Geometry of 6D SCFTs

Jonathan J. Heckman

UNC Chapel Hill

Based On

Work with:

D. R. Morrison, T. Rudelius and C. Vafa

as well as:

M. Del Zotto, C. P. Herzog, D. S. Park, A. Tomasiello

See also talks by: C. Vafa, K. Intriligator, J. Park & T. Rudelius

Why Study 6D SCFTs?

• Nahm: Maximal SCFT dimension is six

• Degrees of freedom \neq particles (but it's a QFT!)

• QFT of M5-branes is a 6D SCFT

• Compactification $\Rightarrow 5D/4D/3D/2D$ Theories

Focus: (1,0) SCFTs

Conformal Symmetry: $\mathfrak{so}(6,2)$

Supersymmetry: 8 Q's and 8 S's

R-symmetry: $\mathfrak{su}(2)_{\mathcal{R}}$

Studied since the 1990's

Many groups:

But: Even now, still viewed as "mysterious"...

Results

Systematically Classify 6D SCFTs

Construction is "Top Down" (via F-theory)

Far stronger than just "alot of examples"

Nearly all top down conditions

Can be phrased in bottom up terms

6D SCFTs = Generalized Quivers

Looks Like Chemistry

"Atoms"

c.f. Morrison and Taylor '12

- (3)(2)
- 2 3 2
- 3 2 2

 $A_N \bigcirc \cdots \bigcirc$

- E_6
- E_7 ∞
- E_8

"Radicals"

(See T. Rudelius' Talk for Details)

Homomorphisms $\Gamma_{ADE} \to E_8$

Specific Class of F-theory 6D SCFTs

Plan of the Talk

• How to build a 6D SCFT

• Classification

• RG Flows

How to Build a 6D SCFT

Example: All (2,0) Theories

Witten '95, Strominger '95

Type IIB on $\mathbb{C}^2/\Gamma_{ADE}$

$$A_N \circ \cdots \circ$$

Resolution Involves:

Bouquet of \mathbb{CP}^1 's

$$D_N \otimes \cdots \circ$$

$$E_6$$

$$\mathbb{CP}_i^1 \cap \mathbb{CP}_j^1 = -\mathrm{Dynkin}_{ij}$$

Note:
$$\mathbb{CP}_i^1 \cap \mathbb{CP}_i^1 = -2$$

$$E_7$$

$$E_8$$

6D Theories and F-theory

Vafa '96, Vafa Morrison, I/II '96

All known 6D theories have F-theory avatar

IIB: $\mathbb{R}^{5,1} \times B_2$ with pos. dep. coupling $\tau(z_B)$

F-theory on
$$\mathbb{R}^{5,1} \times CY_3$$

$$T^2 \to CY_3$$

$$\downarrow$$

$$B_2$$

Tensionless Strings in F-theory

• Realized by D3-brane on collapsing \mathbb{CP}^1 Tension = Vol(\mathbb{CP}^1) $\to 0$

Strings from D3 on a \mathbb{P}^1

Particles from D7's on a \mathbb{P}^1

 $3 \le n \le 12 \Rightarrow$ always have gauge fields (elliptic fiber is singular: Morrison Taylor '12)

Geometric Picture

Singularities in base \Rightarrow strings (D3 / \mathbb{P}^1)

Singularities in fiber \Rightarrow particles (7 - 7' strings)

SCFT Limit

Start: A smooth base B_2

End: To get a CFT, sim. contract curves of B_2

Two Deformation Types

Complex Structure Deformation / Higgs Branch
Brane Recombination

Expand a curve in base to large size

Go to large tension / weak gauge coupling

Building a Base

In base B_2 , "gluing" of building blocks: classified by Morrison and Taylor '12 (see also JJH Morrison Vafa '13)

$$-1$$
 \mathfrak{g}_L
 \mathfrak{g}_R
 \mathfrak{g}_R

Building Blocks

"Non-Higgsable Clusters"

- $n \text{ for } 3 \le n \le 12$
- 3 2
- 2 3 2
- 3 2 2

(2,0) Theories

 E_6

 E_7

 E_8

E-String Theory

1

Examples

$$\mathfrak{e}_7$$
 \mathfrak{su}_2 \mathfrak{so}_7 \mathfrak{su}_2 \mathfrak{e}_7 \mathfrak{e}_7 \mathfrak{e}_8 1 2 3 2 1 8 \cdots

E-Type Quivers

The Link is also an SCFT!

Classification

Top Down Approach

In 6D, things are quite rigid...

Can we enumerate every possible theory?

Yes!

Evidence

I) Systematic geometric classification In F-theory, everything is geometric

II) All field / string constructions subsumed

Example: All "classical quivers"

Example: Classification of $\text{Hom}(\Gamma_{ADE}, E_8)$

and small instantons of $\mathbb{C}^2/\Gamma_{ADE}$

Example: Quivers

But Also

Example: Small Instantons

(see T. Rudelius' talk for details)

c.f. Aspinwall Morrison '97, Del Zotto JJH Tomasiello Vafa '14

JJH Morrison Rudelius Vafa '15

Heterotic String: E_8 Small Instantons on $\mathbb{C}^2/\Gamma_{ADE}$

Boundary Conditions $\text{Hom}(\Gamma_{ADE}, E_8)$

F-theory: Small Instantons on $\mathbb{C}^2/\Gamma_{ADE}$

Specific CY_3 's!!!

Strategy

1) Find all Bases which could support an SCFT

2) Find all Ways to Wrap 7-Branes

Useful Terminology: I / II

Split Up NHCs into two groups: $\mathbf{I}^{l} = 1, 2, ..., 2$ "instantons" $\frac{1}{2}\mathbf{56}$ \mathbf{I}^{3} \mathbf{I}^{2} \mathbf{I}^{1} so₈ \mathfrak{e}_{6} \mathfrak{e}_{7} \mathfrak{e}_{7} \mathfrak{e}_{8} $\mathfrak{e}_{$

non-DE-type: 1, 2, 3, 23, 232, 223, 5

Useful Terminology: II / II

Define a Base Quiver by minimal fiber types:

Nodes: DE-type curves

Links: Connecting DE-type curves ——

Example:

The Big Surprise

The Base Quivers have a *very* simple structure!

$$G_1 \subseteq G_2 \subseteq \cdots \subseteq G_m \supseteq \cdots \supseteq G_{k-1} \supseteq G_k$$

More Results...

$$\mathbf{I}^l = 1, 2, ..., 2$$

More Results...

2) Classification of all possible links

3) Classification of all ways to wrap 7-branes

¿Top Down vs Bottom Up?

6D field theory constraints

In almost all cases: exactly match

F-theory constraints

Example of an outlier:

 $\mathfrak{su}_2 \,\,\mathfrak{so}_8 \ 2 \,\, 3 \ 8_s$

Possible Reason Excluded: Spin(8) vs $Spin(8)/\mathbb{Z}_2$

RG Flows

Geometric Flows

Higgsing / cplx deformations:

Tensor / Kähler deformations:

Relevant vs Irrelevant

$$y^2 = x^3 + z^5 + \varepsilon z$$
 versus $y^2 = x^3 + z^5 + \varepsilon z^{10^{500}}$

Need to check deformation is "normalizable"

Kahler deformation: $\int_{B_2} \delta J \wedge \delta J < \infty$

Complex Deformation: $\int_{CY} \delta\Omega \wedge \overline{\delta\Omega} < \infty$

Physics Shortcut

Instead, can study change in anomaly polynomial

$$\Delta \mathcal{I} = \mathcal{I}_{UV} - \mathcal{I}_{IR}$$

(Activate R-symm and Tangent Bundle field strengths) (see Ohmori, Shimizu, Tachikawa, Yonekura '14)

$$\mathcal{I}(R,T) = \alpha c_2(R)^2 + \beta c_2(R)p_1(T) + \gamma p_1(T)^2 + \delta p_2(T)$$
+ Flavor Symmetry Contributions

Example Flow

4 Instantons on Gauged E_8

¿At The Bottom?

Since We Have a List...

Given a CFT, look for numbers C such that:

$$C_{UV} > C_{IR}$$

Brute Force: Try sweeping over all theories

Candidate C-Functions

(Cordova Dumitrescu Intriligator '15; JJH Herzog '15; JJH Rudelius '15)

Linear Combinations: $C = \overrightarrow{m} \cdot \overrightarrow{\alpha}_{\text{anomaly}}$

Tightest Bounds from Simplest Theories

Big Families of candidate C-Functions

Computer Sweep

(over theories with up to 25 classical gauge groups)

Conclusions

• 6D SCFTs = Generalized Quivers

• Classification: DONE

• Evidence for C-Theorems

• Next Up: Extract Universal Features