Higgs Boson: from Collider Test to SUSY GUT Inflation

Hong-Jian He
Tsinghua University

String-2016, Tsinghua, Beijing, August 5, 2016
String Theory
Supergravity, GUT...

Effective Theory:
\textbf{SM}, + eff operators
MSSM, NMSSM, ...

Experiments

Collider Tests...

Cosmology
Observations
LHC New Discovery →
High Energy Physics at Turning Point
LHC New Discovery →
High Energy Physics at Turning Point

➢ Run-1 Higgs Discovery $h(125\text{GeV})$ in 2012
LHC New Discovery →
High Energy Physics at Turning Point

➢ Run-1 Higgs Discovery $h(125\text{GeV})$ in 2012
➢ Run-2 New Particle Discovery in 2016 ??
LHC New Discovery →
High Energy Physics at **Turning Point**

➢ Run-1 Higgs Discovery $h(125\text{GeV})$ in 2012
➢ Run-2 New Particle Discovery in 2016 ??

These will lead to

New Set of Key Physics Questions
for **Next Colliders** to answer !!
LHC New Discovery →
High Energy Physics at Turning Point

➢ Run-1 Higgs Discovery $h(125\text{GeV})$ in 2012
➢ Run-2 New Particle Discovery in 2016 ??

These will lead to

New Set of Key Physics Questions
for Next Colliders to answer !!

+ Interface with Cosmology & Quantum Gravity
High Energy Physics at **Turning Point**

- Run-1 Higgs Discovery $h(125\text{GeV})$ in 2012
- Run-2 New Particle Discovery in 2016 ??

These will lead to

New Set of Key Physics Questions

for **Next Colliders** to answer !!

+ Interface with Cosmology & Quantum Gravity
Making of the Standard Model

\[\mathcal{L} = -\frac{1}{4g'_{4}} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4g_{2}} W_{\mu\nu}^{a} W^{\mu\nu a} - \frac{1}{4g_{s}^{2}} G_{\mu\nu}^{a} G^{\mu\nu a} \\
+ Q_{i} i \not{\partial} Q_{i} + \bar{u}_{i} i \not{\partial} u_{i} + \bar{d}_{i} i \not{\partial} d_{i} + \bar{L}_{i} i \not{\partial} L_{i} + \bar{\ell}_{i} i \not{\partial} \ell_{i} \\
+ \left(Y_{u}^{ij} \bar{Q}_{i} u_{j} \tilde{H} + Y_{d}^{ij} \bar{Q}_{i} d_{j} H + Y_{l}^{ij} \bar{L}_{i} \ell_{j} H + \text{c.c.} \right) \\
- \lambda (H^{\dagger} H)^{2} + \lambda v^{2} H^{\dagger} H - (D^{\mu} H)^{\dagger} D_{\mu} H \]
Making of the Standard Model

Key Role of Higgs Boson in SM: Mass Generations for W/Z + Quarks/Leptons

\[
\mathcal{L} = -\frac{1}{4g'^4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4g^2} W^{a}_{\mu\nu} W^{\mu\nu a} - \frac{1}{4g_s^2} G^a_{\mu\nu} G^{\mu\nu a} + Q_i i \slashed{D} Q_i + \bar{u}_i i \slashed{D} u_i + \bar{d}_i i \slashed{D} d_i + \bar{L}_i i \slashed{D} L_i + \bar{\ell}_i i \slashed{D} \ell_i + \left(Y^{ij}_{u} \bar{Q}_i u_j \tilde{H} + Y^{ij}_{d} \bar{Q}_i d_j H + Y^{ij}_{l} \bar{L}_i \ell_j H + c.c. \right) - \lambda (H^\dagger H)^2 + \lambda v^2 H^\dagger H - (D^{\mu} H)^\dagger D_{\mu} H
\]
Making of the Standard Model

Key Role of Higgs Boson in SM:
Mass Generations for W/Z + Quarks/Leptons

➢ Now, 4 Years after 2012:
New Physics Beyond SM ??
Making of the Standard Model

Key Role of Higgs Boson in SM:
Mass Generations for W/Z + Quarks/Leptons

➢ Now, 4 Years after 2012:
New Physics Beyond SM ??
➢ h(125GeV) Discovery at LHC Run-1.
➢ X(750GeV) or Any New State at LHC Run-2 ?!

✓ H (125GeV) @ Run-1

X(750GeV)?? or Any New State ?!

2015
a Window to New Physics ??
Spin-0 Higgs Boson Itself is a Window to New Physics?!?
Isomorphic Lorentz Group: \(\text{SO}(3,1) \cong \text{SU}(2) \times \text{SU}(2) \)
Isomorphic Lorentz Group: $\text{SO}(3,1) \cong \text{SU}(2) \times \text{SU}(2)$

Irreducible Representation (j) of $\text{SU}(2)$: $j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$

→ Representations of Lorentz Group: (j, j').

$(\frac{1}{2}, 0), (0, \frac{1}{2}) \rightarrow \text{Fermions}; \quad (\frac{1}{2}, \frac{1}{2}) \rightarrow \text{Gauge Bosons}.$
Representation of Lorentz Group

➢ Isomorphic Lorentz Group: \(SO(3,1) \approx SU(2) \times SU(2) \)

➢ Irreducible Representation \((j)\) of \(SU(2)\): \(j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots\)

→ Representations of Lorentz Group: \((j, j')\).

\(\left(\frac{1}{2}, 0\right), \left(0, \frac{1}{2}\right) \rightarrow \text{Fermions}; \quad \left(\frac{1}{2}, \frac{1}{2}\right) \rightarrow \text{Gauge Bosons.}\)

➢ The Simplest Lorentz Group Representation is Scalar Representation:

\((0, 0)\)

★ Special Relativity predicted Scalar Particle (Higgs Boson) !!!
Isomorphic Lorentz Group: \(SO(3,1) \cong SU(2) \times SU(2) \)

Irreducible Representation \((j)\) of \(SU(2)\): \(j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots\)

Representations of Lorentz Group: \((j, j')\).
- \((\frac{1}{2}, 0), (0, \frac{1}{2}) \rightarrow \text{Fermions;} \quad (\frac{1}{2}, \frac{1}{2}) \rightarrow \text{Gauge Bosons.}\)

The Simplest Lorentz Group Representation is Scalar Representation:
\((0, 0)\)

Special Relativity predicted Scalar Particle (Higgs Boson) !!!
Isomorphic Lorentz Group: $SO(3,1) \cong SU(2) \times SU(2)$

Irreducible Representation (j) of $SU(2)$: $j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$

Representations of Lorentz Group: (j, j').

$(\frac{1}{2}, 0), (0, \frac{1}{2}) \rightarrow$ Fermions; $(\frac{1}{2}, \frac{1}{2}) \rightarrow$ Gauge Bosons.

The Simplest Lorentz Group Representation is Scalar Representation: $(0, 0)$

Special Relativity predicted Scalar Particle (Higgs Boson) !!!
Representation of Lorentz Group

- Isomorphic Lorentz Group: \(\text{SO}(3,1) \approx \text{SU}(2) \times \text{SU}(2) \)

- Irreducible Representation \((j)\) of \(\text{SU}(2) \): \(j=0, \frac{1}{2}, 1, \frac{3}{2} \ldots \)

\[\rightarrow \] Representations of Lorentz Group: \((j, j')\).

\((\frac{1}{2}, 0), (0, \frac{1}{2}) \rightarrow \text{Fermions}; \quad (\frac{1}{2}, \frac{1}{2}) \rightarrow \text{Gauge Bosons}.\]

- The **Simplest** Lorentz Group Representation is Scalar Representation:
 \((0, 0)\)

★ **Special Relativity** predicted Scalar Particle (Higgs Boson) !!!
Spin-0 Higgs Boson Itself is New Physics:
Spin-0 Higgs Boson Itself is New Physics:

- Mass Puzzle:
 - W, Z Masses (EWSB)
 - Fermion Masses (Quark/Lepton/Neutrino)? Why large hierarchy?
 - Higgs Boson Mass: Naturalness?

Higgs Self-interactions?
Spin-0 Higgs Boson Itself is New Physics:

➢ Mass Puzzle:
 – W,Z Masses (EWSB)
 – Fermion Masses (Quark/Lepton/Neutrino) ? Why large hierarchy?
 – Higgs Boson Mass: Naturalness ?
 Higgs Self-interactions ?

➢ Vacuum Puzzle:
 – Vacuum Stability ?
 – Vacuum Energy (Dark Energy) ?
Spin-0 Higgs Boson Itself is New Physics:

➢ Mass Puzzle:
 – W,Z Masses (EWSB)
 – Fermion Masses (Quark/Lepton/Neutrino) ? Why large hierarchy?
 – Higgs Boson Mass: Naturalness ?
 Higgs Self-interactions ?

➢ Vacuum Puzzle:
 – Vacuum Stability ?
 – Vacuum Energy (Dark Energy) ?

➢ Inflation Puzzle: – Higgs Boson as Inflaton ?
Spin-0 Higgs Boson Itself is New Physics:

➢ Mass Puzzle:
 – W,Z Masses (EWSB)
 – Fermion Masses (Quark/Lepton/Neutrino) ? Why large hierarchy?
 – Higgs Boson Mass: Naturalness ?
 Higgs Self-interactions ?

➢ Vacuum Puzzle:
 – Vacuum Stability ?
 – Vacuum Energy (Dark Energy) ?

➢ Inflation Puzzle: – Higgs Boson as Inflaton ?

➢ Dark Matter Puzzle: – Higgs Portal ?
Spin-0 Higgs Boson Itself is New Physics:

➢ Mass Puzzle:
 – W,Z Masses (EWSB)
 – Fermion Masses (Quark/Lepton/Neutrino) ? Why large hierarchy?
 – Higgs Boson Mass: Naturalness ?
 Higgs Self-interactions ?

➢ Vacuum Puzzle:
 – Vacuum Stability ?
 – Vacuum Energy (Dark Energy) ?

➢ Inflation Puzzle: – Higgs Boson as Inflaton ?

➢ Dark Matter Puzzle: – Higgs Portal ?

➢ Missing Antimatter Puzzle:
 – Baryogenesis, Leptogenesis, … ?
3 Fundamental Forces in SM Itself
3 Fundamental Forces in SM Itself

➢ 2. Yukawa Forces: mediated by Spin-0 Higgs Boson.
➢ 3. Higgs Self-Interaction Force: \(h^3 \) & \(h^4 \) forces, (concerns spontaneous EWSB and generating Higgs mass itself).

2. Yukawa Forces: mediated by Spin-0 Higgs Boson.

3. Higgs Self-Interaction Force: h^3 & h^4 forces, (concerns spontaneous EWSB and generating Higgs mass itself).

Type-2 & Type-3 are two New Fundamental Forces, Solely due to Spin-0 Higgs, which were never directly probed before, despite they already exist in SM !!!

2. Yukawa Forces: mediated by Spin-0 Higgs Boson.

3. Higgs Self-Interaction Force: h^3 & h^4 forces, (concerns spontaneous EWSB and generating Higgs mass itself).

Type-2 & Type-3 are two New Fundamental Forces, Solely due to Spin-0 Higgs, which were never directly probed before, despite they already exist in SM !!!

In SM, Only Higgs can have Self-Interactions (involving exactly the same particle, h^3 & h^4), but not all other fundamental particles (as forbidden by their spin & charge).
3 Fundamental Forces in SM Itself

➢ 2. Yukawa Forces: mediated by Spin-0 Higgs Boson.

➢ 3. Higgs Self-Interaction Force: \(h^3 \) & \(h^4 \) forces, (concerns spontaneous EWSB and generating Higgs mass itself).

➢ Type-2 & Type-3 are two New Fundamental Forces, *Solely due to Spin-0 Higgs, which were never directly probed before, despite they already exist in SM !!!*

➢ In SM, *Only Higgs can have Self-Interactions* (involving exactly the same particle, \(h^3 \) & \(h^4 \)), but not all other fundamental particles (as forbidden by their spin & charge).
3 Fundamental Forces in SM Itself

➢ 2. Yukawa Forces: mediated by Spin-0 Higgs Boson.

➢ 3. Higgs Self-Interaction Force: \(h^3 \) & \(h^4 \) forces, (concerns spontaneous EWSB and generating Higgs mass itself).

➢ Type-2 & Type-3 are two New Fundamental Forces, *Solely due to Spin-0 Higgs*, which were never directly probed before, despite they already exist in SM !!!

➢ In SM, *Only Higgs can have Self-Interactions* (involving exactly the same particle, \(h^3 \) & \(h^4 \)), but not all other fundamental particles (as forbidden by their spin & charge).
3 Fundamental Forces inside SM Itself

➢ LEP/Tevatron/LHC only have good tests on Gauge Forces.
➢ LHC only has weak sensitivity to Yukawa couplings of $h-\tau-\tau$, $h-b-b$, $h-t-t$ at order of $10-20\%$.
➢ LHC cannot probe Most Other Yukawa Couplings!
➢ LHC can hardly probe Higgs Self-Interaction!
➢ LHC cannot establish $h(125\text{GeV})$ as God Particle!

LHC(300/fb) + HL-LHC(3/ab)
M. E. Peskin, Snowmass Study, arxiv:1312.4974
Higgs 125GeV and Beyond
Conclusion-1: Higgs is not only a New Particle, but also New Forces!!!

Even within SM Forces, strongly motivated to quantitatively test Type-2 + Type-3 New Forces (Higgs Yukawa Forces and Self-Interaction-Forces) mediated by Higgs Boson.
Conclusion-1: Higgs is not only a New Particle, but also New Forces!!!

Even within SM Forces, strongly motivated to quantitatively test Type-2 + Type-3 New Forces (Higgs Yukawa Forces and Self-Interaction-Forces) mediated by Higgs Boson.

Conclusion-2: Any New Discovery of Run-2 will require further Precision Tests.

This requires to Go Beyond the LHC!

High Energy Circular Colliders: CEPC/SPPC & FCC ee (90-250GeV, 350GeV) + pp(50-100TeV)
Higgs Factory: CEPC (240-250GeV)

➢ LHC-Run1+2: $h(125)$ is SM-like. ➤ Precision Test is Crucial!

➢ CEPC produces $h(125)$ mainly via $ee \rightarrow hZ$ and $ee \rightarrow \nu\nu h$.

➢ CEPC makes *Indirect Probe* to New Physics!

CEPC designed: 5/ab for 2 detectors in 10y. ➤ 10^6 Higgs Bosons!
Inputs: Event Rate → Cross Section & BR

<table>
<thead>
<tr>
<th>ΔM_h (MeV)</th>
<th>Γ_h (%)</th>
<th>$\sigma(Zh)$ (%)</th>
<th>$\sigma(\nu\bar{\nu}h) \times \text{Br}(h \rightarrow bb)$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>2.6</td>
<td>0.5</td>
<td>2.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th>$\sigma(Zh) \times \text{Br}$ (%)</th>
<th>Br (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h \rightarrow bb$</td>
<td>0.21</td>
<td>0.54</td>
</tr>
<tr>
<td>$h \rightarrow cc$</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>$h \rightarrow gg$</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>$h \rightarrow \tau\tau$</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>$h \rightarrow WW$</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>$h \rightarrow ZZ$</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>$h \rightarrow \gamma\gamma$</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>$h \rightarrow \mu\mu$</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>$h \rightarrow \text{invisible}$</td>
<td>–</td>
<td>0.14</td>
</tr>
</tbody>
</table>

SM Predictions

<table>
<thead>
<tr>
<th>BR($b\bar{b}$)</th>
<th>BR($c\bar{c}$)</th>
<th>BR(gg)</th>
<th>BR($\tau\bar{\tau}$)</th>
<th>BR(WW)</th>
<th>BR(ZZ)</th>
<th>BR($\gamma\gamma$)</th>
<th>BR($\mu\bar{\mu}$)</th>
<th>BR(inv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.1%</td>
<td>2.10%</td>
<td>7.40%</td>
<td>6.64%</td>
<td>22.5%</td>
<td>2.77%</td>
<td>0.243%</td>
<td>0.023%</td>
<td>0</td>
</tr>
</tbody>
</table>

Latest 1σ uncertainty, KITPC WS, July 28
Effective Higgs Couplings: Gauge & Yukawa

\[\mathcal{L} = \kappa_3 \frac{m_H^2}{2v} H^3 + \kappa_Z \frac{m_Z^2}{v} Z_\mu Z^\mu H + \kappa_W \frac{2m_W^2}{v} W_\mu^+ W^-\mu H \\
+ \kappa_g \frac{\alpha_s}{12\pi v} G_\mu^a G^{a\mu\nu} H + \kappa_{\gamma} \frac{\alpha}{2\pi v} A_{\mu\nu} A^{\mu\nu} H + \kappa_{Z\gamma} \frac{\alpha}{\pi v} A_{\mu\nu} Z^{\mu\nu} H \\
- \left(\kappa_t \sum_{f=u,c,t} \frac{m_f}{v} f \bar{f} + \kappa_b \sum_{f=d,s,b} \frac{m_f}{v} f \bar{f} + \kappa_\tau \sum_{f=e,\mu,\tau} \frac{m_f}{v} f \bar{f} \right) H \]
Testing Higgs Coupling: CEPC vs LHC

Ge, HJH, Xiao, arXiv:1603.03385
Indirect Probe of Higgs related New Physics
All can be formulated by:
Model-Independent Effective Operators
(Dimension-6)

\[\mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_{j} \frac{c_j}{\Lambda^2} \mathcal{O}_j \]

<table>
<thead>
<tr>
<th>Higgs</th>
<th>EW Gauge Bosons</th>
<th>Fermions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{O}H = \frac{1}{2} (\partial{\mu}</td>
<td>H</td>
<td>^2)^2)</td>
</tr>
<tr>
<td>(\mathcal{O}T = \frac{1}{2} (H^\dagger D{\mu} H)^2)</td>
<td>(\mathcal{O}_{BB} = g^2</td>
<td>H</td>
</tr>
<tr>
<td>(\mathcal{O}{WB} = gg' H^\dagger \sigma^a H W{\mu \nu}^a B^{a\mu \nu})</td>
<td>(\mathcal{O}{HW} = ig(\overline{D}^\mu H)^{\dagger} \sigma^a (D^\nu H) W{\mu \nu}^a)</td>
<td>(\mathcal{O}{L} = (i H^\dagger D{\mu} H)(\overline{\Psi}_L \gamma^\mu \Psi_L))</td>
</tr>
<tr>
<td>Gluon</td>
<td>(\mathcal{O}{HB} = ig'(D{\mu} H)^{\dagger} (D^\nu H) B_{\mu \nu})</td>
<td>(\mathcal{O}{R} = (i H^\dagger D{\mu} H)(\overline{\Psi}_R \gamma^\mu \psi_R))</td>
</tr>
</tbody>
</table>

\(\mathcal{O}_g = g_s^2 |H|^2 G_{\mu \nu}^a G^{a\mu \nu} \)
Note: The CEPC Z-pole & W-pair simulation is preliminary. BUT, the detail does not really matter for above demonstration of a matter of principle for probing New Physics: including vs excluding CEPC measurements of M_Z, M_W.

Table: The M_Z & M_W @ CEPC [Z.Liang, “Z & W Physics @ CEPC” & preCDR].
Enhancement from Z-Pole Observables @ CEPC

<table>
<thead>
<tr>
<th>N_{ν}</th>
<th>$A_{FB}(b)$</th>
<th>R^b</th>
<th>R^μ</th>
<th>R^τ</th>
<th>$\sin^2 \theta_w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8×10^{-3}</td>
<td>1.5×10^{-3}</td>
<td>8×10^{-4}</td>
<td>5×10^{-4}</td>
<td>5×10^{-4}</td>
<td>1×10^{-4}</td>
</tr>
</tbody>
</table>

Table: The Z-pole measurements at CEPC [Z.Liang, "Z & W Physics @ CEPC" & preCDR].

Z-Pole Observables are **IMPORTANT** for New Physics Scale Probe

<table>
<thead>
<tr>
<th>O_H</th>
<th>O_T</th>
<th>O_{WW}</th>
<th>O_{BB}</th>
<th>O_{WB}</th>
<th>O_{HW}</th>
<th>O_{HB}</th>
<th>$O^{(3)}_{LL}$</th>
<th>$O^{(3)}_{L}$</th>
<th>O_L</th>
<th>O_R</th>
<th>$O^{(3)}_{L,q}$</th>
<th>$O_{L,q}$</th>
<th>$O_{R,u}$</th>
<th>$O_{R,d}$</th>
<th>O_g</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.74</td>
<td>23.7</td>
<td>6.38</td>
<td>5.78</td>
<td>11.6</td>
<td>2.15</td>
<td>0.603</td>
<td>17.4</td>
<td>18.1</td>
<td>10.2</td>
<td>8.78</td>
<td>1.85</td>
<td>0.565</td>
<td>0.391</td>
<td>0.337</td>
<td>39.8</td>
</tr>
<tr>
<td>2.74</td>
<td>23.7</td>
<td>6.38</td>
<td>5.78</td>
<td>11.6</td>
<td>2.15</td>
<td>0.603</td>
<td>17.5</td>
<td>18.3</td>
<td>10.5</td>
<td>8.78</td>
<td>1.85</td>
<td>0.565</td>
<td>0.391</td>
<td>0.337</td>
<td>39.8</td>
</tr>
<tr>
<td>2.74</td>
<td>24.0</td>
<td>8.32</td>
<td>5.80</td>
<td>12.2</td>
<td>2.15</td>
<td>0.603</td>
<td>20.7</td>
<td>23.0</td>
<td>12.5</td>
<td>13.0</td>
<td>2.08</td>
<td>1.62</td>
<td>0.391</td>
<td>3.97</td>
<td>39.8</td>
</tr>
<tr>
<td>2.74</td>
<td>24.0</td>
<td>8.33</td>
<td>5.80</td>
<td>12.2</td>
<td>2.15</td>
<td>0.603</td>
<td>20.7</td>
<td>23.0</td>
<td>12.5</td>
<td>13.0</td>
<td>7.90</td>
<td>7.89</td>
<td>3.55</td>
<td>4.05</td>
<td>39.8</td>
</tr>
<tr>
<td>2.74</td>
<td>24.0</td>
<td>8.54</td>
<td>5.80</td>
<td>12.2</td>
<td>2.15</td>
<td>0.603</td>
<td>20.7</td>
<td>23.4</td>
<td>14.4</td>
<td>14.0</td>
<td>8.63</td>
<td>8.62</td>
<td>4.88</td>
<td>4.71</td>
<td>39.8</td>
</tr>
<tr>
<td>2.74</td>
<td>24.0</td>
<td>8.75</td>
<td>5.80</td>
<td>12.3</td>
<td>2.15</td>
<td>0.603</td>
<td>20.7</td>
<td>23.7</td>
<td>15.8</td>
<td>14.9</td>
<td>9.21</td>
<td>9.21</td>
<td>5.59</td>
<td>5.17</td>
<td>39.8</td>
</tr>
<tr>
<td>2.74</td>
<td>26.3</td>
<td>12.6</td>
<td>5.93</td>
<td>15.3</td>
<td>2.15</td>
<td>0.603</td>
<td>30.2</td>
<td>35.2</td>
<td>19.8</td>
<td>21.6</td>
<td>9.21</td>
<td>9.21</td>
<td>5.59</td>
<td>5.17</td>
<td>39.8</td>
</tr>
</tbody>
</table>

➢ Extra Factor-2 Improvements from more Z-pole observables!
Sensitivity from EWPO+HO+Z-Pole

New Physics Scales to be Probed at CEPC via dim-6 Operators

\[\frac{\mathcal{N}}{|\mathcal{C}_j|} \text{ (TeV)} \]

- 95% confidence level
- 5\(\sigma \) significance level

Operators:
- \(O_H \)
- \(O_T \)
- \(O_{WW} \)
- \(O_{BB} \)
- \(O_{WB} \)
- \(O_{HW} \)
- \(O_{HB} \)
- \(O_{L,L}^{(3)} \)
- \(O_{L,R}^{(3)} \)
- \(O_{L,q} \)
- \(O_{R,L} \)
- \(O_{R,q} \)
- \(O_{R,d} \)
- \(O_{g} \)

Ge, He, Xiao, 1603.03385
Sensitivity to Higgs Self-Coupling h^3

➢ Comparison: h^3 at CEPC(1, 3, 5/ab) and SPPC(3, 30/ab), vs HL-LHC (3/ab):

\[
\left| \frac{\lambda_{hhh}}{\lambda_{hhh}^{\text{sm}}} - 1 \right|
\]
Probe Higgs Self-Interaction h^3 at SPPC

\[\mathcal{L}_{\text{eff}} = \sum_n \frac{f_n}{\Lambda^2} O_n, \quad \tilde{\Lambda}_j \equiv \frac{\Lambda}{\sqrt{|f_{\Phi,j}|}}. \]

\[O_{\Phi,2} = \frac{1}{2} \partial^\mu (H^\dagger H) \partial_\mu (H^\dagger H), \]

\[O_{\Phi,3} = \frac{1}{3} (H^\dagger H)^3. \]

\[x_j \equiv \frac{f_{\Phi,j} v^2}{\Lambda^2}, \quad \hat{\tau} \equiv -x_3 \xi^2 \frac{2v^2}{3M_h^2}, \quad \hat{x} \equiv x_2 \xi^2. \]

Benchmark A: \quad (\hat{\tau}, \hat{x})_{\text{sm}} = (0, 0);

$pp(100\text{TeV})$ with $(3, 30)/\text{ab}$:

$pp \rightarrow hh \rightarrow bb\gamma\gamma$

Probe Higgs Self-Interaction h^3

\[L_{\text{eff}} = \sum_n \frac{f_n}{\Lambda^2} O_n, \quad \tilde{\Lambda}_j \equiv \frac{\Lambda}{\sqrt{|f_{\Phi,j}|}}. \]

\[O_{\Phi,2} = \frac{1}{2} \partial^\mu (H^\dagger H) \partial_\mu (H^\dagger H), \]

\[O_{\Phi,3} = \frac{1}{3} (H^\dagger H)^3. \]

\[x_j \equiv \frac{f_{\Phi,j} v^2}{\Lambda^2}, \quad \hat{\rho} \equiv -x_3 \xi^2 \frac{2v^2}{3M_h^2}, \quad \hat{x} \equiv x_2 \xi^2. \]

$pp(100\text{TeV})$ with $(3, 30)/\text{ab}$:

$pp \rightarrow hh \rightarrow bb\gamma\gamma$

With $3/\text{ab}$ ($30/\text{ab}$) Luminosity:

probe r to 13% (4.2%) precision.
probe x to 5% (1.6%) precision.

Summary of CEPC Precision Tests:

- CEPC produces 10^6 Higgs Bosons at 250GeV (5/ab). Higgs Gauge & Yukawa Couplings ~ $O(1\%)$ Higgs Self-coupling ~ 30%

- CEPC Indirect Probe of New Physics Scales: up to $\sim 10\text{TeV}$ (40TeV for O_g) from EWPO + HO. up to $\sim 35\text{TeV}$ after including Z-pole, etc (CEPC).

- SPPC(100TeV) with 3/ab (30/ab) can sensitively probe h^3 Higgs Coupling ~ 5-13% (1.6-4.2%).
SM is Incomplete: Mass Puzzle

- Yukawa Force is Flavor-dependent & Unnatural!
 - Why Quark/Lepton Masses differ so much at Tree Level?
- What are underlying Scales of Fermion Mass Generations?
- Why is Higgs Mass itself Unnatural under Loop Corrections?
SM is Incomplete: Fermion Mass Puzzle

- Yukawa Force is Flavor-dependent & Unnatural!

Why Quark/Lepton Masses differ so much at Tree Level?

- What are underlying Scales of Fermion Mass Generations?

Upper Bounds on Scales of Fermion Mass Generations:

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>V_{LL}</th>
<th>$t\bar{t}$</th>
<th>$b\bar{b}$</th>
<th>$c\bar{c}$</th>
<th>$s\bar{s}$</th>
<th>$d\bar{d}$</th>
<th>$u\bar{u}$</th>
<th>$\tau^+\tau^-$</th>
<th>$\mu^-\mu^+$</th>
<th>e^-e^+</th>
<th>ν_{LL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.4</td>
<td>178</td>
<td>4.85</td>
<td>1.65</td>
<td>0.105</td>
<td>0.006</td>
<td>0.003</td>
<td>1.777</td>
<td>0.106</td>
<td>5.11×10^{-4}</td>
<td>5×10^{-11}</td>
<td></td>
</tr>
</tbody>
</table>

| n_a | 2 | 2 | 4 | 6 | 8 | 10 | 10 | 6 | 8 | 12 | 22 |

| $E_{2 \rightarrow n}^{(\text{min})}$ (TeV) | 1.2 | 3.49 | 23.4 | 30.8 | 52.1 | 77.4 | 83.6 | 33.9 | 56.3 | 107 | 158 |

| $E_{2 \rightarrow 2}$ (TeV) | 1.2 | 3.49 | 128 | 6×10^3 | 10^5 | 2×10^6 | 606 | 10^4 | 2×10^6 | 1.1×10^{13} |

Dicus and HJH, PRL.94 (2005) 221802
PRD.71 (2005) 093009

— All these bounds Tied to $O(3-100\text{TeV})$ Scales!

see: Nima’s Overview in preCDR
SM is Incomplete: Vacuum, BA, DM, Inflation??

- **Vacuum Puzzle:** EW vacuum is **Unstable** at 10^{9-11} GeV!
- **Inflation Puzzle:** naive SM provides no Inflaton!
- **Puzzle of Missing Antimatter (Baryon Asymmetry)**?
- **Dark Matter Puzzle (80% of all Matter):** SM has no DM!

Example: New Physics at TeV Scale:
New singlet scalar + New quarks of masses $\sim O$(TeV)

Strumia et al, 1307.3536

HJH & Xianyu, JCAP 10(2014) 019
also: arXiv:1602.01801
Higgs Boson as Inflaton ??
Scalar amplitude
\[(V/\epsilon)^{1/4} \approx 0.027\]

Scalar tilt
\[n_s = 1 - 6\epsilon + 2\eta\]

Tensor-to-scalar ratio
\[r = 16\epsilon\]

\[\epsilon = \frac{1}{2}(V'/V)^2\]

\[\eta = V''/V\]
Conventional SM Higgs Inflation

\[\frac{L_J}{\sqrt{-g}} = \frac{1}{2} R + \frac{1}{2} \xi R \phi^2 + \frac{1}{2} (\partial_\mu \phi)^2 - V(\phi) \]

\[V(\phi) = \frac{1}{4} \lambda (\phi^2 - v^2)^2 \]

\[V(\phi) = \frac{\lambda (\phi^2 - v^2)^2}{4(1 + \xi \phi^2)^2} \]

Bezrukov & Shaposhnikov, PLB(2008)
Conventional SM Higgs Inflation

\[(V/\epsilon)^{1/4} \approx 0.027\]

\[\xi \approx 10^4\]

\[n_s \approx 0.967\]

\[r \approx 0.003\]
Higgs Inflation in No-Scale SUSY GUT

Ellis, HJH, Xianyu, JCAP[arXiv:1606.02202], PRD[arXiv:1411.5537]

➢ SUSY: a Natural Solution to Higgs Instability

➢ Inflation Scale ~ GUT Scale ➔ SUSY GUT Inflation

➢ No-Scale SUGRA: (Ellis, Kounnas, Nanopoulos, 1984)
 – naturally from simple String Compactification (Witten, 1984)
 – provides Flat Directions useful for Inflation (Ellis et al, 1985)

➢ Flipped SU(5) GUT can naturally lift heavy mass of colored triplet Higgs \(H_C \) from weak scale doublet Higgs (\(H_u, H_d \)), and efficiently suppress dim-5 proton decays.

➢ Does not require Higgs in adjoint, good for embedding into string theory.
No-Scale Kahler Potential of flipped SU(5):

\[\kappa = -3 \log \left[T + T^* - \frac{1}{3} |\Phi_j|^2 + \frac{\zeta}{3} (H \bar{H} + \text{h.c.}) \right] \]

Superpotential up to dim-4:

\[W = -MG\bar{G} - mH\bar{H} + \lambda GGH + \bar{\chi}GG\bar{G} + \alpha (G\bar{G})^2 + \beta (H\bar{H})^2 + \gamma (G\bar{G})(H\bar{H}) \]

where we set \(M_p = 1 \), \(\Phi_j = (G, \bar{G}, H, \bar{H}, \cdots) \), and
Higgs Inflation in No-Scale SUSY GUT

Ellis, HJH, Xianyu, arXiv:1606.02202

➢ Inflation Potential:

\[
V = e^G \left(K_{i j} \frac{\partial G}{\partial \phi_i} \frac{\partial G}{\partial \phi_j^*} - 3 \right)
\]

\[
V(G) = 2G\bar{G}(M - 2\alpha G\bar{G})^2
\]

\[
V \supset 4\lambda^2 v_G^2 |H_c|^2 + 4\bar{\lambda}^2 v_G^2 |\bar{H}_c|^2
\]

➢ GUT breaking:

\[
\langle G\bar{G} \rangle = M/(2\alpha)
\]

➢ Doublet-Triplet Splitting:

\[
M_{H_c} = 2\lambda v_G, \quad m = \gamma v_G^2
\]
Higgs Inflation in No-Scale SUSY GUT

Ellis, HJH, Xianyu, arXiv:1606.02202

➢ Potential Term (with \(\beta = \frac{1}{3}(1 - \zeta)m \)):

\[
V(h) = \frac{(1 - \frac{\beta}{2m} \hat{h}^2)^2 m^2 \hat{h}^2}{2(1 - \frac{1-\zeta}{6} \hat{h}^2)^2}
\]

\[
\frac{1}{2} m^2 \hat{h}^2
\]

➢ Include kinetic term:

\[
\mathcal{L}[\hat{h}] = \frac{1 - \frac{\zeta(1-\zeta)}{6} \hat{h}^2}{2(1 - \frac{1-\zeta}{6} \hat{h}^2)^2} (\partial_{\mu} \hat{h})^2 - \frac{1}{2} m^2 \hat{h}^2
\]

➢ Normalized field \(h \):

\[
h = \sqrt{6} \arctanh \frac{(1-\zeta)\hat{h}}{\sqrt{6(1 - \frac{1}{6} \zeta(1-\zeta)\hat{h}^2)}} - \sqrt{\frac{6\zeta}{1-\zeta}} \arcsin \left(\frac{\zeta(1-\zeta)}{6} \hat{h}\right)
\]

➢ 2 Important limits:

\(\zeta = 0 \) \(\Rightarrow \) V is exponentially flat.

\(\zeta = 1 \) \(\Rightarrow \) V is quadratic.
Higgs Inflation in No-Scale SUSY GUT

Predictions for inflation observables:

\(\zeta = 1 \): quadratical inflation.

\(\zeta = 0 \): Starobinsky-like inflation

\(N_e \approx 59 \)

With small deviation \(\delta \):

\[\beta = \frac{1}{3} (1 - \zeta + \delta) m \]

Ellis, HJH, Xianyu, JCAP, arXiv:1606.02202
Figure 2. Three-dimensional plot of the scalar potential $V(h, s)$ in the minimal $SU(5)$ model as functions of the (h, s) fields. The blue curve depicts the trajectory of the inflaton after passing the branch point.
Higgs Boson: Window to New Physics!?

Beyond Higgs Boson (125) ??!!
Higgs Boson: Window to New Physics !?

All Particle Masses & Inflation of Universe ?! Connections to SUSY, DM, CPV, Baryogenesis? Beyond Higgs Boson(125) ??!!
Higgs Boson: Window to New Physics !?

All Particle Masses & Inflation of Universe ?! Connections to SUSY, DM, CPV, Baryogenesis?

$h(125)$ is just the Tip of a giant Iceberg!
To open a Door to New Phys beneath water?

Beyond Higgs Boson(125) ??!!
From Great Wall to Great Collider

see: book of Nadis and Yau won Prose Prize 2016

Shanhai Pass (山海关) vs CEPC-SPPC
More Excitements Ahead!

Let us continue to work together and do good works!
Thank You !
Effective Operators & Sizes of New Physics

\[\mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_j \frac{c_j}{\Lambda^2} \mathcal{O}_j \]

<table>
<thead>
<tr>
<th>Model</th>
<th>(\Delta\kappa_V)</th>
<th>(\Delta\kappa_t)</th>
<th>(\Delta\kappa_b, (\Delta\kappa_T))</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSSM</td>
<td>(\sim -0.5% \left(\frac{400 \text{ GeV}}{M_A}\right)^4 \cot^2 \beta)</td>
<td>(-O(10%) \left(\frac{400 \text{ GeV}}{M_A}\right)^2 \cot^2 \beta)</td>
<td>(\sim O(10%) \left(\frac{400 \text{ GeV}}{M_A}\right)^2)</td>
</tr>
<tr>
<td>Composite</td>
<td>(-3% \left(\frac{1 \text{ TeV}}{f}\right)^2)</td>
<td>(-(3-9)% \left(\frac{1 \text{ TeV}}{f}\right)^2)</td>
<td>(-(3-9)% \left(\frac{1 \text{ TeV}}{f}\right)^2)</td>
</tr>
</tbody>
</table>
Existing EWPO & Future HO

Observables: EWPO (PDG14) + HO (preCDR)

<table>
<thead>
<tr>
<th>Observables</th>
<th>Central Value</th>
<th>Relative Error</th>
<th>SM Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>$7.2973525698 \times 10^{-3}$</td>
<td>3.29×10^{-10}</td>
<td>$-$</td>
</tr>
<tr>
<td>G_F</td>
<td>1.1663787×10^{-5}GeV$^{-2}$</td>
<td>5.14×10^{-7}</td>
<td>$-$</td>
</tr>
<tr>
<td>M_Z</td>
<td>91.1876GeV</td>
<td>2.3×10^{-5}</td>
<td>$-$</td>
</tr>
<tr>
<td>M_W</td>
<td>80.385GeV</td>
<td>1.87×10^{-4}</td>
<td>$-$</td>
</tr>
<tr>
<td>$\sigma[Zh]$</td>
<td>$-$</td>
<td>0.51%</td>
<td>$-$</td>
</tr>
<tr>
<td>$\sigma[\nu\nu h]$</td>
<td>$-$</td>
<td>2.86%</td>
<td>$-$</td>
</tr>
<tr>
<td>$\sigma[\nu\nu h]_{350GeV}$</td>
<td>$-$</td>
<td>0.75%</td>
<td>$-$</td>
</tr>
<tr>
<td>$Br[WW]$</td>
<td>$-$</td>
<td>1.6%</td>
<td>22.5%</td>
</tr>
<tr>
<td>$Br[ZZ]$</td>
<td>$-$</td>
<td>4.3%</td>
<td>2.77%</td>
</tr>
<tr>
<td>$Br[bb]$</td>
<td>$-$</td>
<td>0.57%</td>
<td>58.1%</td>
</tr>
<tr>
<td>$Br[cc]$</td>
<td>$-$</td>
<td>2.3%</td>
<td>2.10%</td>
</tr>
<tr>
<td>$Br[gg]$</td>
<td>$-$</td>
<td>1.7%</td>
<td>7.40%</td>
</tr>
<tr>
<td>$Br[\tau\tau]$</td>
<td>$-$</td>
<td>1.3%</td>
<td>6.64%</td>
</tr>
<tr>
<td>$Br[\gamma\gamma]$</td>
<td>$-$</td>
<td>9.0%</td>
<td>0.243%</td>
</tr>
<tr>
<td>$Br[\mu\mu]$</td>
<td>$-$</td>
<td>17%</td>
<td>0.023%</td>
</tr>
</tbody>
</table>

Exclusion (95%) & Discovery (5\sigma) Reach

<table>
<thead>
<tr>
<th>O_H</th>
<th>O_T</th>
<th>O_{WW}</th>
<th>O_{BB}</th>
<th>O_{WB}</th>
<th>O_{HW}</th>
<th>O_{HB}</th>
<th>O_{LL}</th>
<th>O_{L}</th>
<th>O_{R}</th>
<th>$O_{L,q}$</th>
<th>$O_{R,u}$</th>
<th>$O_{R,d}$</th>
<th>O_{g}</th>
</tr>
</thead>
<tbody>
<tr>
<td>95%</td>
<td>2.50</td>
<td>10.6</td>
<td>6.38</td>
<td>5.78</td>
<td>6.52</td>
<td>2.11</td>
<td>0.603</td>
<td>8.21</td>
<td>12.1</td>
<td>10.2</td>
<td>8.78</td>
<td>1.85</td>
<td>0.565</td>
</tr>
<tr>
<td>5\sigma</td>
<td>1.57</td>
<td>6.64</td>
<td>3.99</td>
<td>3.62</td>
<td>4.08</td>
<td>1.32</td>
<td>0.378</td>
<td>5.14</td>
<td>7.57</td>
<td>6.39</td>
<td>5.49</td>
<td>1.16</td>
<td>0.354</td>
</tr>
</tbody>
</table>
CEPC Probe of h^3 Coupling

Recall: HL-LHC probes h^3 to 50%. ILC500 probes h^3 to 27%.

M. McCullough, arXiv:1312.3322
Probing Higgs Self-Interactions

\[V = -\mu^2 H^\dagger H + \lambda (H^\dagger H)^2 , \]

\[V_{\text{int}} = \frac{\lambda_3}{3!} h^3 + \frac{\lambda_4}{4!} h^4 , \]

SM:
\[\lambda_3 = 6\lambda v = 3M_h^2/v \text{ and } \lambda_4 = 6\lambda = 3M_h^2/v^2 . \]

➢ New Physics could modify \(h^3 \) & \(h^4 \) couplings only via dim-6 operators!

\[O_{\Phi,1} = (D^\mu H)^\dagger H H^\dagger (D_\mu H) , \quad O_{\Phi,2} = \frac{1}{2} \partial^\mu (H^\dagger H) \partial_\mu (H^\dagger H) , \]
\[O_{\Phi,3} = \frac{1}{3} (H^\dagger H)^3 , \quad O_{\Phi,4} = (D^\mu H)^\dagger (D_\mu H)(H^\dagger H) . \]
\[O_{\Phi,f} = (H^\dagger H) \overline{L} H f_R + \text{h.c.} , \]

Under SU(2)_c and using EOM, only 2 modify \(h^3 / h^4 \) vertex:

\[O_{\Phi,2} = \frac{1}{2} \partial^\mu (H^\dagger H) \partial_\mu (H^\dagger H) , \quad O_{\Phi,3} = \frac{1}{3} (H^\dagger H)^3 . \]
Probing Higgs Self-Interaction Hhh

$$pp \rightarrow H \rightarrow hh \rightarrow WW^*\gamma\gamma$$

<table>
<thead>
<tr>
<th>$pp \rightarrow q\bar{q}'\ell\nu\gamma\gamma$</th>
<th>σ_{total}</th>
<th>Selection+Basic Cuts</th>
<th>$M_{\gamma\gamma}$, M_{qq}, E_T</th>
<th>Final Cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal (fb)</td>
<td>1.32</td>
<td>0.0891</td>
<td>0.0671</td>
<td>0.0533</td>
</tr>
<tr>
<td>BG[$qq\ell\nu\gamma\gamma$] (fb)</td>
<td>31.59</td>
<td>0.581</td>
<td>0.0291</td>
<td>0.00672</td>
</tr>
<tr>
<td>BG[$\ell\nu\gamma\gamma$] (fb)</td>
<td>143.3</td>
<td>0.0642</td>
<td>0.00454</td>
<td>0.000891</td>
</tr>
<tr>
<td>BG[Wh] (fb)</td>
<td>0.42</td>
<td>0.00509</td>
<td>0.00335</td>
<td>0.00139</td>
</tr>
<tr>
<td>BG[WWh] (fb)</td>
<td>0.0023</td>
<td>0.000210</td>
<td>0.000127</td>
<td>0.000057</td>
</tr>
<tr>
<td>BG[$t\bar{t}h$] (fb)</td>
<td>0.0148</td>
<td>0.00163</td>
<td>0.00111</td>
<td>0.000441</td>
</tr>
<tr>
<td>BG[hh] (fb)</td>
<td>0.00462</td>
<td>0.000291</td>
<td>0.000197</td>
<td>0.000155</td>
</tr>
<tr>
<td>BG[th] (fb)</td>
<td>0.0129</td>
<td>0.000479</td>
<td>0.000247</td>
<td>0.000104</td>
</tr>
<tr>
<td>BG[Total] (fb)</td>
<td>175.35</td>
<td>0.653</td>
<td>0.0386</td>
<td>0.0098</td>
</tr>
<tr>
<td>Significance(Z_0)</td>
<td>1.72</td>
<td>1.87</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$M_H = (300, 400, 600)$ GeV,

$$Z_0(\text{combined}) = \sqrt{Z_0^2(\ell\nu\nu\gamma\gamma) + Z_0^2(q\bar{q}'\ell\nu\gamma\gamma)}$$

$\simeq (9.06, 7.41, 12.1)$, for $L = (300, 300, 3000)$ fb$^{-1}$;

$\simeq (7.40, 6.05, 6.99)$, for $L = (200, 200, 1000)$ fb$^{-1}$;

Probing Higgs Self-Interaction Hhh

$pp \to H \to hh \to WW^*\gamma\gamma$

$WW^* \to \ell\bar{\nu}\ell\nu$

$q\bar{q}'\ell\nu$