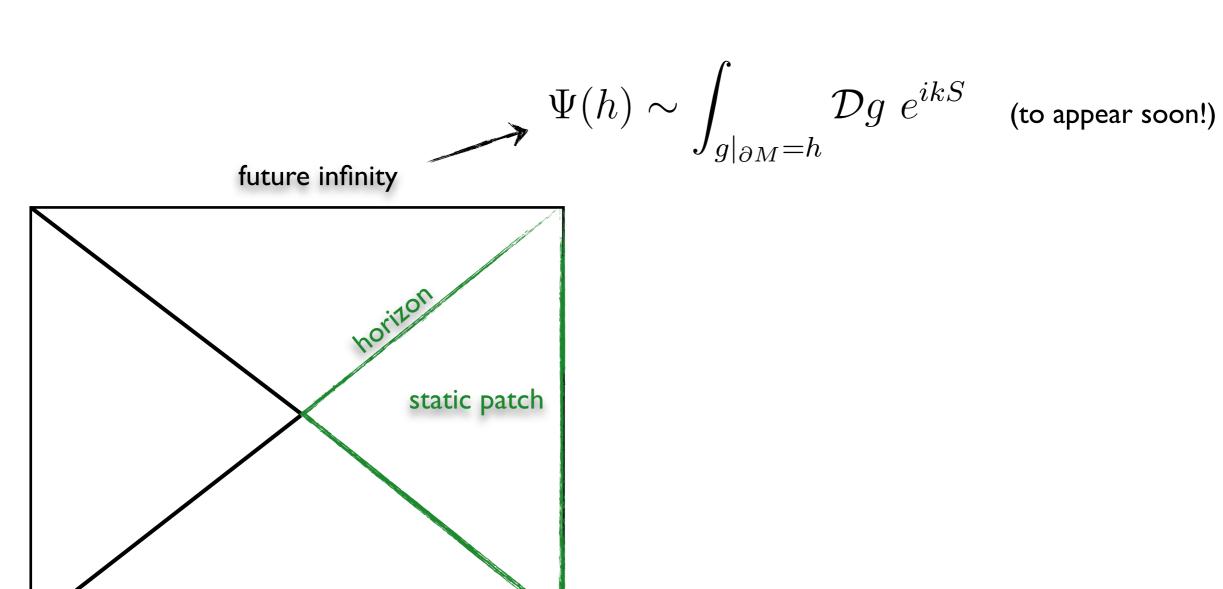
dS Path Integrals

What should we compute in dS gravity?

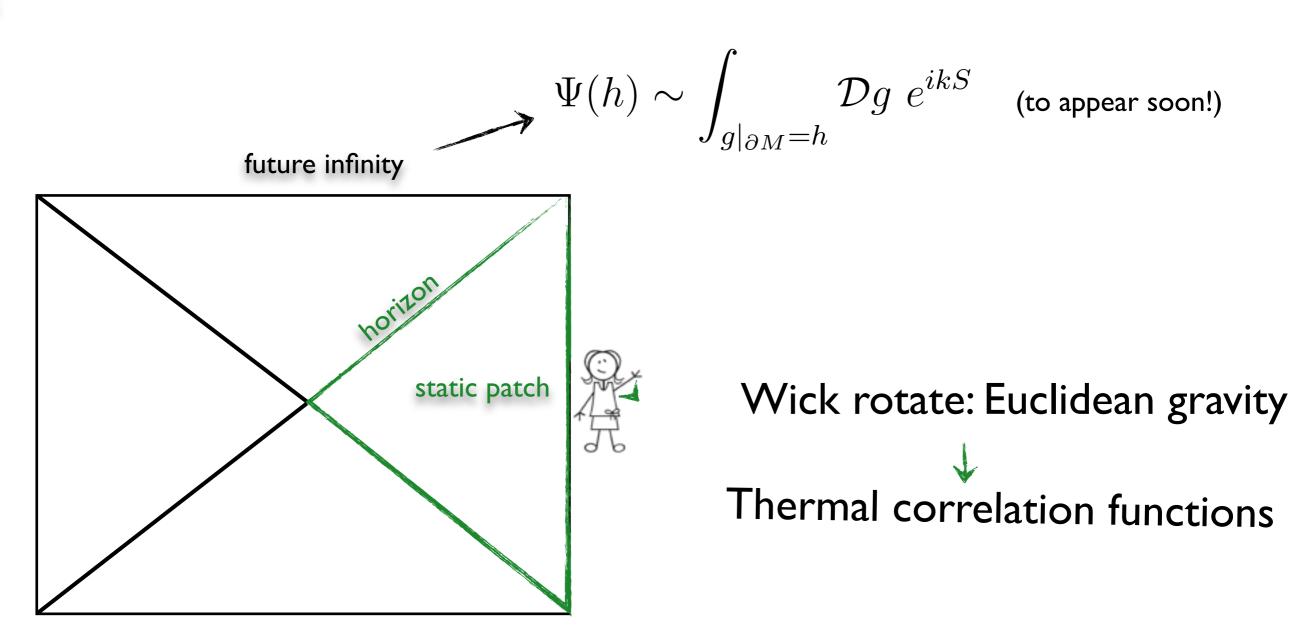
future infinity



What should we compute in dS gravity?



What should we compute in dS gravity?



Lorentzian signature

$$\frac{ds^2}{\ell^2} = dr^2 - \cos^2 r dt^2 + \sin^2 r d\phi^2 \qquad \phi \sim \phi + 2\pi n$$

Euclidean signature

$$\frac{ds_E^2}{\ell^2} = dr^2 + \cos^2 r dt_E^2 + \sin^2 r d\phi^2 \qquad t \to t_E = it$$

Lorentzian signature

$$\frac{ds^2}{\ell^2} = dr^2 - \cos^2 r dt^2 + \sin^2 r d\phi^2 \qquad \phi \sim \phi + 2\pi n$$

Euclidean signature

$$\frac{ds_E^2}{\ell^2} = dr^2 + \cos^2 r dt_E^2 + \sin^2 r d\phi^2 \qquad t \to t_E = it$$

Demand regularity at horizon:

3-sphere
$$(t_E, \phi) \sim (t_E, \phi) + 2\pi(m, n)$$

Lorentzian signature

$$\frac{ds^2}{ds^2} = dr^2 - \cos^2 r dt^2 + \sin^2 r d\phi^2 \qquad \phi \sim \phi + 2\pi n$$

Euclidean signature

$$\frac{ds_E^2}{\ell^2} = dr^2 + \cos^2 r dt_E^2 + \sin^2 r d\phi^2 \qquad t \to t_E = it$$

Demand regularity at horizon:

3-sphere
$$(t_E, \phi) \sim (t_E, \phi) + 2\pi(m, n)$$

Lens spaces
$$(t_E, \phi) \sim (t_E, \phi) + 2\pi \left(\frac{m}{p}, m\frac{q}{p} + n\right)$$

Metric Fluctuations

Quotients of spheres

Sum over all compact metrics

$$Z_{\text{Grav}} = \sum_{g_{cl}} \exp\left(-kS_E^{(0)} + S_E^{(1)} + \frac{1}{k}S_E^{(2)} + \cdots\right)$$

Identified all classical solutions

Computed all loop corrections

Comments

- *Exploited results in Chern-Simons theory to compute all perturbative corrections.
- *Sum over classical saddles resembles the AdS Farey Sum.
- *But! Path integral in dS is sick. Even after zeta function regularization we get

$$Z_{\text{Grav}}(\ell_{\text{dS}}) = 24\zeta(1) + \dots$$

- *This is not at all similar to the behavior of AdS.
- *Wave function at future infinity has similar problems.

AdS Gravity

- * Simplest example of AdS/CFT
- * A unitary result for a sum over geometries
- * Vast reduction on number of d.o.f

dS Gravity

- *Included all perturbative & non-perturbative effects
- *Sum over geometries is non-sense!