Entanglement, gravity and tensor networks

Review talk

Juan Maldacena

Strings 2016
Beijing

How does quantum gravity work ?

- How does quantum gravity work ?
- How are its degrees of freedom encoded?

- How does quantum gravity work ?
- How are its degrees of freedom encoded?
- How does holography work?

- How does quantum gravity work ?
- How are its degrees of freedom encoded?
- How does holography work?
- How do we describe the black hole interior?

- How does quantum gravity work?
- How are its degrees of freedom encoded?
- How does holography work?
- How do we describe the black hole interior?

Tool

Study patterns of entanglement.

- How does quantum gravity work?
- How are its degrees of freedom encoded?
- How does holography work?
- How do we describe the black hole interior?

- Tool → Study patterns of entanglement.
 - → Follow the qubit!

Ancient concepts → quantum entropy

- Ancient concepts → quantum entropy
- Quantum entropy in QFT.

- Ancient concepts

 quantum entropy
- Quantum entropy in QFT.
- Quantum entropy in semiclassical gravity

- Ancient concepts -> quantum entropy
- Quantum entropy in QFT.
- Quantum entropy in semiclassical gravity
- Quantum entropy in holography

- Ancient concepts

 quantum entropy
- Quantum entropy in QFT.
- Quantum entropy in semiclassical gravity
- Quantum entropy in holography
- Wormholes

- Ancient concepts

 quantum entropy
- Quantum entropy in QFT.
- Quantum entropy in semiclassical gravity
- Quantum entropy in holography
- Wormholes
- Tensor networks

Quantum entropy

• State $\rightarrow \rho$

Quantum entropy

- State $\rightarrow \rho$
- Quantum entropy: $S = -Tr[\rho \log \rho]$

Quantum entropy

- State $\rightarrow \rho$
- Quantum entropy: $S = -Tr[\rho \log \rho]$

Modular Hamiltonian.

$$K = -\log \rho \ , \qquad \rho = e^{-K}$$

Makes the density matrix look "thermal"

$$S(\rho|\sigma) = Tr[\rho\log\rho] - Tr[\rho\log\sigma]$$

$$S(\rho|\sigma) = Tr[\rho\log\rho] - Tr[\rho\log\sigma]$$

$$= -\Delta S + \Delta K \sim \Delta F$$
 Looks like the "free energy"

$$S(\rho|\sigma) = Tr[\rho\log\rho] - Tr[\rho\log\sigma]$$

$$= -\Delta S + \Delta K \sim \Delta F$$
 Looks like the "free energy"

Measure of the distinguishability of states

$$S(\rho|\sigma) = Tr[\rho\log\rho] - Tr[\rho\log\sigma]$$

$$= -\Delta S + \Delta K \sim \Delta F$$
 Looks like the "free energy"

Measure of the distinguishability of states

• Positivity $S(\rho|\sigma) \ge 0$

$$S(\rho|\sigma) = Tr[\rho\log\rho] - Tr[\rho\log\sigma]$$

$$= -\Delta S + \Delta K \sim \Delta F$$
 Looks like the "free energy"

Measure of the distinguishability of states

- Positivity $S(\rho|\sigma) \ge 0$
- Monotonicity

$$B \subset A \longrightarrow S(\rho_B | \sigma_B) \leq S(\rho_A | \sigma_A)$$

Looking at less, we can distinguish less

In quantum field theory

Quantum entropy of subregions.

Quantum entropy of subregions.

Divergent

$$S(A) = \frac{\text{Area}}{\epsilon^2} + \dots + \text{Finite}$$

Quantum entropy of subregions.

Divergent

$$S(A) = \frac{\text{Area}}{\epsilon^2} + \dots + \text{Finite}$$

• Interesting: Finite results.

Quantum entropy of subregions.

Divergent

$$S(A) = \frac{\text{Area}}{\epsilon^2} + \dots + \text{Finite}$$

- Interesting: Finite results.
- Recall the QFT is a ``target'' for what we should approximately get in the bulk.

Half space in relativistic QFT

Bisognano Wichmann, Unruh

- Half space → Thermal in Rindler space
- Consequence of the Lorentz symmetry

$$\rho = e^{-2\pi B}$$

$$B = \int_0^\infty d^{D-2}y dx x T_{00} = E_{\text{Rindler}}$$
 Local

Energy for accelerating observer

• Bekenstein-Casini bound :

Sorkin Marolf, Minic Ross Casini

$$S(\rho|\rho_v) \ge 0 \longrightarrow \Delta S \le 2\pi \langle \Delta B \rangle = 2\pi \langle \Delta E_R \rangle$$

Relative entropy is UV finite

• Bekenstein-Casini bound :

Sorkin Marolf, Minic Ross Casini

$$S(\rho|\rho_v) \ge 0 \longrightarrow \Delta S \le 2\pi \langle \Delta B \rangle = 2\pi \langle \Delta E_R \rangle$$

Relative entropy is UV finite

c and f theorems (in 1+1 and 2+1 dimensions)

Casini Huerta

• Bekenstein-Casini bound :

Sorkin Marolf, Minic Ross Casini

$$S(\rho|\rho_v) \ge 0 \longrightarrow \Delta S \le 2\pi \langle \Delta B \rangle = 2\pi \langle \Delta E_R \rangle$$

Relative entropy is UV finite

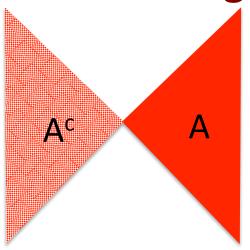
c and f theorems (in 1+1 and 2+1 dimensions)

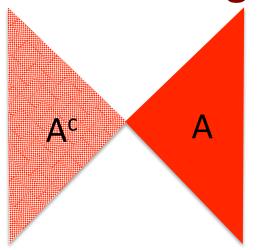
Casini Huerta

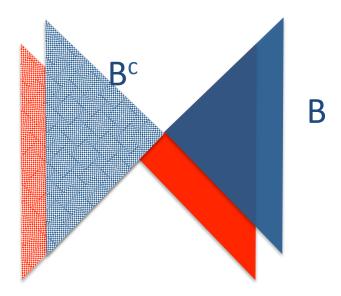
 Integrated null energy condition (integrated along a null line)

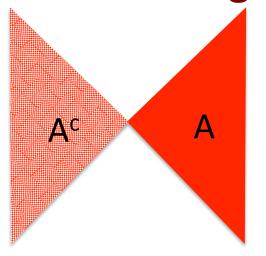
$$\langle \int dx^{-} T_{--}(x^{-}, x^{+}, \vec{y}) \rangle \ge 0$$

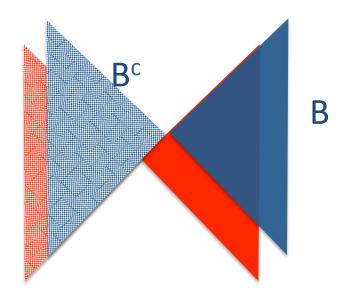
Faulkner, Leigh, Parrikar, Wang



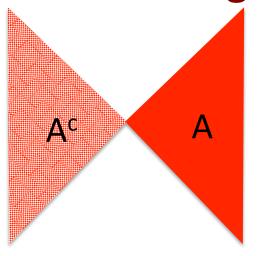


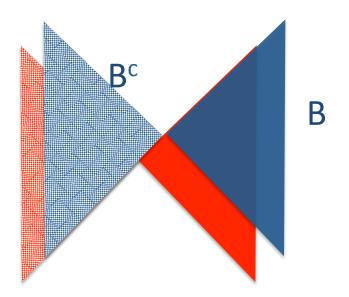






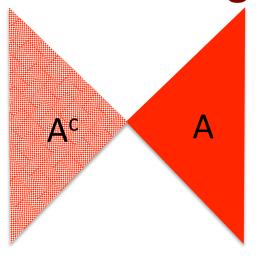
$$\begin{array}{ccc}
B \subset A \\
A^c \subset B^c
\end{array} \longrightarrow \begin{array}{c}
S(\rho_B, \sigma_B) \leq S(\rho_A, \sigma_A) \\
S(\rho_{A^c} | \sigma_{A^c}) \leq S(\rho_{B^c} | \sigma_{B^c})
\end{array}$$

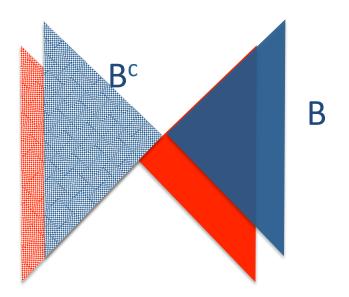




$$\begin{array}{ccc}
B \subset A \\
A^c \subset B^c
\end{array}
\longrightarrow \begin{array}{c}
S(\rho_B, \sigma_B) \leq S(\rho_A, \sigma_A) \\
S(\rho_{A^c} | \sigma_{A^c}) \leq S(\rho_{B^c} | \sigma_{B^c})
\end{array}$$

$$\langle K_B \rangle - \langle K_{B^c} \rangle \le \langle K_A \rangle - \langle K_{A^c} \rangle$$





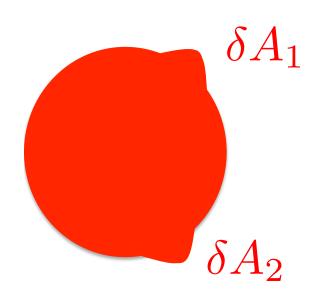
$$\begin{array}{ccc}
B \subset A \\
A^c \subset B^c
\end{array}
\longrightarrow \begin{array}{c}
S(\rho_B, \sigma_B) \leq S(\rho_A, \sigma_A) \\
S(\rho_{A^c} | \sigma_{A^c}) \leq S(\rho_{B^c} | \sigma_{B^c})
\end{array}$$

$$\longrightarrow$$
 $\langle K_B \rangle - \langle K_{B^c} \rangle \le \langle K_A \rangle - \langle K_{A^c} \rangle$

$$\longrightarrow 0 \le \langle B_A \rangle - \langle B_B \rangle = -\langle P_+ \rangle \Delta X^+$$

Real arguments uses...

Shape dependence of the entropy



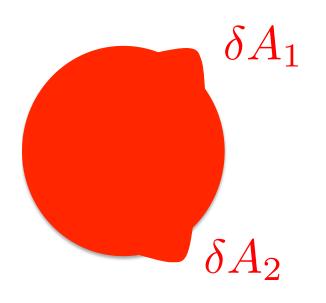
Small deformation from a spherical surface.

Leading quadratic dependence on the deformation:

Faulkner, Leigh, Parrikar

Nozaki, Numasawa, Prudenziati, Takayanagi, Miao, Witczak-Krempa, Bueno, Myers, Rosenhaus, Smolkin, Mezei, Allais, Bianchi, Meineri, Balakrishnan, Dutta, Carmi, Lewkowycz, Perlmutter, Lee, Mcgough, Safdi, Dowker, Chapman, Bianchi, Galante, Bhattacharya, Hubeny, Rangamani, Czech, Lamprou McCandish, Sully, Klebanov, Pufu, Nishioka, Elvang, Hadjiantonis, Fonda, Seminara, Tonni...

Shape dependence of the entropy



Small deformation from a spherical surface.

Leading quadratic dependence on the deformation:

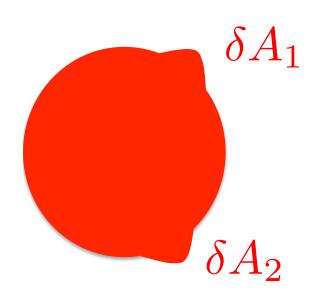
Fixed by conformal symmetry and C_T , the vacuum two point function of the stress tensor.

Idea: Changing shape → changing metric → insertions of stress tensor

Faulkner, Leigh, Parrikar

Nozaki, Numasawa, Prudenziati, Takayanagi, Miao, Witczak-Krempa, Bueno, Myers, Rosenhaus, Smolkin, Mezei, Allais, Bianchi, Meineri, Balakrishnan, Dutta, Carmi, Lewkowycz, Perlmutter, Lee, Mcgough, Safdi, Dowker, Chapman, Bianchi, Galante, Bhattacharya, Hubeny, Rangamani, Czech, Lamprou McCandish, Sully, Klebanov, Pufu, Nishioka, Elvang, Hadjiantonis, Fonda, Seminara, Tonni...

Shape dependence of the entropy



Small deformation from a spherical surface.

Leading quadratic dependence on the deformation:

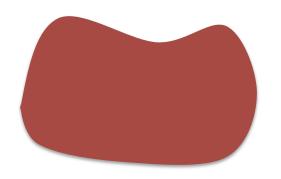
Fixed by conformal symmetry and C_T , the vacuum two point function of the stress tensor.

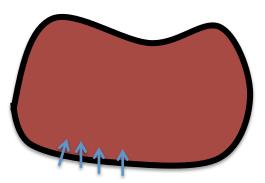
Idea: Changing shape → changing metric → insertions of stress tensor

Faulkner, Leigh, Parrikar

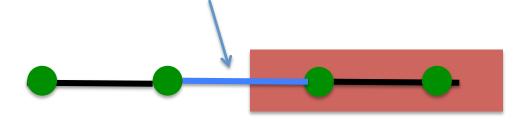
Universality of corner entropy.

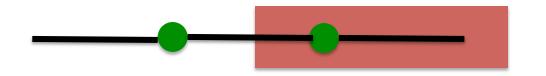
Nozaki, Numasawa, Prudenziati, Takayanagi, Miao, Witczak-Krempa, Bueno, Myers, Rosenhaus, Smolkin, Mezei, Allais, Bianchi, Meineri, Balakrishnan, Dutta, Carmi, Lewkowycz, Perlmutter, Lee, Mcgough, Safdi, Dowker, Chapman, Bianchi, Galante, Bhattacharya, Hubeny, Rangamani, Czech, Lamprou McCandish, Sully, Klebanov, Pufu, Nishioka, Elvang, Hadjiantonis, Fonda, Seminara, Tonni...





Center variables = Electric field on the separating surface.





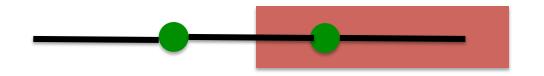
Donelly Wall Radicevic Casini Huerta Rosabal Hawking, Strominger, Perry Harlow

$$H = \sum_{\mathbf{q}} H_L^{\mathbf{q}} \times H_R^{-\mathbf{q}}$$

Splitting of Hilbert space in each charge sector.

Shannon term

$$ho
ightarrow p_q,
ho_q \; , \qquad S = \sum_{m{q}} -p_{m{q}} Tr[
ho_{m{q}} \log
ho_{m{q}}] - p_{m{q}} \log p_{m{q}}$$



Donelly Wall Radicevic Casini Huerta Rosabal Hawking, Strominger, Perry Harlow

$$H = \sum_{q} H_L^q \times H_R^{-q}$$

Splitting of Hilbert space in each charge sector.

Shannon term

$$ho
ightarrow p_q,
ho_q \; , \qquad S = \sum_q -p_q Tr[
ho_q \log
ho_q] - p_q \log p_q$$

Donelly Freidel

Expect a similar story for gravity: Electric field \rightarrow geometry of the surface

Donelly Wall Radicevic Casini Huerta Rosabal Hawking, Strominger, Perry Harlow

$$H = \sum_{q} H_L^q \times H_R^{-q}$$

Splitting of Hilbert space in each charge sector.

Shannon term

$$ho
ightarrow p_q,
ho_q \; , \qquad S = \sum_{m{q}} -p_{m{q}} Tr[
ho_{m{q}} \log
ho_{m{q}}] - p_{m{q}} \log p_{m{q}}$$

Consequences of this for UV finite quantities remain to be seen...

Quantum entropy in semiclassical gravity

QFT in a gravitational background.

- QFT in a gravitational background.
- Corrections to black hole entropy. BPS, non BPS... See eg. Sen et al

- QFT in a gravitational background.
- Corrections to black hole entropy. BPS, non See eg. Sen et al

$$S_{gen} = \frac{\text{Area}}{4G_N} + S_{ent}$$

Bombelli, Koul, Lee, Sorkin Srednicki Callan Wilzcek Larsen Holzey Susskind Uglum Solodhukin, Frolov, Fursaev ...

UV finite

- QFT in a gravitational background.
- Corrections to black hole entropy. BPS, non See eg. Sen et al

$$S_{gen} = \frac{\text{Area}}{4G_N} + S_{ent}$$

Bombelli, Koul, Lee, Sorkin Srednicki Callan Wilzcek Larsen Holzey Susskind Uglum Solodhukin, Frolov, Fursaev

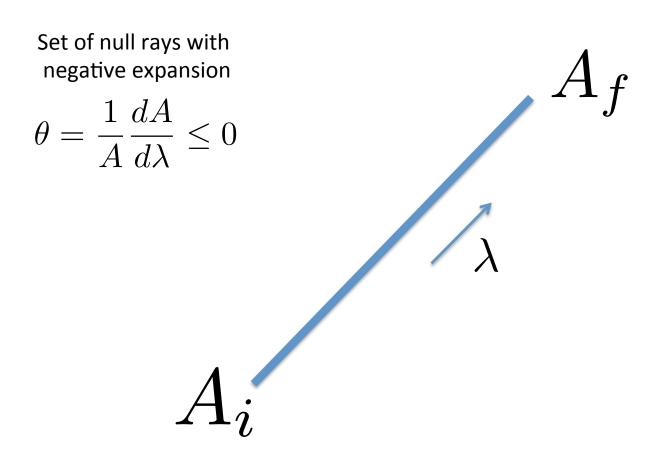
UV finite

 Second law of thermodynamics, S increases (monotonicity of relative entropy)

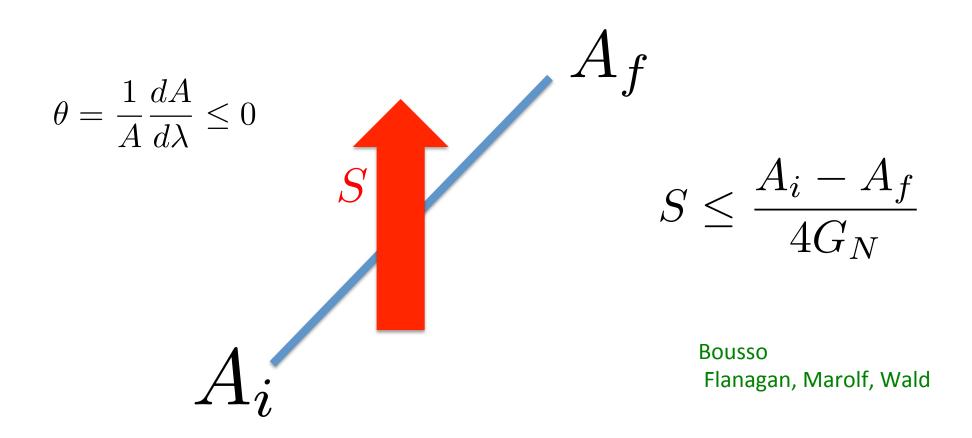
Hawking, Wall

 Better understanding of the quantum Bousso bound.

Classical Bousso bound



Classical Bousso bound



Quantum Bousso Bound

• 2 versions

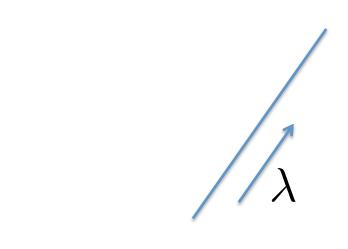
1) Bousso, Casini, Fischer, JM

2) Strominger, ThompsonBousso, Fischer, Leichenauer,Wall + Koeller

Quantum Bousso Bound

Quantum focusing conjecture

Strominger, Thompson Bousso, Fischer, Leichenauer, Wall + Koeller Classical focusing theorem



$$\theta \equiv \frac{1}{A} \frac{dA}{d\lambda}$$

$$\frac{d\theta}{d\lambda} \le 0$$
, since $T_{\lambda\lambda} \ge 0$

Define the ``quantum expansion''

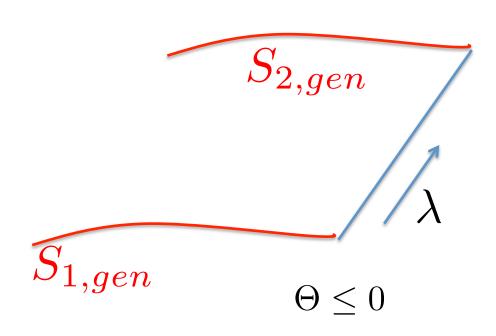
$$\Theta \equiv \frac{1}{A} \frac{dS_{gen}}{d\lambda}$$

Bousso, Fischer, Leichenauer, Wall + Koeller

Define the ``quantum expansion''

$$\Theta \equiv \frac{1}{A} \frac{dS_{gen}}{d\lambda}$$

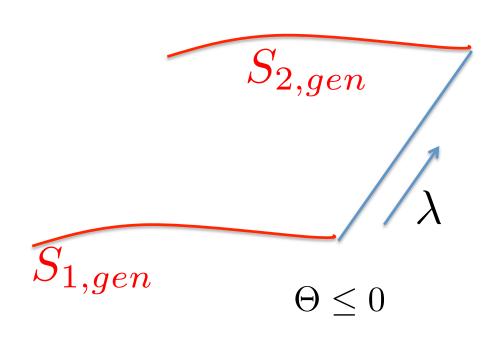
$$\frac{d\Theta}{d\lambda} \le 0$$



Bousso, Fischer, Leichenauer, Wall + Koeller

$$\implies \Delta S \le \frac{\Delta A}{4G_N}$$

Classical Bousso bound



Bousso, Fischer, Leichenauer, Wall + Koeller

$$\implies \Delta S \le \frac{\Delta A}{4G_N}$$

Classical Bousso bound

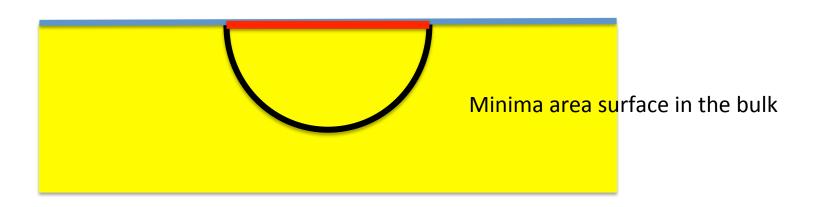
Weak gravity:

$$\langle T_{--} \rangle \ge \frac{1}{2\pi} \lim_{A \to 0} \frac{S_{out}^{"}}{A}$$

Quantum null energy condition. Proven in some cases.

Entanglement and holography

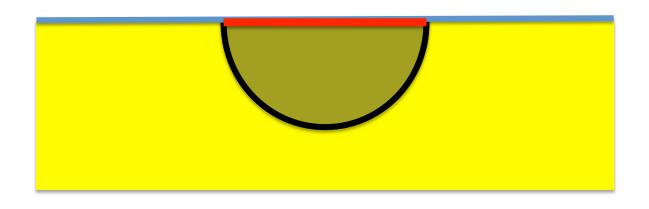
Entanglement in theories with gravity duals



$$S = \frac{(\text{Area})_{\min}}{4G_N}$$

Ryu Takayanagi Hubeny, Rangamani, Takayangi

Entanglement in theories with gravity duals



$$S = \frac{(\text{Area})_{\min} + \alpha'(\text{curvature}) + \cdots}{4G_N} + S_{\text{bulk}} + o(G_N)$$

Wald, Myers, Jacobson, ..., Dong

Faulkner, Lewkowicz, JM Barrella, Dong, Hartnoll, Martin

Relative entropy

Lashkari, Van Raamsdonk Jafferis, Lewkowycz, JM, Suh

$$S(\rho, \sigma) = S_{\text{bulk}}(\rho, \sigma)$$

$$K = \frac{A}{4G_N} + K_{\text{bulk}}$$

Relative entropy

Lashkari, Van Raamsdonk Jafferis, Lewkowycz, JM, Suh

$$S(\rho, \sigma) = S_{\text{bulk}}(\rho, \sigma)$$

$$K = \frac{A}{4G_N} + K_{\text{bulk}}$$

Two points of view:

- 1- Only holds for restricted semiclassical states...
- 2 -All dof are visible in the bulk (cutoff independent indication that all of black hole entropy comes from the atmosphere)

Qualitative idea for black hole entropy

$$S_{gen} = \frac{\text{Area}}{4G_N} + S_{ent}$$

As $\epsilon \rightarrow 0$, area term goes to zero and all entropy is entanglement.

Is all of black hole entropy just bulk entanglement entropy, with a suitable cutoff?

This happens in ``induced gravity theories" (not well defined)...

Conservative: do not mix the leading order with the subleading order...

Dreamer: figure out in what sense this is true....

$$S(
ho,\sigma)=S_{
m bulk}(
ho,\sigma)$$
 Is a cutoff independent indication of this.

Einstein equations from the entanglement formula

Initially

Ryu-Takayanagi formula

Einstein's equations

Einstein equations from the entanglement formula

Can go in the other direction

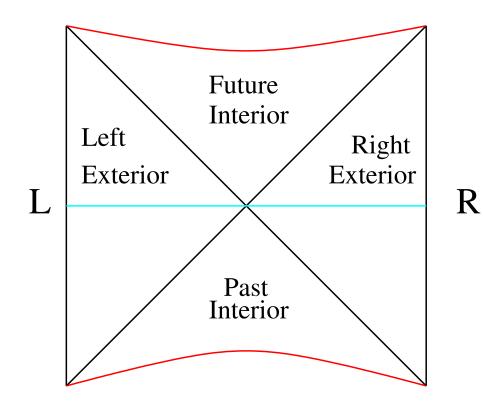
Ryu-Takayanagi formula

Einstein's equations

Lashkari, McDermott, Van Raamsdonk, Faulkner,
Guica, Hartman, Myers, Swingle
Jacobson (not in full generality yet...)

Wormholes

Wormholes and entangled states



n

Full Schwarzschild-AdS Geometry

Entangled state in two non-interacting CFT's.

Israel JM

$$|\Psi\rangle = \sum e^{-\beta E_n/2} |E_n\rangle_L^{CPT} \times |E_n\rangle_R$$

Wormhole physics

 Integrated null energy condition → no signal propagation. (recall recent entanglement based proof)

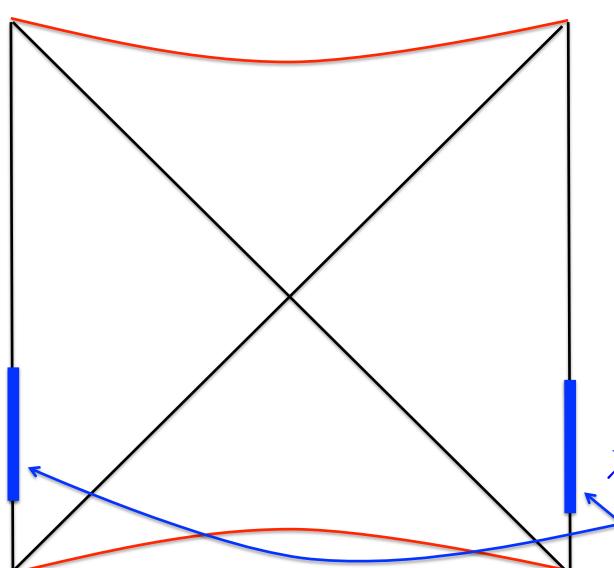
Wormhole physics

 Integrated null energy condition → no signal propagation. (recall recent entanglement based proof)

Allowing interactions between the two sides
 → can have negative energy → can get signal propagation.

Gao Jafferis Wall

Wormholes and entangled states

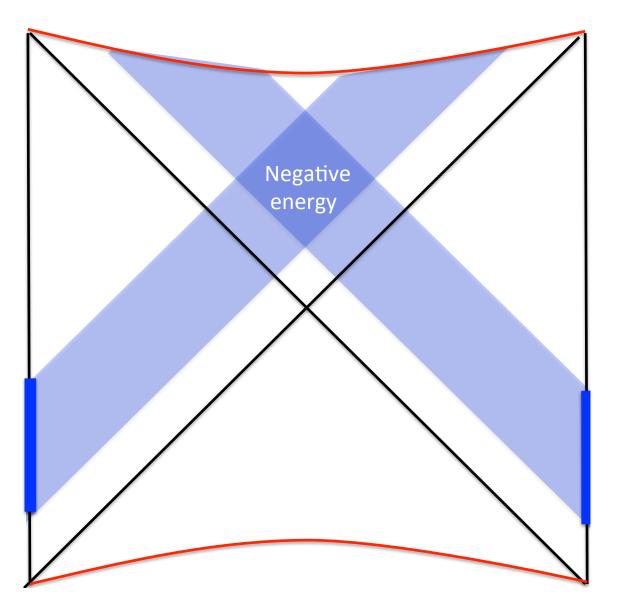


Gao Jafferis Wall

Interaction between the two sides for some time.

$$\lambda \int dt O_L(t) O_R(t)$$

Wormholes and entangled states

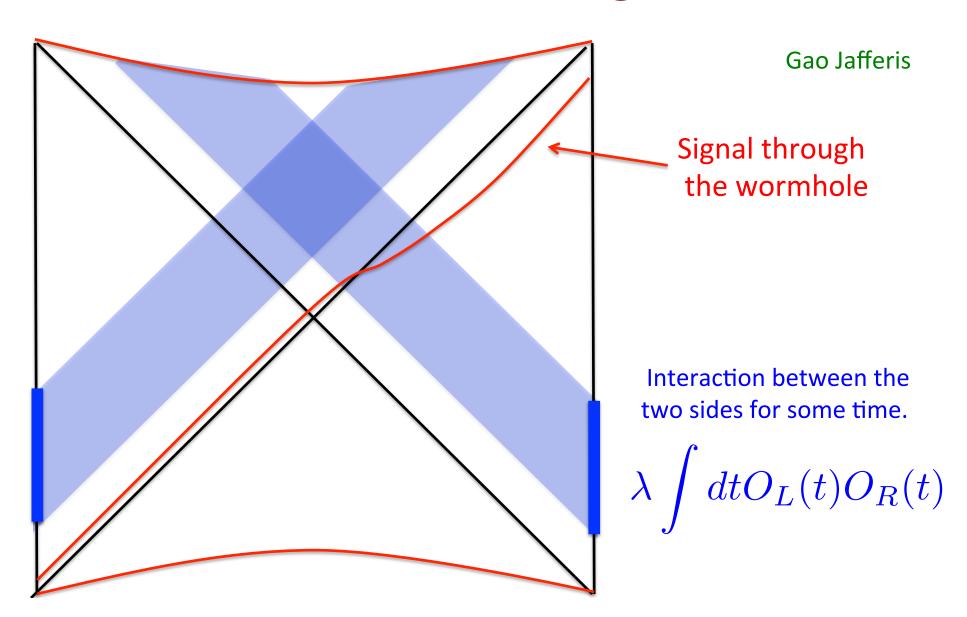


Gao Jafferis Wall

Interaction between the two sides for some time.

$$\lambda \int dt O_L(t) O_R(t)$$

Wormholes and entangled states

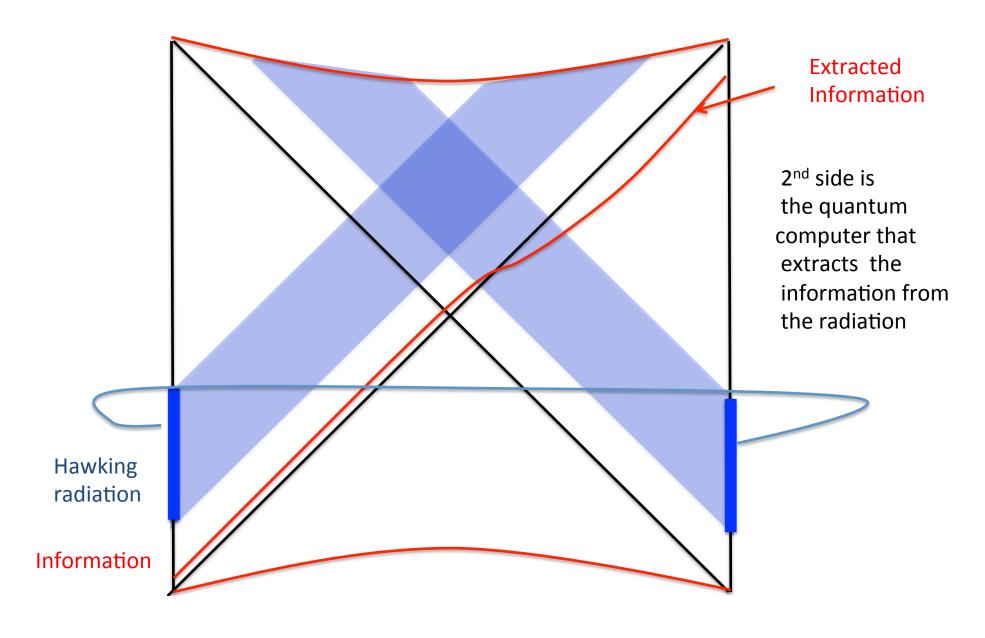


Connected with "black holes as mirrors"

Hayden Preskill

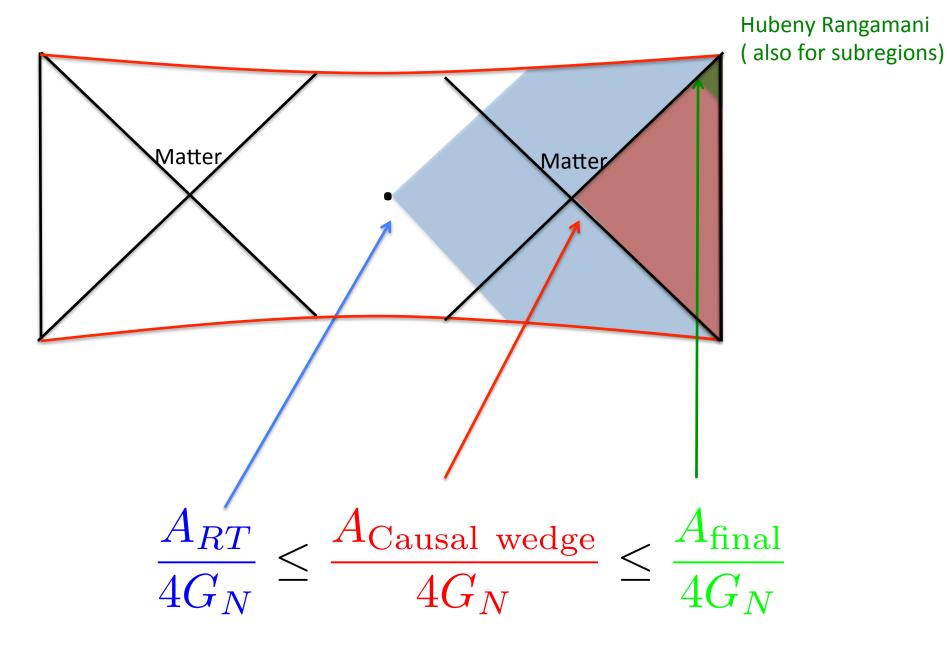
 If one has access to a state that is maximally entangled with a black hole, then information that is sent into the black hole can be recovered by looking at a small amount of Hawking radiation.

Wormholes and entangled states

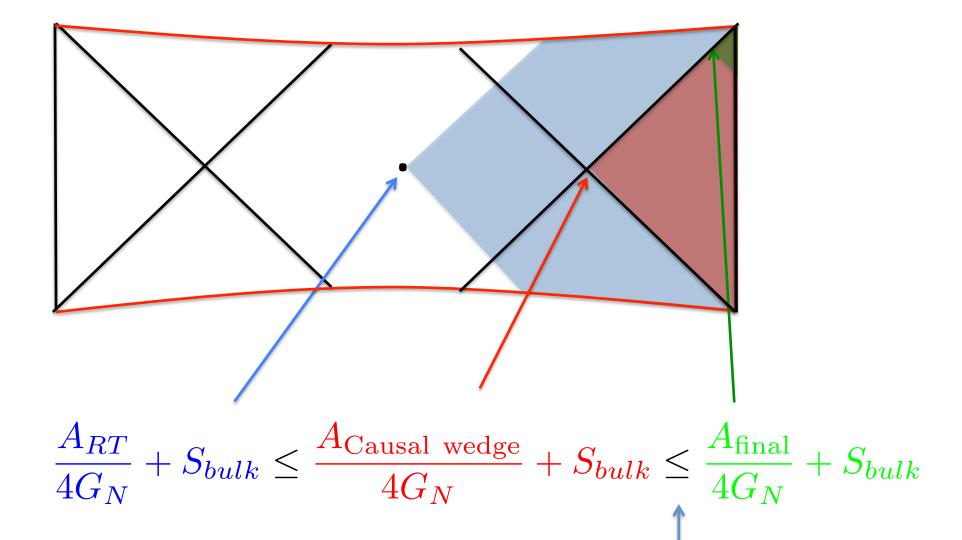


Not just entanglement entropy...

Entanglement wedge vs. causal wedge



Entanglement wedge vs. causal wedge



2nd Law

Different notions of entropy

$$\frac{A_{RT}}{4G_N} + S_{bulk} \le \frac{A_{\text{Causal wedge}}}{4G_N} + S_{bulk} \le \frac{A_{\text{final}}}{4G_N} + S_{bulk}$$

Fine grained entropy

These should be coarse grained entropies

Different notions of entropy

$$\frac{A_{RT}}{4G_N} + S_{bulk} \le \frac{A_{\text{Causal wedge}}}{4G_N} + S_{bulk} \le \frac{A_{\text{final}}}{4G_N} + S_{bulk}$$

Fine grained entropy

These should be coarse grained entropies

Restrict the algebra of observables to gravity fields. Simple operators acting within a scrambling time

Entropy of the maximal entropy state compatible with the density matrix of the simple algebra...

Kelly, Wall, Papadodimas, Raju,....

 Method to write wavefunctions. Ansatz for the wavefunction.

- Method to write wavefunctions. Ansatz for the wavefunction.
- Wavefuction constructed out of simpler objects, out of simpler tensors.

- Method to write wavefunctions. Ansatz for the wavefunction.
- Wavefuction constructed out of simpler objects, out of simpler tensors.
- Originated as a numerical method.

- Method to write wavefunctions. Ansatz for the wavefunction.
- Wavefuction constructed out of simpler objects, out of simpler tensors.
- Originated as a numerical method.
- They embody the renormalization group.

- Method to write wavefunctions. Ansatz for the wavefunction.
- Wavefuction constructed out of simpler objects, out of simpler tensors.
- Originated as a numerical method.
- They embody the renormalization group.
- There are some qualitative similarities with gravity.

Examples

Matrix product states.

white

$$\Psi(s_1, s_2, \dots, s_N) = Tr[T_{s_1} T_{s_2} \dots T_{s_n}]$$

$$T_{s_i} = (T_{s_i})_l^k \qquad D \times D \quad \text{matrix}$$

Examples

Matrix product states.

white

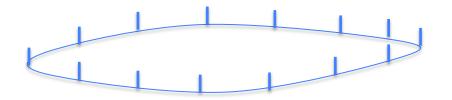
$$\Psi(s_1, s_2, \cdots, s_N) = Tr[T_{s_1} T_{s_2} \cdots T_{s_n}]$$

$$T_{s_i} = (T_{s_i})_l^k$$
 $D \times D$ matrix

$$2D^2$$
, or $2ND^2 \ll 2^N$

Subspace of the Hilbert space!

Works for states with finite Amount of long range entanglement



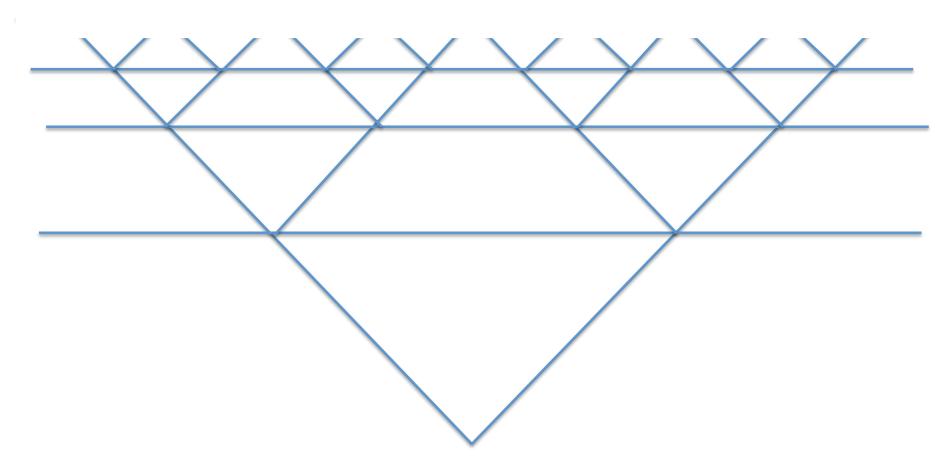
Vertex = tensor

Open line = open index

Link = contracted index

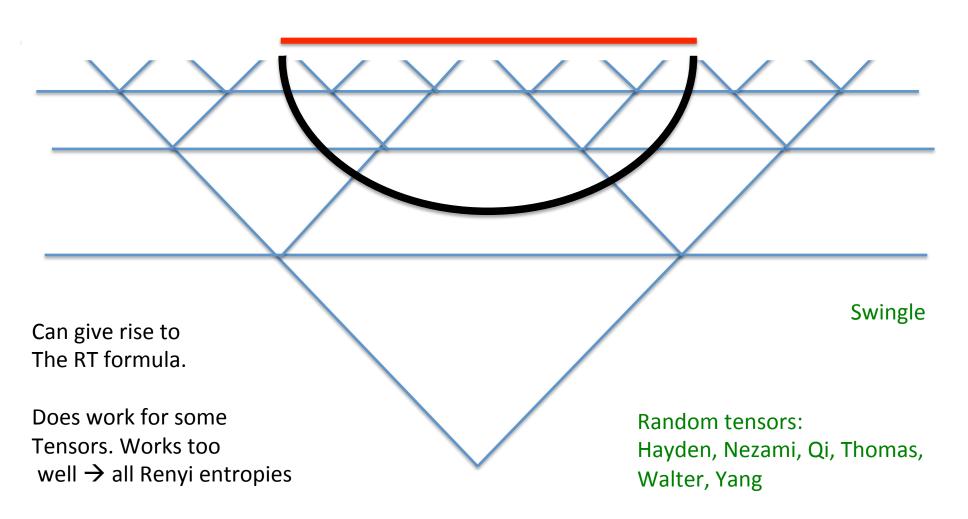
Scale invariant wavefunctions

Vidal



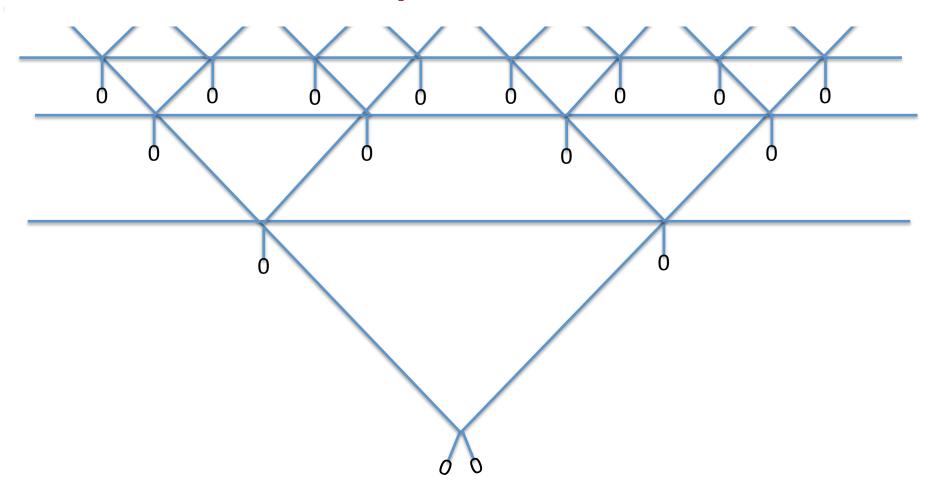
Each vertex is a five index tensor. Each line is an index contraction.

Scale invariant wavefunctions

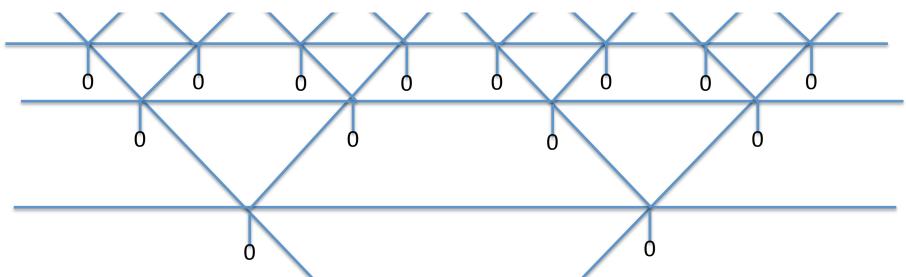


Qualitatively similar to the bulk in AdS/CFT

As a unitary transformation



As a unitary transformation



Looks like de Sitter evolution.

Is expected: CFT in de Sitter conformal frame

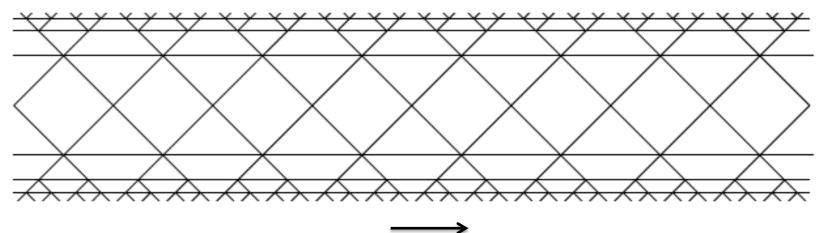
$$-dt^2 + dx^2 \longrightarrow \frac{-dt^2 + dx^2}{t^2}$$

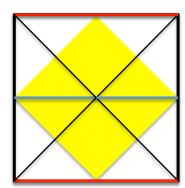
Connection to "kinematic space" (space of pairs of points) Czech, Lamprou, McCandish, Sully

Could also use it as a representation of the cosmological wavefunction...

Peeking into the interior

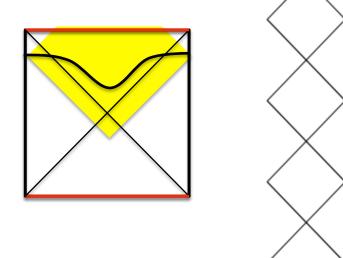
Thermal states

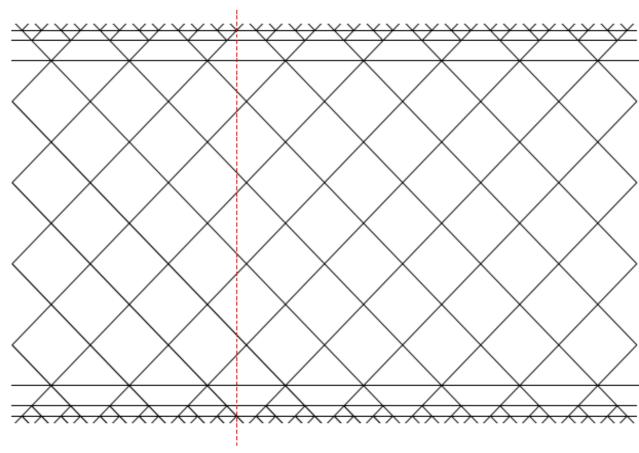




Spatial direction along horizon

Time evolution of thermofield double





Similar to the stretching of the geometry behind the horizon.

What networks to choose?

 Choose ``simple'' elementary tensors = small tensors

What networks to choose?

- Choose ``simple'' elementary tensors = small tensors
- View network as preparing the state by simple operations from a simple product state.

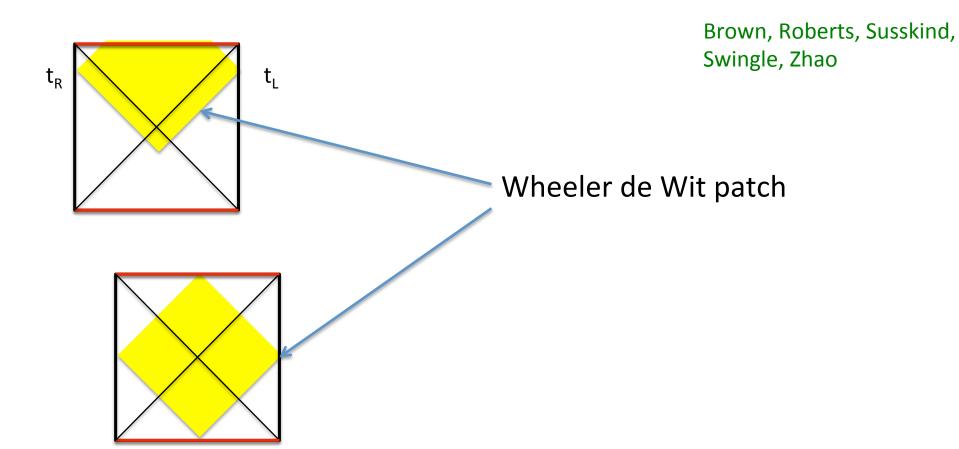
What networks to choose?

- Choose ``simple'' elementary tensors = small tensors
- View network as preparing the state by simple operations from a simple product state.

• Complexity = number of simple gates

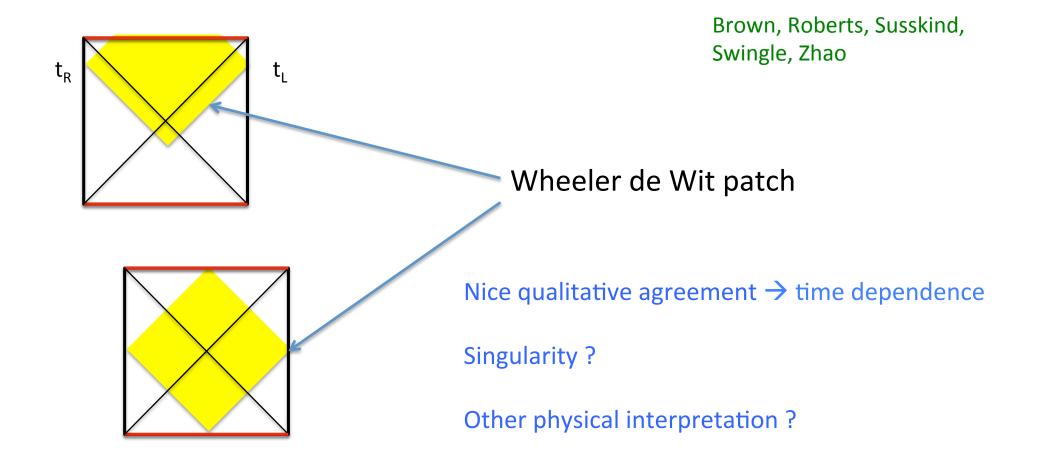
Complexity = Action ?

Complexity = action of the WdW patch ?

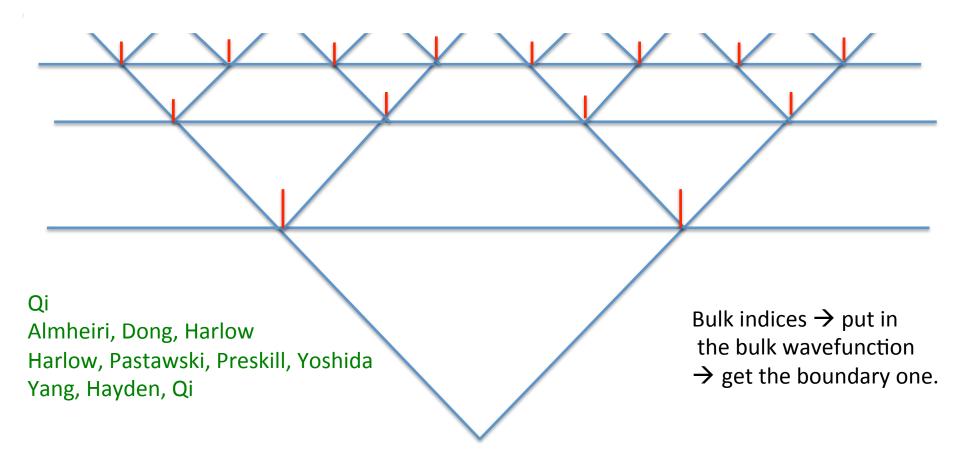


Complexity = Action ?

Complexity = action of the WdW patch ?



Tensor networks and the holographic encoding



Tensor network is an encoding of the bulk into the boundary

$$\mathcal{H}_{\mathrm{Bulk}} \longrightarrow \mathcal{H}_{\mathrm{Boundary}}$$

Capture many qualitative features!

Local lorentz invariance in the bulk?

• Quantum entropy is a tool to prove general results in QFTs (lorentz invariance is non-trivial!).

- Quantum entropy is a tool to prove general results in QFTs (lorentz invariance is non-trivial!).
- Gravity + QFT → interesting entropy statements, which are being proved. 2nd Law. Bousso bound. Holographic entanglement formulas...

- Quantum entropy is a tool to prove general results in QFTs (lorentz invariance is non-trivial!).
- Gravity + QFT → interesting entropy statements, which are being proved. 2nd Law. Bousso bound. Holographic entanglement formulas...
- Weird wormholes
 help constrain how spacetime emerges.

- Quantum entropy is a tool to prove general results in QFTs (lorentz invariance is non-trivial!).
- Gravity + QFT → interesting entropy statements, which are being proved. 2nd Law. Bousso bound. Holographic entanglement formulas...
- Weird wormholes
 help constrain how spacetime emerges.
- Tensor networks capture interesting properties of black hole geometries. (But not local bulk lorentz invariance, so far...)

End