Higgs Boson: from Collider Test to SUSY GUT Inflation

Hong-Jian He Tsinghua University

String-2016, Tsinghua, Beijing, August 5, 2016

> Run-1 Higgs Discovery h(125GeV) in 2012

- > Run-1 Higgs Discovery h(125GeV) in 2012
- **➤ Run-2 New Particle Discovery in 2016 ??**

- > Run-1 Higgs Discovery h(125GeV) in 2012
- **> Run-2 New Particle Discovery in 2016 ??**

These will lead to

New Set of Key Physics Questions

for Next Colliders to answer!!

- > Run-1 Higgs Discovery h(125GeV) in 2012
- **> Run-2 New Particle Discovery in 2016 ??**

These will lead to

New Set of Key Physics Questions

for Next Colliders to answer!!

+ Interface with Cosmology & Quantum Gravity

- > Run-1 Higgs Discovery h(125GeV) in 2012
- **> Run-2 New Particle Discovery in 2016 ??**

These will lead to

New Set of Key Physics Questions

for Next Colliders to answer!!

+ Interface with Cosmology & Quantum Gravity

$$\mathcal{L} = \frac{1}{4g'^4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4g^2} W^a_{\mu\nu} W^{\mu\nu a} - \frac{1}{4g_s^2} G^a_{\mu\nu} G^{\mu\nu a} + \bar{Q}_i i \not\!\!D Q_i + \bar{u}_i i \not\!\!D u_i + \bar{d}_i i \not\!\!D d_i + \bar{L}_i i \not\!\!D L_i + \bar{\ell}_i i \not\!\!D \ell_i + \left(Y^{ij}_u \bar{Q}_i u_j \tilde{H} + Y^{ij}_d \bar{Q}_i d_j H + Y^{ij}_l \bar{L}_i \ell_j H + c.c. \right) - \lambda (H^{\dagger} H)^2 + \lambda v^2 H^{\dagger} H - (D^{\mu} H)^{\dagger} D_{\mu} H$$

$$\mathcal{L} = \frac{1}{4g'^4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4g^2} W_{\mu\nu}^a W^{\mu\nu a} - \frac{1}{4g_s^2} G_{\mu\nu}^a G^{\mu\nu a} \\
+ \bar{Q}_i i \not\!\!D Q_i + \bar{u}_i i \not\!\!D u_i + \bar{d}_i i \not\!\!D d_i + \bar{L}_i i \not\!\!D L_i + \bar{\ell}_i i \not\!\!D \ell_i \\
+ \left(Y_u^{ij} \bar{Q}_i u_j \tilde{H} + Y_d^{ij} \bar{Q}_i d_j H + Y_l^{ij} \bar{L}_i \ell_j H + c.c. \right) \\
- \lambda (H^{\dagger} H)^2 + \lambda v^2 H^{\dagger} H - (D^{\mu} H)^{\dagger} D_{\mu} H$$

Key Role of Higgs Boson in SM:

Mass Generations for W/Z + Quarks/Leptons

$$\mathcal{L} = -\frac{1}{4g'^4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4g^2} W_{\mu\nu}^a W^{\mu\nu a} - \frac{1}{4g_s^2} G_{\mu\nu}^a G^{\mu\nu a} + \bar{Q}_i i \not\!\!D Q_i + \bar{u}_i i \not\!\!D u_i + \bar{d}_i i \not\!\!D d_i + \bar{L}_i i \not\!\!D L_i + \bar{\ell}_i i \not\!\!D \ell_i + \left(Y_u^{ij} \bar{Q}_i u_j \tilde{H} + Y_d^{ij} \bar{Q}_i d_j H + Y_l^{ij} \bar{L}_i \ell_j H + c.c. \right) - \lambda (H^{\dagger} H)^2 + \lambda v^2 H^{\dagger} H - (D^{\mu} H)^{\dagger} D_{\mu} H$$

Key Role of Higgs Boson in SM:

Mass Generations for W/Z + Quarks/Leptons

> Now, 4 Years after 2012:

New Physics Beyond SM ???

$$\mathcal{L} = -\frac{1}{4g'^4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4g^2} W_{\mu\nu}^a W^{\mu\nu a} - \frac{1}{4g_s^2} G_{\mu\nu}^a G^{\mu\nu a} + \bar{Q}_i i \not\!\!D Q_i + \bar{u}_i i \not\!\!D u_i + \bar{d}_i i \not\!\!D d_i + \bar{L}_i i \not\!\!D L_i + \bar{\ell}_i i \not\!\!D \ell_i + \left(Y_u^{ij} \bar{Q}_i u_j \tilde{H} + Y_d^{ij} \bar{Q}_i d_j H + Y_l^{ij} \bar{L}_i \ell_j H + c.c. \right) - \lambda (H^{\dagger} H)^2 + \lambda v^2 H^{\dagger} H - (D^{\mu} H)^{\dagger} D_{\mu} H$$

Key Role of Higgs Boson in SM:

Mass Generations for W/Z + Quarks/Leptons

> Now, 4 Years after 2012:

New Physics Beyond SM ???

- > h(125GeV) Discovery at LHC Run-1.
- > X(750GeV) or Any New State at LHC Run-2?!

✓ H (125GeV) @ Run-1

X(750GeV)?? or Any New State ?!

a Window to New Physics ??

a Window to New Physics ??

Spin-0 Higgs Boson Itself is New Physics !!!

 \succ Isomorphic Lorentz Group: SO(3,1) ≈ SU(2)xSU(2)

ightharpoonup Isomorphic Lorentz Group: SO(3,1) ≈ SU(2)xSU(2)

- > Irreducible Representation (j) of SU(2): $j=0, \frac{1}{2}, 1, \frac{3}{2}...$
 - → Representations of Lorentz Group: (j, j'). $(\frac{1}{2}, 0), (0, \frac{1}{2})$ → Fermions; $(\frac{1}{2}, \frac{1}{2})$ → Gauge Bosons.

ightharpoonup Isomorphic Lorentz Group: SO(3,1) ≈ SU(2)xSU(2)

- > Irreducible Representation (j) of SU(2): $j=0, \frac{1}{2}, 1, \frac{3}{2}...$
 - → Representations of Lorentz Group: (j, j'). $(\frac{1}{2}, 0), (0, \frac{1}{2})$ → Fermions; $(\frac{1}{2}, \frac{1}{2})$ → Gauge Bosons.
- ➤ The Simplest Lorentz Group Representation is Scalar Representation:

(0, 0)

ightharpoonup Isomorphic Lorentz Group: SO(3,1) ≈ SU(2)xSU(2)

- > Irreducible Representation (j) of SU(2): $j=0, \frac{1}{2}, 1, \frac{3}{2}...$
 - → Representations of Lorentz Group: (j, j'). $(\frac{1}{2}, 0), (0, \frac{1}{2})$ → Fermions; $(\frac{1}{2}, \frac{1}{2})$ → Gauge Bosons.
- ➤ The Simplest Lorentz Group Representation is Scalar Representation:

(0, 0)

ightharpoonup Isomorphic Lorentz Group: SO(3,1) ≈ SU(2)xSU(2)

- > Irreducible Representation (j) of SU(2): $j=0, \frac{1}{2}, 1, \frac{3}{2}...$
 - → Representations of Lorentz Group: (j, j'). $(\frac{1}{2}, 0), (0, \frac{1}{2})$ → Fermions; $(\frac{1}{2}, \frac{1}{2})$ → Gauge Bosons.
- ➤ The Simplest Lorentz Group Representation is Scalar Representation:

(0, 0)

ightharpoonup Isomorphic Lorentz Group: SO(3,1) ≈ SU(2)xSU(2)

- > Irreducible Representation (j) of SU(2): $j=0, \frac{1}{2}, 1, \frac{3}{2}...$
 - → Representations of Lorentz Group: (j, j'). $(\frac{1}{2}, 0), (0, \frac{1}{2})$ → Fermions; $(\frac{1}{2}, \frac{1}{2})$ → Gauge Bosons.
- ➤ The Simplest Lorentz Group Representation is Scalar Representation:

(0, 0)

≻Mass Puzzle:

- W,Z Masses (EWSB)
- Fermion Masses (Quark/Lepton/Neutrino)? Why large hierarchy?
- Higgs Boson Mass: Naturalness?Higgs Self-interactions?

≻Mass Puzzle:

- W,Z Masses (EWSB)
- Fermion Masses (Quark/Lepton/Neutrino)? Why large hierarchy?
- Higgs Boson Mass: Naturalness?Higgs Self-interactions?

- Vacuum Stability?
- Vacuum Energy (Dark Energy)?

≻Mass Puzzle:

- W,Z Masses (EWSB)
- Fermion Masses (Quark/Lepton/Neutrino)? Why large hierarchy?
- Higgs Boson Mass: Naturalness?Higgs Self-interactions?

- Vacuum Stability?
- Vacuum Energy (Dark Energy)?
- **➤ Inflation Puzzle:** Higgs Boson as Inflaton?

≻Mass Puzzle:

- W,Z Masses (EWSB)
- Fermion Masses (Quark/Lepton/Neutrino)? Why large hierarchy?
- Higgs Boson Mass: Naturalness?Higgs Self-interactions?

- Vacuum Stability?
- Vacuum Energy (Dark Energy)?
- **➤ Inflation Puzzle:** Higgs Boson as Inflaton?
- **Dark Matter Puzzle:** − Higgs Portal?

≻Mass Puzzle:

- W,Z Masses (EWSB)
- Fermion Masses (Quark/Lepton/Neutrino)? Why large hierarchy?
- Higgs Boson Mass: Naturalness?Higgs Self-interactions?

- Vacuum Stability?
- Vacuum Energy (Dark Energy)?
- **➤ Inflation Puzzle:** Higgs Boson as Inflaton?
- **Dark Matter Puzzle:** − Higgs Portal?
- **➤ Missing Antimatter Puzzle:**
 - Baryogenesis, Leptogenesis, ...?

- **➤ 1. Gauge Forces:** mediated by Spin-1 Vector Boson.
- > 2. Yukawa Forces: mediated by Spin-0 Higgs Boson.
- > 3. Higgs Self-Interaction Force: h³ & h⁴ forces, (concerns spontaneous EWSB and generating Higgs mass itself).

- **➤ 1. Gauge Forces:** mediated by Spin-1 Vector Boson.
- **≥ 2. Yukawa Forces:** mediated by Spin-0 Higgs Boson.
- **> 3. Higgs Self-Interaction Force:** h³ & h⁴ forces, (concerns spontaneous EWSB and generating Higgs mass itself).
- > Type-2 & Type-3 are two New Fundamental Forces, *Solely due to Spin-0 Higgs*, which were never directly probed before, despite they already exist in SM !!!

- **➤ 1. Gauge Forces:** mediated by Spin-1 Vector Boson.
- **≥ 2. Yukawa Forces:** mediated by Spin-0 Higgs Boson.
- **> 3. Higgs Self-Interaction Force:** h³ & h⁴ forces, (concerns spontaneous EWSB and generating Higgs mass itself).
- > Type-2 & Type-3 are two New Fundamental Forces, *Solely due to Spin-0 Higgs*, which were never directly probed before, despite they already exist in SM !!!
- ➤ In SM, Only Higgs can have Self-Interactions (involving exactly the same particle, h³ & h⁴), but not all other fundamental particles (as forbidden by their spin & charge).

- **➤ 1. Gauge Forces:** mediated by Spin-1 Vector Boson.
- **≥ 2. Yukawa Forces:** mediated by Spin-0 Higgs Boson.
- **> 3. Higgs Self-Interaction Force:** h³ & h⁴ forces, (concerns spontaneous EWSB and generating Higgs mass itself).
- > Type-2 & Type-3 are two New Fundamental Forces, *Solely due to Spin-0 Higgs*, which were never directly probed before, despite they already exist in SM !!!
- ➤ In SM, Only Higgs can have Self-Interactions (involving exactly the same particle, h³ & h⁴), but not all other fundamental particles (as forbidden by their spin & charge).

- **➤ 1. Gauge Forces:** mediated by Spin-1 Vector Boson.
- **≥ 2. Yukawa Forces:** mediated by Spin-0 Higgs Boson.
- **> 3. Higgs Self-Interaction Force:** h³ & h⁴ forces, (concerns spontaneous EWSB and generating Higgs mass itself).
- > Type-2 & Type-3 are two New Fundamental Forces, *Solely due to Spin-0 Higgs*, which were never directly probed before, despite they already exist in SM !!!
- ➤ In SM, Only Higgs can have Self-Interactions (involving exactly the same particle, h³ & h⁴), but not all other fundamental particles (as forbidden by their spin & charge).

- > LEP/Tevatron/LHC only have good tests on Gauge Forces.
- ightharpoonup LHC only has weak sensitivity to Yukawa couplings of h-τ-τ, h-b-b, h-t-t at order of 10-20%.
- **LHC** cannot probe Most Other Yukawa Couplings!
- > LHC can hardly probe Higgs Self-Interaction!
- > LHC cannot establish h(125GeV) as God Particle!

LHC(300/fb) + HL-LHC(3/ab) M. E. Peskin, Snowmass Study, arxiv:1312.4974

Higgs 125GeV and Beyond

Higgs 125GeV and Beyond

Conclusion-1: Higgs is not only a New Particle, but also New Forces!!!

Even within SM Forces, strongly motivated to quantitatively test
Type-2 + Type-3 New Forces
(Higgs Yukawa Forces and Self-Interaction-Forces)
mediated by Higgs Boson.

Higgs 125GeV and Beyond

Conclusion-1: Higgs is not only a New Particle, but also New Forces !!!

Even within SM Forces, strongly motivated to quantitatively test
Type-2 + Type-3 New Forces
(Higgs Yukawa Forces and Self-Interaction-Forces)
mediated by Higgs Boson.

Conclusion-2: Any New Discovery of Run-2 will require further Precision Tests.

- This requires to Go Beyond the LHC!
- High Energy Circular Colliders: CEPC/SPPC & FCC ee (90-250GeV, 350GeV) + pp(50-100TeV)

Higgs Factory: CEPC (240-250GeV)

- ➤ LHC-Run1+2: h(125) is SM-like. ——> Precision Test is Crucial!
- \rightarrow CEPC produces h(125) mainly via ee \rightarrow hZ and ee \rightarrow vvh.
- **CEPC** makes *Indirect Probe* to New Physics!

CEPC designed: 5/ab for 2 detectors in 10y. 106 Higgs Bosons!!

Inputs: Event Rate → Cross Section & BR

ΔM_h Γ_h	$\sigma(Zh)$	$\sigma(uar{ u}$ h	$\times Br(h -$	$\rightarrow bb)$
5.0 MeV 2.6%	0.5%		2.8%	
Decay Mo	de $\sigma(Z)$	$h) imes \mathrm{Br}$	Br	
h o bb	0.	21%	0.54%	•
h o cc	2	2.5%	2.5%	
h o gg	1	3%	1.4%	
h o au au	1	0%	1.1%	
h o WW	1	.1%	1.2%	
h o ZZ	4	.3%	4.3%	
$h o \gamma \gamma$	9	.0%	9.0%	
$h o \mu \mu$		17%	17%	
$h \to \text{invisi}$	ble	_	0.14%	latest 1σ uncertaint KITPC WS, July 28

SM Predictions

$\mathrm{Br}(bar{b})$	${\rm Br}(c\bar c)$	$\mathrm{Br}(gg)$	${ m Br}(auar{ au})$	$\mathrm{Br}(WW)$	${\rm Br}(ZZ)$	$Br(\gamma\gamma)$	${\rm Br}(\mu \bar{\mu})$	Br(inv)
58.1%	2.10%	7.40%	6.64%	22.5%	2.77%	0.243%	0.023%	0

Effective Higgs Couplings: Gauge & Yukawa

$$\mathcal{L} = \kappa_3 \frac{m_H^2}{2v} H^3 + \kappa_Z \frac{m_Z^2}{v} Z_{\mu} Z^{\mu} H + \kappa_W \frac{2m_W^2}{v} W_{\mu}^+ W^{-\mu} H + \kappa_g \frac{\alpha_s}{12\pi v} G_{\mu\nu}^a G^{a\mu\nu} H + \kappa_{\gamma} \frac{\alpha}{2\pi v} A_{\mu\nu} A^{\mu\nu} H + \kappa_{Z\gamma} \frac{\alpha}{\pi v} A_{\mu\nu} Z^{\mu\nu} H - \left(\kappa_t \sum_{f=u,c,t} \frac{m_f}{v} f \overline{f} + \kappa_b \sum_{f=d,s,b} \frac{m_f}{v} f \overline{f} + \kappa_{\tau} \sum_{f=e,\mu,\tau} \frac{m_f}{v} f \overline{f}\right) H$$

Testing Higgs Coupling: CEPC vs LHC

Indirect Probe of Higgs related New Physics All can be formulated by: Model-Independent Effective Operators

(Dimension-6)

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{j} \frac{c_{j}}{\Lambda^{2}} \mathcal{O}_{j}$$

Higgs	EW Gauge Bosons	Fermions
$\mathcal{O}_H = \frac{1}{2} (\partial_\mu H ^2)^2$	$\mathcal{O}_{WW}=g^2 H ^2W^a_{\mu\nu}W^{a\mu\nu}$	$\mathcal{O}_L^{(3)} = (iH^\dagger \sigma^a \overset{\leftrightarrow}{D}_\mu H) (\overline{\Psi}_L \gamma^\mu \sigma^a \Psi_L)$
$\mathcal{O}_T = \frac{1}{2} (H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H)^2$	$\mathcal{O}_{BB} = g^2 H ^2 B_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{LL}^{(3)} = (\overline{\Psi}_L \gamma_\mu \sigma^a \Psi_L) (\overline{\Psi}_L \gamma^\mu \sigma^a \Psi_L)$
	$\mathcal{O}_{WB} = gg'H^{\dagger}\sigma^{a}HW^{a}_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}_L = (i H^\dagger \stackrel{\leftrightarrow}{D}_\mu H) (\overline{\Psi}_L \gamma^\mu \Psi_L)$
Gluon	$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_R = (iH^{\dagger}\overset{\leftrightarrow}{D}_{\mu}H)(\overline{\psi}_R\gamma^{\mu}\psi_R)$
$\mathcal{O}_g\!=g_s^2 H ^2G_{\mu\nu}^aG^{a\mu\nu}$	$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	

Enhancement from M_Z & M_W @ CEPC

Observables	Relative Error							
Observables	Current	CEPC						
M_Z		$5.5 \times 10^{-6} \sim 1.1 \times 10^{-5}$						
M_W	1.9×10^{-4}	$3.7 \times 10^{-5} \sim 6.2 \times 10^{-5}$						

Table: The M_Z & M_W @ CEPC [Z.Liang, "Z & W Physics @ CEPC" & preCDR].

Scheme-Independent Analysis

Ge, HJH, Xiao, arXiv:1603.03385

$\frac{\Lambda}{\sqrt{c_i}}[TeV]$ HO+EWPO	\mathcal{O}_H	$\mathcal{O}_{\mathcal{T}}$	\mathcal{O}_{WW}	\mathcal{O}_{BB}	\mathcal{O}_{WB}	\mathcal{O}_{HW}	\mathcal{O}_{HB}	$\mathcal{O}_{LL}^{(3)}$	$\mathcal{O}_L^{(3)}$	\mathcal{O}_{L}	\mathcal{O}_R	$\mathcal{O}_{L,q}^{(3)}$	$\mathcal{O}_{L,q}$	$\mathcal{O}_{R,u}$	$\mathcal{O}_{R,d}$	\mathcal{O}_{g}
HO+EWPO	2.74	10.6	6.38	5.78	6.53	2.15	0.603	8.57	12.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8
$+M_{z}$	2.74	10.7	6.38	5.78	6.54	2.15	0.603	8.61	12.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8
$+M_W$	2.74	21.0	6.38	5.78	10.4	2.15	0.603	15.5	16.4	10.2	8.78	1.85	0.565	0.391	0.337	39.8
$+M_{Z,W}$	2.74	23.7	6.38	5.78	11.6	2.15	0.603	17.4	18.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8

➤ Note: The CEPC Z-pole & W-pair simulation is preliminary. BUT, the detail does not really matter for above demonstration of a matter of principle for probing New Physics: including vs excluding CEPC measurements of M_Z, M_W.

Enhancement from Z-Pole Observables @ CEPC

Table: The Z-pole measurements at CEPC [Z.Liang, "Z & W Physics @ CEPC" & preCDR].

Ge, He, Xiao, 1603.03385

Z-Pole Observables are **IMPORTANT** for New Physics Scale Probe

\mathcal{O}_H	$\mathcal{O}_{\mathcal{T}}$	\mathcal{O}_{WW}	\mathcal{O}_{BB}	$\mathcal{O}_{\textit{WB}}$	\mathcal{O}_{HW}	\mathcal{O}_{HB}	$\mathcal{O}_{LL}^{(3)}$	$\mathcal{O}_L^{(3)}$	\mathcal{O}_{L}	\mathcal{O}_R	$\mathcal{O}_{L,q}^{(3)}$	$\mathcal{O}_{L,q}$	$\mathcal{O}_{R,u}$	$\mathcal{O}_{R,d}$	\mathcal{O}_{g}
2.74	23.7	6.38	5.78	11.6	2.15	0.603	17.4	18.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8
2.74	23.7	6.38	5.78	11.6	2.15	0.603	17.5	18.3	10.5	8.78	1.85	0.565	0.391	0.337	39.8
2.74	24.0	8.32	5.80	12.2	2.15	0.603	20.7	23.0	12.5	13.0	2.08	1.62	0.391	3.97	39.8
2.74	24.0	8.33	5.80	12.2	2.15	0.603	20.7	23.0	12.5	13.0	7.90	7.89	3.55	4.05	39.8
2.74	24.0	8.54	5.80	12.2	2.15	0.603	20.7	23.4	14.4	14.0	8.63	8.62	4.88	4.71	39.8
2.74	24.0	8.75	5.80	12.3	2.15	0.603	20.7	23.7	15.8	14.9	9.21	9.21	5.59	5.17	39.8
2.74	26.3	12.6	5.93	15.3	2.15	0.603	30.2	35.2	19.8	21.6	9.21	9.21	5.59	5.17	39.8

> Extra Factor-2 Improvements from more Z-pole observales!

Sensitivity from EWPO+HO+Z-Pole

Sensitivity to Higgs Self-Coupling h³

> Comparison: h³ at CEPC(1, 3, 5/ab) and SPPC(3, 30/ab), vs HL-LHC (3/ab):

Probe Higgs Self-Interaction h³ at SPPC

$$\mathcal{L}_{\text{eff}} = \sum_{n} \frac{f_{n}}{\Lambda^{2}} \mathcal{O}_{n}, \quad \tilde{\Lambda}_{j} \equiv \frac{\Lambda}{\sqrt{|f_{\Phi,j}|}}.$$

$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (H^{\dagger} H) \partial_{\mu} (H^{\dagger} H),$$

$$\mathcal{O}_{\Phi,3} = \frac{1}{3} (H^{\dagger} H)^{3}.$$

$$x_{j} \equiv \frac{f_{\Phi,j} v^{2}}{\Lambda^{2}} \qquad \hat{r} \equiv -x_{3} \zeta^{2} \frac{2v^{2}}{3M_{h}^{2}}, \qquad \hat{x} \equiv x_{2} \zeta^{2}.$$

Benchmark A: $(\hat{r}, \hat{x})_{sm} = (0, 0);$

pp(100TeV) with (3, 30)/ab: pp \rightarrow bb $\gamma\gamma$

Probe Higgs Self-Interaction h³

$$\mathcal{L}_{\text{eff}} = \sum_{n} \frac{f_{n}}{\Lambda^{2}} \mathcal{O}_{n}, \quad \tilde{\Lambda}_{j} \equiv \frac{\Lambda}{\sqrt{|f_{\Phi,j}|}}.$$

$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (H^{\dagger} H) \partial_{\mu} (H^{\dagger} H),$$

$$\mathcal{O}_{\Phi,3} = \frac{1}{3} (H^{\dagger} H)^{3}.$$

$$x_{j} \equiv \frac{f_{\Phi,j} v^{2}}{\Lambda^{2}} \quad \hat{r} \equiv -x_{3} \zeta^{2} \frac{2v^{2}}{3M_{h}^{2}}, \quad \hat{x} \equiv x_{2} \zeta^{2}.$$

pp(100TeV) with (3, 30)/ab:

$$pp \longrightarrow hh \longrightarrow bb\gamma\gamma$$

With 3/ab (30/ab) Luminosity: probe r to 13% (4.2%) precision . probe x to 5% (1.6%) precision.

HJH, Ren, Yao, arXiv:1506.03302, PRD(2015)

Summary of CEPC Precision Tests:

- ➤ CEPC produces 10⁶ Higgs Bosons at 250GeV (5/ab). Higgs Gauge & Yukawa Couplings ~ O(1%) Higgs Self-coupling ~ 30%
- ightharpoonup CEPC Indirect Probe of New Physics Scales: up to ightharpoonup (40TeV for O_g) from EWPO + HO. up to ightharpoonup after including Z-pole, etc (CEPC).
- > SPPC(100TeV) with 3/ab (30/ab) can sensitively probe h³ Higgs Coupling ~ 5-13% (1.6-4.2%).

SM is Incomplete: Mass Puzzle

- Yukawa Force is Flavor-dependent & Unnatural!
 Why Quark/Lepton Masses differ so much at Tree Level?
 What are underlying Scales of Fermion Mass Generations?
- Why is Higgs Mass itself Unnatural under Loop Corrections?

SM is Incomplete: Fermion Mass Puzzle

Yukawa Force is Flavor-dependent & Unnatural!

Why Quark/Lepton Masses differ so much at Tree Level?

— What are underlying Scales of Fermion Mass Generations?

Upper Bounds on Scales of Fermion Mass Generations:

2nd+3rd Families: 3.5-56 TeV

1st Family: 77-107 TeV

— All these bounds Tied to O(3-100TeV) Scales!

$\xi_1 \xi_2$	$V_L V_L$	t₹	$b\overline{b}$	$c\overline{c}$	$s\overline{s}$	dd	$u\overline{u}$	$ au^- au^+$	$\mu^-\mu^+$	e^-e^+	$\nu_L \nu_L$
Mass (GeV)	80.4	178	4.85	1.65	0.105	0.006	0.003	1.777	0.106	5.11×10^{-4}	5×10^{-11}
n_s	2	2	4	6	8	10	10	6	8	12	22
$E_{2\rightarrow n}^{\star (\mathrm{min})}(\mathrm{TeV})$	1.2	3.49	23.4	30.8	52.1	77.4	83.6	33.9	56.3	107	158
$E_{2 o 2}^{\star} ({ m TeV})$	1.2	3.49	128	377	6×10^3	10 ⁵	$2{\times}10^5$	606	10 ⁴	$2{\times}10^6$	1.1×10^{13}

Dicus and HJH, PRL.94 (2005) 221802 PRD.71 (2005) 093009

see: Nima's Overview in preCDR

SM is Incomplete: Vacuum, BA, DM, Inflation??

- **Vacuum Puzzle:** EW vacuum is Unstable at 10⁹⁻¹¹ GeV!
- Inflation Puzzle: naive SM provides no Inflaton!
- Puzzle of Missing Antimatter (Baryon Asymmetry) ?

strumia et ai, 1307.3536

Eample: New Physics at TeV Scale:
New singlet scalar + New quarks of masses ~ O(TeV)

also: arXiv:1602.01801

Higgs Boson as Inflaton ??

Picture of Inflation

Scalar amplitude

$$(V/\epsilon)^{1/4} \simeq 0.027$$

Scalar tilt

$$n_s = 1 - 6\epsilon + 2\eta$$

Tensor-to-scalar ratio $r=16\epsilon$

Conventional SM Higgs Inflation

 $(M_{\rm P} = 1)$

$$\frac{\mathcal{L}_{J}}{\sqrt{-g}} = \frac{1}{2}R + \frac{1}{2}\xi R\phi^{2} + \frac{1}{2}(\partial_{\mu}\phi)^{2} - V(\phi)$$

Conventional SM Higgs Inflation

Ellis, HJH, Xianyu, JCAP[arXiv:1606.02202], PRD[arXiv:1411.5537]

- > SUSY: a Natural Solution to Higgs Instability
- **➤** Inflation Scale ~ GUT Scale SUSY GUT Inflation
- No-Scale SUGRA: (Ellis, Kounnas, Nanopoulos, 1984)
 - naturally from simple String Compactification (Witten, 1984)
 - provides Flat Directions useful for Inflation (Ellis et al, 1985)
- ➤ Flipped SU(5) GUT can naturally lift heavy mass of colored triplet Higgs H_C from weak scale doublet Higgs (H_u, H_d), and efficiently suppress dim-5 proton decays.
- Does not require Higgs in adjoint, good for embedding into string theory.

Ellis, HJH, Xianyu, arXiv:1606.02202

➣No-Scale Kahler Potential of flipped SU(5):

$$\mathcal{K} = -3\log\left[T + T^* - \frac{1}{3}|\Phi_j|^2 + \frac{\zeta}{3}(H\overline{H} + \text{h.c.})\right]$$

➤Superpotential up to dim-4:

$$W = -MG\overline{G} - mH\overline{H} + \lambda GGH + \bar{\lambda}\overline{G}\overline{G}\overline{H} + \alpha(G\overline{G})^2 + \beta(H\overline{H})^2 + \gamma(G\overline{G})(H\overline{H})$$

where we set $M_p=1$, $\Phi_j=(G,\overline{G},H,\overline{H},\cdots)$, and

$$G = \begin{pmatrix} 0 & d_{G3}^c & -d_{G2}^c & d_{G1} & u_{G1} \\ 0 & d_{G1}^c & d_{G2} & u_{G2} \\ & 0 & d_{G3} & u_{G3} \\ & & 0 & \nu_G^c \\ & & 0 \end{pmatrix}, \qquad H = \begin{pmatrix} H_c \\ H_u \end{pmatrix}, \qquad \overline{H} = \begin{pmatrix} \overline{H}_c \\ \widetilde{H}_d \end{pmatrix},$$

Ellis, HJH, Xianyu, arXiv:1606.02202

Inflation Potential:

$$V = e^{G} \left(K_{ij^*} \frac{\partial G}{\partial \phi_i} \frac{\partial G}{\partial \phi_j^*} - 3 \right)$$

$$V(G) = 2G\overline{G}(M - 2\alpha G\overline{G})^{2}$$
$$V \supset 4\lambda^{2}v_{G}^{2}|H_{c}|^{2} + 4\bar{\lambda}^{2}v_{G}^{2}|\overline{H}_{c}|^{2}$$

- **>GUT breaking:** $\langle G\overline{G}\rangle = M/(2\alpha)$
- **Doublet-Triplet Splitting:** $M_{H_c} = 2\lambda v_G$, $m = \gamma v_G^2$

Ellis, HJH, Xianyu, arXiv:1606.02202

Potential Term (with $\beta = \frac{1}{3}(1-\zeta)m$):

$$V(h) = \frac{\left(1 - \frac{\beta}{2m}\hat{h}^2\right)^2 m^2 \hat{h}^2}{2\left(1 - \frac{1 - \zeta}{6}\hat{h}^2\right)^2} \longrightarrow \frac{1}{2} m^2 \hat{h}^2$$

➤Include kinetic term:

$$\mathcal{L}[\hat{h}] = \frac{1 - \frac{\zeta(1-\zeta)}{6}\hat{h}^2}{2(1 - \frac{1-\zeta}{6}\hat{h}^2)^2}(\partial_{\mu}\hat{h})^2 - \frac{1}{2}m^2\hat{h}^2$$

Inflaton as EW Higgs Boson

➤ Normalized field h:

$$h = \sqrt{6} \operatorname{arctanh} \frac{(1-\zeta)\hat{h}}{\sqrt{6\left(1-\frac{1}{6}\zeta(1-\zeta)\hat{h}^2\right)}} - \sqrt{\frac{6\zeta}{1-\zeta}} \operatorname{arcsin} \left(\sqrt{\frac{\zeta(1-\zeta)}{6}}\hat{h}\right)$$

2 Important limits:

$$\zeta = 0$$
 V is exponentially flat.
V is quadratic.

ightharpoonup Predictions for inflation observables: $N_e \simeq 59$

 $\zeta = 1$: quadratical inflation.

 $\zeta = 0$: Starobinsky-like inflation

With small deviation δ :

$$\beta = \frac{1}{3}(1-\zeta+\delta)m$$

Ellis, HJH, Xianyu, JCAP, arXiv:1606.02202

Trajectory of Inflaton in No-Scale SUSY GUT

Figure 2. Three-dimensional plot of the scalar potential V(h, s) in the minimal SU(5) model as functions of the (h, s) fields. The blue curve depicts the trajectory of the inflaton after passing the branch point.

Higgs Boson: Window to New Physics!?

Higgs Boson: Window to New

Physics !?

→ All Particle Masses & Inflation of Universe ?!

Connections to SUSY, DM, CPV, Baryogenesis?

Higgs Boson: Window to New

Physics !?

- → All Particle Masses & Inflation of Universe ?!

 Connections to SUSY, DM, CPV, Baryogenesis?
- h(125) is just the Tip of a giant Iceberg!
 To open a Door to New Phys beneath water?

From Great Wall to Great Collider

see: book of Nadis and Yau

From the

GREAT WALL

to the

GREAT COLLIDER won Prose Prize 2016 Inner Workings of the University Shanhai Pass (山海关) vs CEPC-SPPC Steve Nadis Shing-Tung Yau

Great Wall → **Great Collider (CEPC-SPPC)**

Chinese Edition, 4-2016

More Excitements
Ahead!

Let us continue to work together and do good works!

Effective Operators & Sizes of New Physics

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \sum_{j} \frac{c_{j}}{\Lambda^{2}} \mathcal{O}_{j}$$

Model	$\Delta \kappa_V$	$\Delta \kappa_t$	$\Delta \kappa_b(\Delta \kappa_{\tau})$
MSSM	$\sim -0.5\% \left(\frac{400 \text{ GeV}}{M_A}\right)^4 \cot^2 \beta$	$-\mathcal{O}(10\%) \left(\frac{400 \text{ GeV}}{M_A}\right)^2 \cot^2 \beta$	$\sim \mathcal{O}(10\%) \left(\frac{400 \text{ GeV}}{M_A}\right)^2$
Composite	$-3\% \left(\frac{1 \text{ TeV}}{f}\right)^2$	$-(3-9)\% \left(\frac{1 \text{ TeV}}{f}\right)^2$	$-(3-9)\% \left(\frac{1 \text{ TeV}}{f}\right)^2$

Existing EWPO & Future HO

Observables: EWPO (PDG14) + HO (preCDR)

Observables	Central Value	Relative Error	SM Prediction
α	$7.2973525698 \times 10^{-3}$	3.29×10^{-10}	-
G_F	1.1663787×10 ⁻⁵ GeV ⁻²	5.14×10^{-7}	_
M_Z	91.1876GeV	2.3×10^{-5}	_
M_W	80.385GeV	1.87×10^{-4}	_
$\sigma[Zh]$	-	0.51%	-
$\sigma[\nu\bar{\nu}h]$	_	2.86%	_
$\sigma[uar{ u}h]_{ m 350GeV}$	_	0.75%	_
Br[WW]	-	1.6%	22.5%
Br[ZZ]	_	4.3%	2.77%
Br[bb]	_	0.57%	58.1%
Br[cc]	_	2.3%	2.10%
Br[gg]	_	1.7%	7.40%
Br[au au]	_	1.3%	6.64%
$Br[\gamma\gamma]$	_	9.0%	0.243%
$Br[\mu\mu]$	_	17%	0.023%

Exclusion (95%) & Discovery (5σ **) Reach**

Ge, He, Xiao,1603.03385

		\mathcal{O}_H	$\mathcal{O}_{\mathcal{T}}$	\mathcal{O}_{WW}	\mathcal{O}_{BB}	$\mathcal{O}_{\mathit{WB}}$	\mathcal{O}_{HW}	\mathcal{O}_{HB}	$\mathcal{O}_{LL}^{(3)}$	$\mathcal{O}_L^{(3)}$	\mathcal{O}_{L}	\mathcal{O}_R	$\mathcal{O}_{L,q}^{(3)}$	$\mathcal{O}_{L,q}$	$\mathcal{O}_{R,u}$	$\mathcal{O}_{R,d}$	\mathcal{O}_{g}
95	%	2.50	10.6	6.38	5.78	6.52	2.11	0.603	8.21	12.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8
5	$\sigma \mid$	1.57	6.64	3.99	3.62	4.08	1.32	0.378	5.14	7.57	6.39	5.49	1.16	0.354	0.245	0.211	24.9

CEPC Probe of h³ Coupling

$$\Delta \mathcal{L} = -\frac{1}{3!} \, \delta \kappa_{h3} \, \lambda_{hhh}^{\rm sm} \, h^3$$

$$\delta_{\sigma} \; = \; \frac{\delta\sigma}{\sigma} \; = \; \frac{\sigma_{\delta_{h3}\neq 0}(e^+e^- \rightarrow hZ)}{\sigma_{\rm sm}(e^+e^- \rightarrow hZ)} - 1 \; = \; 2\,\delta\kappa_Z + 0.014\,\delta\kappa_{h3}$$

M. McCullough, arXiv:1312.3322

➤ Recall: HL-LHC probes h³ to 50%. ILC500 probes h³ to 27%.

Probing Higgs Self-Interactions

$$V = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2,$$

$$\longrightarrow$$

$$V_{\text{int}} = \frac{\lambda_3}{3!}h^3 + \frac{\lambda_4}{4!}h^4,$$

SM:
$$\lambda_3 = 6\lambda v = 3M_h^2/v \text{ and } \lambda_4 = 6\lambda = 3M_h^2/v^2.$$

New Physics could modify h³ & h⁴ couplings only via

dim-6 operators!

$$\begin{split} \mathcal{O}_{\Phi,1} &= (D^\mu H)^\dagger H H^\dagger (D_\mu H) \,, \qquad \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^\mu (H^\dagger H) \partial_\mu (H^\dagger H) \,, \\ \mathcal{O}_{\Phi,3} &= \frac{1}{3} (H^\dagger H)^3, \qquad \qquad \mathcal{O}_{\Phi,4} = (D^\mu H)^\dagger (D_\mu H) (H^\dagger H) \,. \end{split}$$

$$\mathcal{O}_{\Phi,f}\,=\,(H^{\dagger}H)\,\overline{L}Hf_{R}+\mathrm{h.c.},$$

Under SU(2)c and using EOM, only 2 modify h³/h⁴ vertex:

$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (H^{\dagger} H) \partial_{\mu} (H^{\dagger} H) , \qquad \mathcal{O}_{\Phi,3} = \frac{1}{3} (H^{\dagger} H)^3.$$

Searching for Heavier Higgs Boson via Di-Higgs Production at LHC Run-2

Probing Higgs Self-Interaction Hhh

 $pp \to H \to hh \to WW^*\gamma\gamma$ ($WW^* \to \ell\bar{\nu}\bar{\ell}\nu$ $q\bar{q}'\ell\nu$

$pp \rightarrow q\bar{q}'\ell\nu\gamma\gamma$	$\sigma_{\mathrm total}$	Selection+Basic Cuts	$M_{\gamma\gamma}, M_{qq}, E_T$	Final Cuts
Signal (fb)	1.32	0.0891	0.0671	0.0533
$BG[qq\ell\nu\gamma\gamma]$ (fb)	31.59	0.581	0.0291	0.00672
$BG[\ell\nu\gamma\gamma]$ (fb)	143.3	0.0642	0.00454	0.000891
BG[Wh] (fb)	0.42	0.00509	0.00335	0.00139
BG[WWh] (fb)	0.0023	0.000210	0.000127	0.000057
$BG[t\bar{t}h]$ (fb)	0.0148	0.00163	0.00111	0.000441
BG[hh] (fb)	0.00462	0.000291	0.000197	0.000155
BG[th] (fb)	0.0129	0.000479	0.000247	0.000104
BG[Total] (fb)	175.35	0.653	0.0386	0.0098
Significance(Z_0)	1.72	1.87	4.86	6.22

$$M_H = (300, 400, 600) \,\text{GeV},$$

$$\begin{split} Z_0(\text{combined}) &= \sqrt{Z_0^2(\ell\nu\ell\nu\gamma\gamma) + Z_0^2(qq\ell\nu\gamma\gamma)} \\ &\simeq (9.06, 7.41, 12.1), \quad \text{for } \mathcal{L} = (300, 300, 3000) \, \text{fb}^{-1}; \\ &\simeq (7.40, 6.05, 6.99), \quad \text{for } \mathcal{L} = (200, 200, 1000) \, \text{fb}^{-1}; \end{split}$$

Lv, Du, Fang, HJH, Zhang, arXiv:1507.02644, PLB(2015)

Probing Higgs Self-Interaction Hhh

$$pp \to H \to hh \to WW^*\gamma\gamma$$
 ($WW^* \to \ell\bar{\nu}\bar{\ell}\nu$ $q\bar{q}'\ell\nu$

