Generalized Global Symmetries

Nathan Seiberg
Institute for Advanced Study

Generalized Global Symmetries

Nathan Seiberg Institute for Advanced Study

Ofer Aharony, NS, Yuji Tachikawa, arXiv:1305.0318

Sergei Gukov, Anton Kapustin, arXiv:1307.4793

Anton Kapustin, Ryan Thorngren, arXiv:1308.2926, arXiv:1309.4721

Anton Kapustin, NS, arXiv:1401.0740

Davide Gaiotto, Anton Kapustin, NS, Brian Willett, arXiv:1412.5148

Global Symmetries

- Ordinary global symmetries
 - Act on local operators
 - The charged states are particles
- Generalized global symmetries
 - The charged operators are lines, surfaces, etc.
 - The charged objects are strings, domain walls, etc.
- It is intuitively clear and many people will feel that they have known it. We will make it more precise and more systematic.
- We will repeat all the things that are always done with ordinary symmetries.
- The gauged version of these are common in physics and in mathematics.

Ordinary global symmetries

 Generated by operators associated with co-dimension one manifolds M

$$U_g(M)$$

 $g \in G$ a group element

- The correlation functions of $U_g(M)$ are topological!
- Group multiplication $U_{g_1}(M)U_{g_2}(M) = U_{g_2g_1}(M)$
- Local operators O(p) are in representations of G

$$U_g(M)O_i(p) = R_i^j(g)O_j(p)$$

where M surrounds p (Ward identity)

If the symmetry is continuous,

$$U_g(M) = e^{i \int j(g)}$$

j(g) is a closed form current (its dual is a conserved current).

q-form global symmetries

• Generated by operators associated with co-dimension q+1 manifolds M (ordinary global symmetry has q=0) $U_g(M)$

 $g \in G$ a group element

- The correlation functions of $U_g(M)$ are topological!
- Group multiplication $U_{g_1}(M)U_{g_2}(M) = U_{g_2g_1}(M)$. Because of the high co-dimension the order does not matter and G is Abelian.
- The charged operators V(L) are on dimension q manifolds L. Representations of G — Ward identity

$$U_g(M)V(L) = R(g)V(L)$$

where M surrounds L and R(g) is a phase.

q-form global symmetries

If the symmetry is continuous,

$$U_g(M) = e^{i \int j(g)}$$

j(g) is a closed form current (its dual is a conserved current).

Compactifying on a circle, a q-form symmetry leads to a q-form symmetry and a q-1-form symmetry in the lower dimensional theory.

For example, compactifying a one-form symmetry leads to an ordinary symmetry in the lower dimensional theory.

No need for Lagrangian

- Exists abstractly, also in theories without a Lagrangian
- Useful in dualities

4d U(1) gauge theory

Two global U(1) one-form symmetries:

- Electric symmetry
 - Closed form currents: $\frac{2}{g^2} * F$ (measures the electric flux)
 - Shifts the gauge field A by a flat gauge field
- Magnetic symmetry
 - Closed form currents: $\frac{1}{2\pi}F$ (measures the magnetic flux)
 - Shifts the magnetic gauge field by a flat gauge field

The charged objects are dyonic lines $W_n(L)H_m(L)$ $(W_n(L)$ are Wilson lines and $H_m(L)$ are 't Hooft lines) with global symmetry charges n and m.

4d SU(N) gauge theory

- Electric \mathbf{Z}_N one-form symmetry
 - A Gukov-Witten surface operator depends on a conjugacy class in SU(N). When this class is in the center of SU(N) the surface operator is topological. This is our U.
 - It shifts the gauge field by a flat \mathbf{Z}_N gauge field.
 - It acts on the Wilson lines according to their representation under the $\mathbf{Z}_N \in SU(N)$ center.
- No magnetic one-form symmetry
 - No genuine 't Hooft lines
 - Their definition needs a choice of a surface.

Applications

As with ordinary symmetries:

- Selection rules on amplitudes
- Couple to a background classical gauge field (twisted boundary conditions)
 - Interpret 't Hooft twisted boundary conditions as an observable in the untwisted theory
- Gauge by summing over twisted sectors (like orbifolds)
 - New parameters in 4d gauge theories discrete θ parameters (like discrete torsion) [Aharony, NS, Tachikawa]
- Dual theories often have different gauge symmetries. But the global symmetries must be the same.
 - Non-trivial tests of duality including non-BPS operators

Characterizing phases

- In a confining phase the electric one-form symmetry is unbroken.
 - The confining strings are charged and are classified by the unbroken symmetry.
 - Area law of Wilson loop order parameter $\langle W \rangle$ vanishes when it is large symmetry unbroken.
 - Ordinary global symmetry after compactification. It is unbroken [Polyakov, Susskind].

Characterizing phases

- In a Higgs or Coulomb phase the electric one-form symmetry is spontaneously broken.
 - Renormalizing the perimeter law to zero, the large size limit of $\langle W \rangle$ is nonzero vev "breaks the symmetry."
 - No strings
 - Upon compactification, ordinary global symmetry. It is broken [Polyakov, Susskind].

Low energy behavior

As with ordinary symmetries, low energy consequences when the symmetry is spontaneously broken:

- A continuous broken symmetry leads to a massless Nambu-Goldstone boson.
 - Example: a photon in a Coulomb phase (cf. [Kovner, Rosenstein, 1990][He, Mitra, Porfyriadis, Strominger, 2014])

$$\langle 0|F_{\mu\nu}|\epsilon,p\rangle = (\epsilon_{\mu}p_{\nu} - \epsilon_{\nu}p_{\mu})e^{ipx}$$

- A discrete broken symmetry leads to a TQFT in the IR long range topological order
 - Example: a spontaneously broken \mathbf{Z}_n one-form symmetry leads to a \mathbf{Z}_n gauge theory

Anomalies

The 4d U(1) gauge theory has two global one-form symmetries.

Gauge the electric U(1) one-form symmetry

$$\frac{1}{g^2} F_{\mu\nu}^2 \rightarrow \frac{1}{g^2} \left(F_{\mu\nu} - B^E{}_{\mu\nu} \right)^2$$

Gauge the magnetic U(1) one-form symmetry

$$\frac{1}{g^2} F_{\mu\nu}^2 \rightarrow \frac{1}{g^2} F_{\mu\nu}^2 - \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} B^{M}_{\rho\sigma}$$

An anomaly prevents us from gauging both of them.

Similar to attempting to gauge both the ordinary (zero-form) momentum and winding symmetries in 2d.

Higher Form SPT Phases

Consider a system with an unbroken symmetry with anomalies.

- 't Hooft anomaly matching forces excitations (perhaps only topological excitations) in the bulk, or only on the boundary.
- Symmetry Protected Topological Phase
- Domain walls between vacua in different SPT phases must have excitations.
- For examples, N = 1 SUSY SU(N) gauge theory has N vacua in different SPT phases (the relevant symmetry is the oneform \mathbf{Z}_N symmetry) and hence there is $U(k)_N$ on the domain walls between them [Dierigl, Pritzel]. This $U(k)_N$ was originally found by [Acharya, Vafa] using string considerations.

Conclusions

- Higher form global symmetries are ubiquitous.
- They help classify
 - extended operators/defects (lines, surfaces, etc.)
 - extended objects (strings, domain walls, etc.)
- Global symmetries must be the same in dual theories.
- They extend Landau's characterization of phases based spontaneous global symmetry breaking and the corresponding order parameters
 - Rephrase the Wilson/'t Hooft classification in terms of broken or unbroken one-form global symmetries.

Conclusions

- Anomalies (as for ordinary global symmetries)
 - Obstruction to gauging
 - 't Hooft matching conditions
 - Anomaly inflow
 - Degrees of freedom on domain walls

Thank you for your attention