Strings 2016, Tsinghua University, Beijing

Abelian and Discrete Symmetries in F-theory

Mirjam Cvetič

Univerza *v Ljubljani* Fakulteta za *matematik*o *in fizik*o

Outline (Summary): F-theory Compactification

- I. Non-Abelian gauge symmetries brief overview of key ingredients
- II. Abelian gauge symmetries rational sections and Mordell-Weil group Highlight insights into Heterotic duality
- III. Discrete gauge symmetries

 multi-sections and Tate-Shafarevich group

 Highlight Heterotic duality and Mirror symmetry
- IV. Global particle physics models

 Time permitting three family Standard Model & with R-parity

Emphasize geometric perspective

Apologies: Upenn-centric

Heterotic/F-theory work based on:

- M.C., A.Grassi, D.Klevers, M.Poretschkin and P.Song, ``Origin of Abelian Gauge Symmetries in Heterotic/F-theory Duality," arXiv:1511.08208 [hep-th]
- M.C., A.Grassi and M.Poretschkin,
- `Discrete Symmetries in Heterotic/F-theory Duality and Mirror Symmetry," arXiv:1607.03176 [hep-th]

Type IIB perspective

F-THEORY BASIC INGREDIENTS

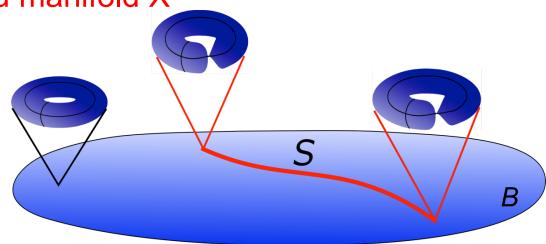
F-theory compactification

[Vafa'96], [Morrison, Vafa'96],...

Elliptically fibered Calabi-Yau manifold X

Modular parameter of two-torus (elliptic curve)

$$\tau \equiv C_0 + ig_s^{-1}$$



Weierstrass normal form for elliptic fibration of X

$$y^2 = x^3 + fxz^4 + gz^6$$

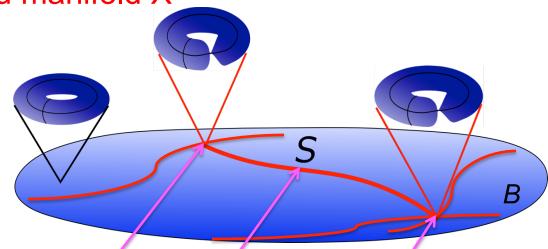
f, g - sections on (holomorphic functions of) B [z:x:y] - homogeneous coordinates on $P^2(1,2,3)$

F-theory compactification

Elliptically fibered Calabi-Yau manifold X

Modular parameter of two-torus (elliptic curve)

$$\tau \equiv C_0 + ig_s^{-1}$$



Weierstrass normal form for elliptic fibration of X

$$y^2 = x^3 + fxz^4 + gz^6$$

Matter (co-dim 2; chirality- G₄-flux)

Yukawa couplings (co-dim 3)

singular elliptic-fibration, $g_s \rightarrow \infty$ location of (p,q) 7-branes

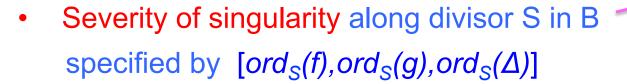
non-Abelian gauge symmetry (co-dim 1)

Non-Abelian Gauge Symmetry

[Kodaira],[Tate], [Vafa], [Morrison, Vafa],...[Esole, Yau], [Hayashi, Lawrie, Schäfer-Nameki], [Morrison], ...

Weierstrass normal form for elliptic fibration of X

$$y^2 = x^3 + fxz^4 + gz^6$$



B

Cartan gauge bosons: supported by (1,1) form $\omega_i \leftrightarrow \mathbb{P}^1_i$ on resolved X (via M-theory Kaluza-Klein reduction of C_3 potential $C_3 \supset A^i \omega_i$)

Deformation: [Grassi, Halverson, Shaneson'14-'15]

II. U(1)-Symmetries in F-Theory

Abelian Gauge Symmetries

Different: (1,1) forms ω_m , supporting U(1) gauge bosons, isolated & associated with I_1 -fibers, only

[Morrison, Vafa'96]

(1,1) - form ω_m rational section of elliptic fibration

Abelian Gauge Symmetry & Mordell-Weil Group

rational sections of elliptic fibr. 😝 rational points of elliptic curve

Abelian Gauge Symmetry & Mordell-Weil Group

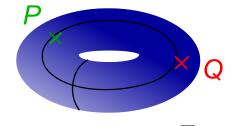
rational sections of elliptic fibr. 😝 rational points of elliptic curve

Rational point Q on elliptic curve E with zero point P

• is solution (x_Q,y_Q,z_Q) in field K of Weierstrass form

$$y^2 = x^3 + fxz^4 + gz^6$$

Rational points form group (addition) on E



E

Abelian Gauge Symmetry & Mordell-Weil Group

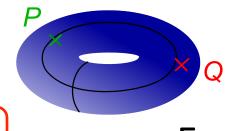
rational sections of elliptic fibr. 😝 rational points of elliptic curve

Rational point Q on elliptic curve E with zero point P

• is solution (x_Q,y_Q,z_Q) in field K of Weierstrass form

$$y^2 = x^3 + fxz^4 + gz^6$$

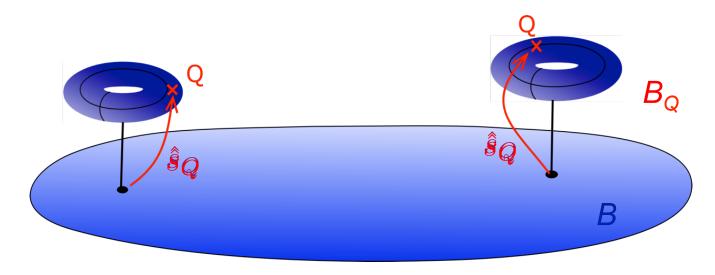
Rational points form group (addition) on E



Mordell-Weil group of rational points

U(1)'s-Abelian Symmetry & Mordell-Weil Group

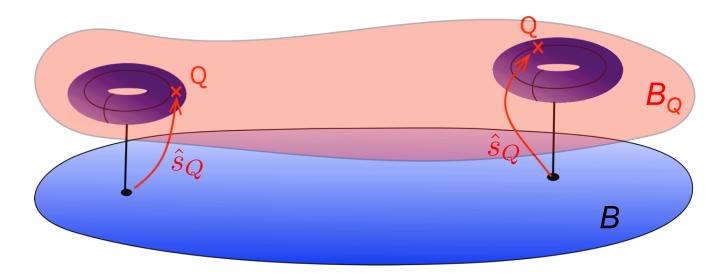
Point \mathbb{Q} induces a rational section $\hat{s}_Q: B \to X$ of elliptic fibration



 \hat{S}_Q gives rise to a second copy of B in X: new divisor B_Q in X

U(1)'s-Abelian Symmetry & Mordell-Weil Group

Point \mathbb{Q} induces a rational section $\hat{s}_Q: B \to X$ of elliptic fibration



 \hat{s}_Q gives rise to a second copy of B in X:

new divisor B_Q in X

(1,1)-form ω_m constructed from divisor B_Q (Shioda map) indeed (1,1) - form ω_m rational section

Earlier work: [Grimm, Weigand 1006.0226]...[Grassi, Perduca 1201.0930] [M.C., Grimm, Klevers 1210.6034]...

Explicit Examples: (n+1)-rational sections – U(1)ⁿ

[Deligne]

[via line bundle constr. on elliptic curve E- CY in (blow-up) of $W\mathbb{P}^m$]

```
n=0: with P - generic CY in \mathbb{P}^2(1,2,3) (Tate form)
```

n=1: with *P*, *Q* - generic CY in $Bl_1\mathbb{P}^2(1,1,2)$ [Morrison,Park 1208.2695]...

Explicit Examples: (n+1)-rational sections – U(1)ⁿ

```
n=0: with P - generic CY in \mathbb{P}^2(1,2,3) (Tate form)

n=1: with P, Q - generic CY in \mathrm{Bl}_1\mathbb{P}^2(1,1,2) [Morrison,Park 1208.2695]...

n=2: with P, Q, R - specific example: generic CY in dP_2 [Borchmann,Mayerhofer,Palti,Weigand 1303.54054,1307.2902] [M.C.,Klevers,Piragua 1303.6970,1307.6425] [M.C.,Grassi,Klevers,Piragua 1306.0236] generalization to nongeneric cubic in \mathbb{P}^2[u:v:w]
```

[M.C.,Klevers,Piragua,Taylor 1507.05954]

Explicit Examples: (n+1)-rational sections – U(1)ⁿ

```
n=0: with P - generic CY in \mathbb{P}^2(1,2,3) (Tate form)

n=1: with P, Q - generic CY in \mathrm{Bl_1P^2}(1,1,2) [Morrison,Park 1208.2695]...

n=2: with P, Q, R - specific example: generic CY in dP_2 [Borchmann,Mayerhofer,Palti,Weigand 1303.54054,1307.2902] [M.C.,Klevers,Piragua 1303.6970,1307.6425] [M.C.,Grassi,Klevers,Piragua 1306.0236] generalization to nongeneric cubic in \mathbb{P}^2[u:v:w] [M.C.,Klevers,Piragua,Taylor 1507.05954]
```

[M.C.,Klevers,Piragua,Song 1310.0463]

higher *n*, not clear...

n=3:

n=4:

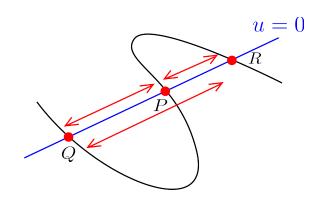
with P, Q, R, S - CICY in $Bl_3\mathbb{P}^3$

determinantal variety in \mathbb{P}^4

U(1)xU(1): Further Developments

[M.C., Klevers, Piragua, Taylor 1507.05954]

General U(1)xU(1) construction:



non-generic cubic curve in $\mathbb{P}^2[u:v:w]$:

$$uf_2(u, v, w) + \prod_{i=1}^{3} (a_i v + b_i w) = 0$$

 $f_2(u,v,w)$ degree two polynomial in $\mathbb{P}^2[u:v:w]$

Study of non-Abelian enhancement (unHiggsing) by merging rational points P, Q, R [first symmetric representation of SU(3)]

higher index representations [Klevers, Taylor 1604.01030] [Morrison, Park 1606.0744]

non-local horizontal divisors (Abelian) turn into local vertical ones (non-Abelian) ->

both in geometry(w/ global resolutions) & field theory (Higgsing matter)

U(1)'s in Heterotic/F-theory Duality

[M.C., Grassi, Klevers, Poretschkin, Song 1511.08208]

[Morrison, Vafa '96], [Friedman, Morgan, Witten '97]

Basic Duality (8D):

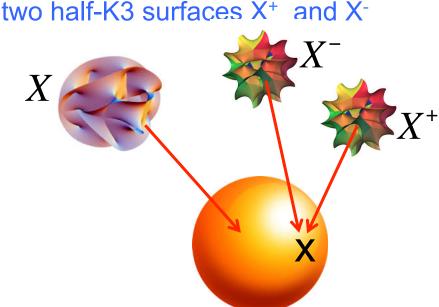
Heterotic $E_8 \times E_8$ String on T^2

dual to

F-Theory on elliptically fibered K3 surface X

Manifest in stable degeneration limit:

K3 surface X splits into two half-K3 surfaces X⁺ and X⁻



Dictionary:

- X⁺ and X⁻ → background bundles V₁ and V₂
- Heterotic gauge group $G = G_1 \times G_2 \cap G_i = [E_8, V_i]$
- The Heterotic geometry T²: at intersection of X⁺ and X⁻

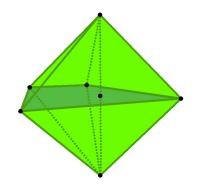
K3-fibration over P^1 (moduli)

U(1)'s in Heterotic/F-theory Duality

Employ toric geometry techniques in 8D/6D to study stable degeneration limit of F-theory models with one U(1)

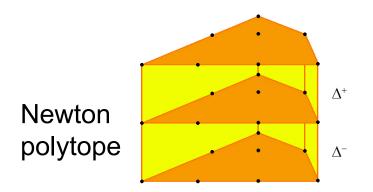
[elliptic curve: CY hypersurface in $Bl_1\mathbb{P}^2(1,1,2)$]

Toric polytope:



specifies the ambient space P^1xBI_1 $P^{(1,1,2)}$

Dual polytope:

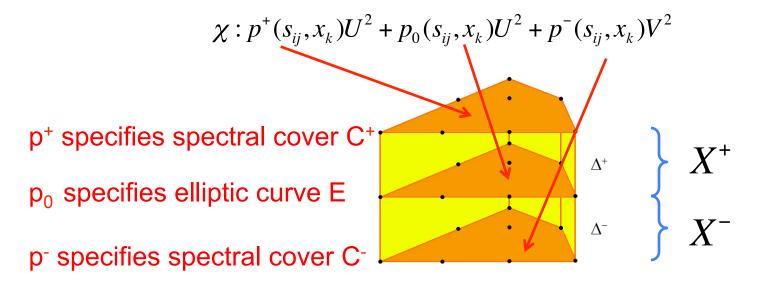


specifies the elements of O($-K_{P^1 \times Bl_1 P^{(1,1,2)}}$)

6D: fiber this construction over another P¹

Decomposing the F-Theory Geometry

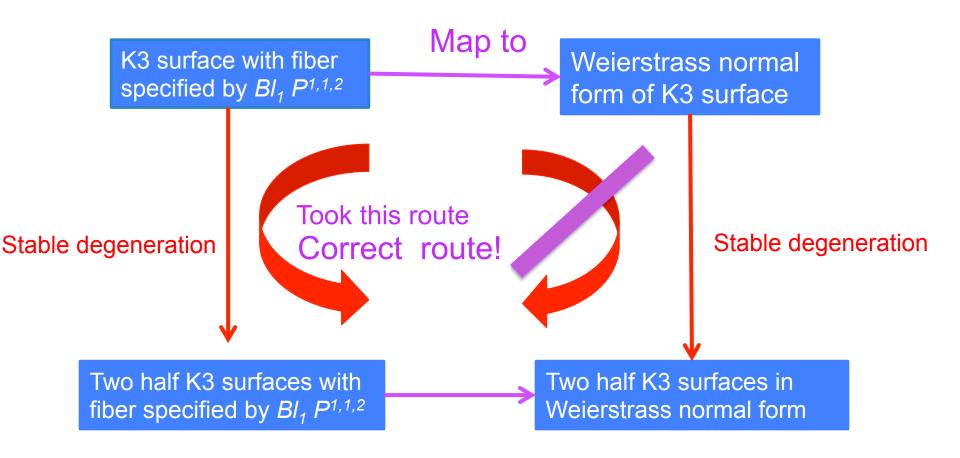
[Morrison, Vafa '96], [Berglund, Mayr '98]



- Spectral cover defines a SU(N) vector bundle on E
- Specialize to large gauge groups to keep spectral cover under control

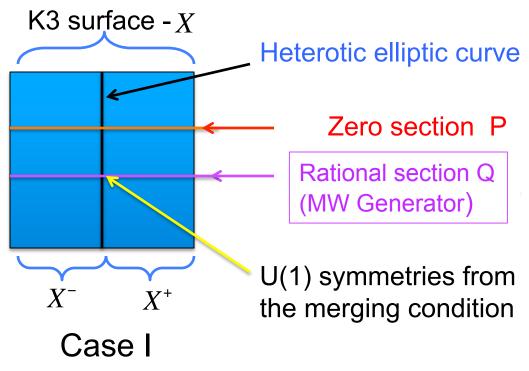
Developed for toric geometry with U(1)

Weierstrass form and stable degeneration with MW



do not commute!

Tracing U(1)s through duality



Split vector bundle-symmetric:

 $S(U(N-1) \times U(1))^2$

Example N=2: $(E_7 \times U(1))^2$ gauge symmetry

6D: U(1)²-massive (U(1)-background bundle) [Witten]

→ only symmetric comb. U(1)-massless

Vector bundle with torsion:

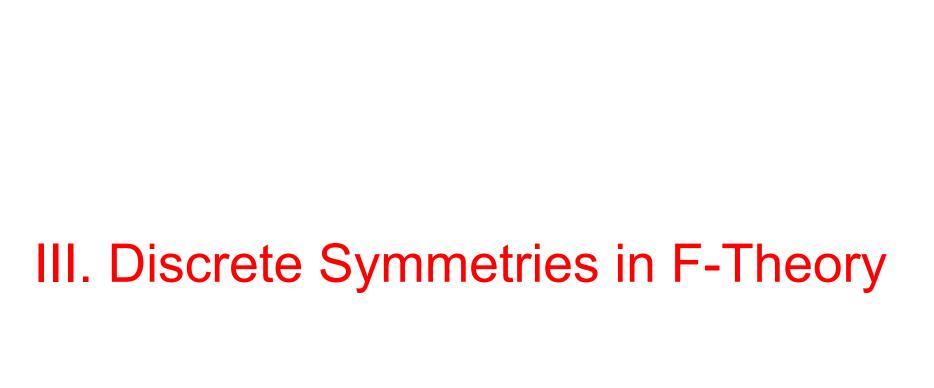
 $S(U(N-1) \times Z_2)$

 $E_8xE_6xU(1)$

6D: U(1)-massless

Case III

SU(N)xSU(M) bundle 6D: U(1)-massless



Discrete Symmetry

Calabi-Yau geometries with genus-one fibrations

These geometries do not admit a section, but a multi-section

```
Earlier work'00-ies: [Witten],[deBoer,Dijkgraaf,Hori,Keurentjes,Morgan,Morrison],[Sethi].

Recent extensive efforts'14-'15: [Braun, Morrison], [Morrison, Taylor],

[Klevers, Mayorga-Pena, Oehlmann, Piragua, Reuter], [Anderson,Garcia-Etxebarria,

Grimm, Keitel], [Braun, Grimm, Keitel], [Mayrhofer, Palti, Till, Weigand],

[M.C.,Donagi,Klevers,Piragua,Poretschkin], [Grimm, Pugh, Regalado]
```

Key features:

Brief!

- Relation to models with U(1) symmetries via conifold transition
- Geometries with n-section Tate-Shafarevich Group Zn

```
Z<sub>2</sub> [Morrison, Taylor 1404.1527]
[Anderson, Garcia-Etxebarria, Grimm, Keitel 1406.1580]
[Mayrhofer, Palti, Till, Weigand 1408.6831]
```

Z₃ [M.C.,Donagi,Klevers,Piragua,Poretschkin 1502.06953]

Abelian & Discrete Gauge Symmetry in F-theory

F-theory compactification with n sections (Abelian $U(1)^{(n-1)}$)

n=2 example

Independent Sections

Singular codim-2 locus

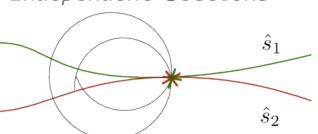
l₂ -fiber

[Morrison, Taylor]

Anderson, García-Etxebarria,

Grimm,Keitel]

[Mayrhofer,Palti,Till,Weigand]



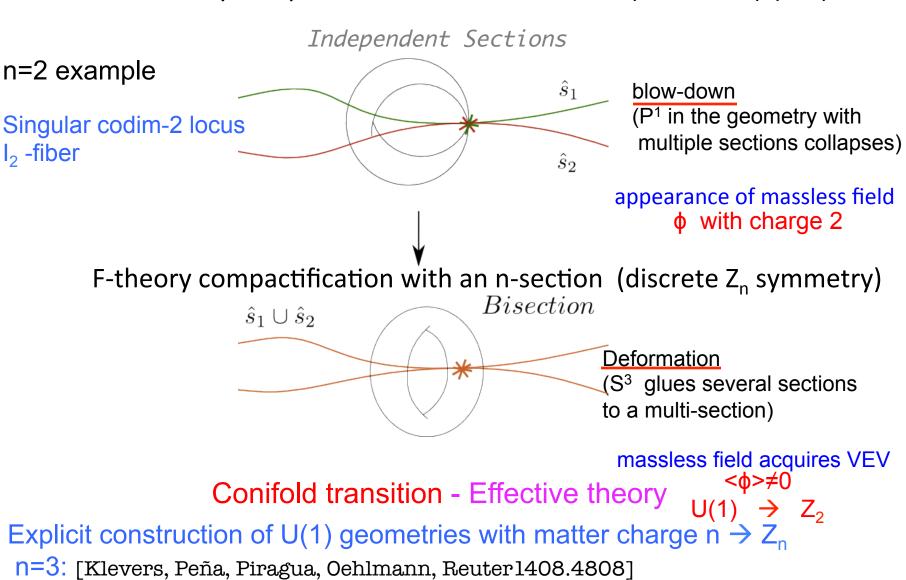
blow-down

(P¹ in the geometry with multiple sections collapses)

deformation

Abelian & Discrete Gauge Symmetry in F-theory

F-theory compactification with n sections (Abelian $U(1)^{(n-1)}$)

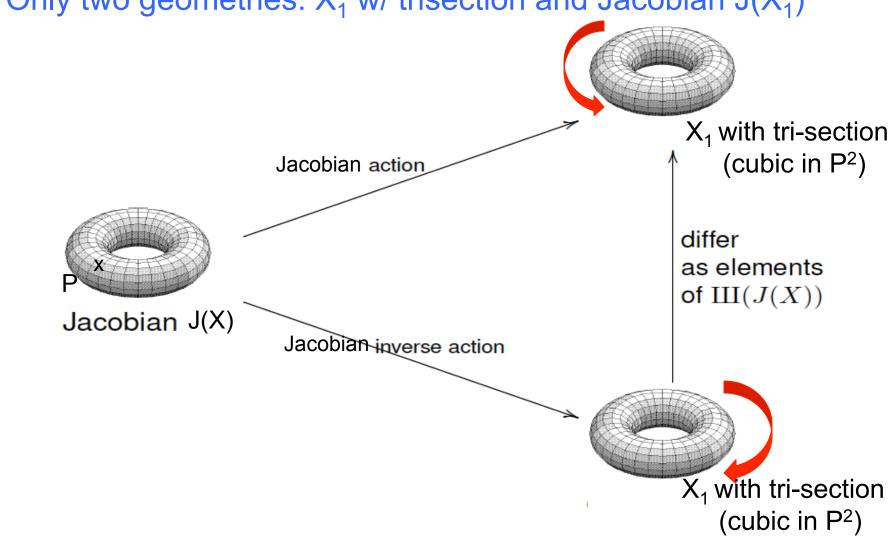


[M.C., Donagi ,Klevers ,Piragua, Poretschkin 1502.06953]...

Tate-Shafarevich group and Z₃

[M.C., Donagi, Klevers, Piragua, Poretschkin 1502.06953]

Only two geometries: X_1 w/ trisection and Jacobian $J(X_1)$



Thus, there are three different elements of TS group!

Discrete Symmetries & Heterotic/F-theory Duality

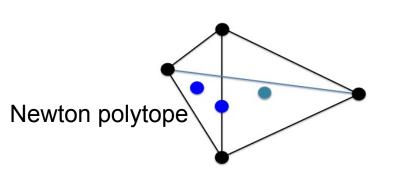
[M.C., A. Grassi, M. Poretschkin 1607.03176]

Goal: Trace the origin of discrete symmetry D

- Conjecture for P²(1,2,3) fibration [Berglund, Mayr' 98]
 X₂ elliptically fibered, toric K3 with singularities of type
 G₁ in X⁺ and G₂ in X⁻
 - its mirror dual Y_2 with singularities of type H_1 in X^+ and H_2 in X^- with $H_i=[E_8, G_i]$
- Employ conjecture to construct background bundles with structure group G where [E₈, G] =D - beyond P²(1,2,3)
- Explore ``symmetric" stable degeneration with H₁=H₂
 → symmetric appearance of discrete symmetry D

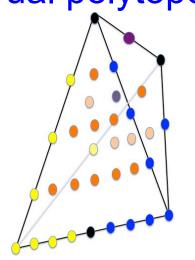
Example with Z₂ symmetry

Polytope:



8D: $((E_7 \times SU(2))/\mathbb{Z}_2)^2$ - gauge symmetry

Dual polytope:



 \mathbb{Z}_2^2 – gauge symmetry

c.f., [Aspinwall'05]

6D: $(E_7 \times E_7 \times SU(2))/\mathbb{Z}_2$ - gauge symmetry

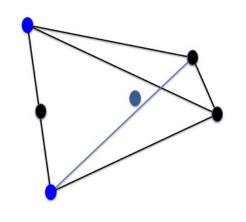
 \mathbb{Z}_2 - gauge symmetry

Field theory: Higgsing symmetric U(1) model:
only one (symm. comb.) U(1)-massless

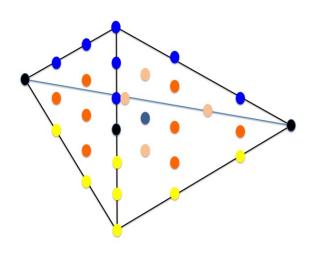
→ only one Z₂ -``massless"

Example with Z_3 symmetry

Polytope:



Dual polytope:



6D: $(E_6 \times E_6 \times SU(3))/\mathbb{Z}_3$ – gauge symmetry

 \mathbb{Z}_3 - gauge symmetry

All these examples demonstrate:

toric CY's with MW torsion of order-n, via Heterotic duality related to dual toric CY's with n-section.

Related: [Klevers, Peña, Piragua, Oehlmann, Reuter 1408.4808]

IV. Particle Physics & F-theory

concrete examples

Initial focus: F-theory with SU(5) Grand Unification

[10 10 5 coupling,...] [Donagi, Wijnholt'08] [Beasley, Heckman, Vafa'08]...

Model Constructions:

local

[Donagi, Wijnholt'09-10]...[Marsano, Schäfer-Nameki, Saulina'09-11]...

Review: [Heckman]

global

[Blumehagen, Grimm, Jurke, Weigand'09] [M.C., Garcia-Etxebarria, Halverson'10]... [Marsano, Schäfer-Nameki'11-12]...[Clemens, Marsano, Pantev, Raby, Tseng'12]...

[Braun, Grimm, Keitel 1306.05677]...[Lawrie, Schäfer-Nameki, Wong 1504.05593].

Other Particle Physics Models:

Standard Model building blocks (via toric techniques)

[Lin, Weigand 1406.6071] SM x U(1) [1604.04292]

First Global 3-family Standard, Pati-Salam, Trinification Models

[M.C., Klevers, Peña, Oehlmann, Reuter 1503.02068]

Standard Model with Z₂ (R-parity)

[M.C., Klevers, Oehlmann, Reuter 1608....]

No-time!

Standard Model

[M.C., Klevers, Peña, Oehlmann, Reuter 1503.02068]

F₁₁ polytope

u e_1 e_2 w

Elliptic curve:

 $p_{F_{11}} = s_1 e_1^2 e_2^2 e_3 e_4^4 u^3 + s_2 e_1 e_2^2 e_3^2 e_4^2 u^2 v + s_3 e_2^2 e_3^2 u v^2 + s_5 e_1^2 e_2 e_4^3 u^2 w + s_6 e_1 e_2 e_3 e_4 u v w + s_9 e_1 v w^2 e_1 e_2^2 e_3^2 e_4^2 u^2 e_1^2 e_2^2 e_3^2 e_4^2 e_2^2 e_3^2 e_3^2 e_2^2 e_3^2 e_3$

[hypersurface constraint in dP_4 (\mathbb{P}^2 [u:v:w] with four blow-ups [e₁:e₂:e₃:e₄])

Gauge symmetry: $SU(3) \times SU(2) \times U(1)$

Matter:

|--|

Construct G₄ for chiral index & D3-tadpole constraint

Standard Model

Base B =
$$\mathbb{P}^3$$
 Divisors in the base: $\mathcal{S}_7 = n_7 H_{\mathbb{P}^3}$ $\mathcal{S}_9 = n_9 H_{\mathbb{P}^3}$

Globally consistent solutions (#(families);n_{D3}) for allowed (n₇,n₉)

n_7 n_9	1	2	3	4	5	6	7
7							
6							
5							
4							
3							
2							
1							
0							
-1							
-2							

Standard Model

Base B =
$$\mathbb{P}^3$$
 Divisors in the base: $\mathcal{S}_7 = n_7 H_{\mathbb{P}^3}$ $\mathcal{S}_9 = n_9 H_{\mathbb{P}^3}$

Globally consistent solutions (#(families);n_{D3}) for allowed (n₇,n₉)

$n_7 \setminus n_9$	1	2	3	4	5	6	7
7	_	(27; 16)	_	_			
6	_	(12; 81)	(21; 42)	_	_		
5	_	_	(12; 57)	(30; 8)	_	(3;46)	
4	(42;4)	_	(30; 32)	_	_	_	_
3	_	(21;72)	_	_	_	(15; 30)	
2	(45;16)	(24;79)	(21;66)	(24;44)	(3;64)		
1	_	_	_	_			
0	_	_	(12; 112)				
-1	(36;91)	(33;74)					
-2	_						

Summary and Outlook

Key ingredients of F-theory Compactification
 Geometric perspective - discrete data
 gauge symmetry, matter, Yukawa couplings

Recent developments

Abelian & Discrete Symmetries (related to respective MW & TS group)
Highlight insights into heterotic duality

Particle Physics Models
 SU(5) GUT's & three family Standard Model & with R-parity
 (tip of the iceberg)

Issues: continuous data such as coupling magnitudes,... moduli stabilization,...

More work...

謝鄉您