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Summary

Basic assumptions in Einstein’s formulation of Gravity

• General-coordinate covariance

• The metric gµν is the fundamental field, describing spacetime
geometry; (gµν = gνµ, and no torsion.)

• Two derivatives;

• Matter couples minimally (only through gµν.)

Consequently

L =
√
−g(R+ Lmat

)
→ Gµν = Tmat

µν ,

where Gµν = Rµν − 1
2Rgµν.



A natural generalization: higher derivatives

Since the metric is dimensionless, higher-derivative gravity re-
quires a fundamental constant with the dimension of length.
Such a constant indeed exists: it is the Planck length with
`2p = GN, the Newton’s constant.

The Planck length is already existing even in two-derivative grav-
ity! Thus it would be unnatural not to consider higher-derivative
gravity.

By contrast, it would be very unnatural to consider higher-derivative
theories in QFT, for lacking such a fundamental constant. You
would have to invent one in order to include higher-derivative
terms.

Planck length `p in D = 4 is very small, but ˆ̀p in higher dimensions
may not be, since

ˆ̀
1
2(D−2)
p = L

1
2(D−4) `p ,

where L is the length scale of internal dimensions.



Higher-derivative gravity: Renormalizable, but contains ghost-
like massive spin-2 modes (K.S.Stelle)

Recently it was established in four dimensions that besides the
usual Schwarzschild black hole, there exists a new asymptotically-
flat black hole. It contains Yukawa falloff µe−m0r/r, indicating
condensation of the massive graviton. (massive spin-2 hair.)
[LPPS]

All fields have hair! while all “objects” cannot move out of the
horizon of a black hole, the tentacles of a field can seep out.

Far more number of new black holes are expected to exist in
generic higher-derivative gravity, even though exact solutions are
rare.

Avoiding ghosts: Gauss-Bonnet or Lovelock terms: total deriva-
tives in D = 4: these terms are naturally existing in higher di-
mensions, and predicted up string theory.



Higher derivative gravities

String theories predict that two-derivative supergravities are their
low energy effective theories. Higher-order α′ and/or string loop
corrections involve higher derivatives in the metric. E.g. the
α′ correction of N = 1, D = 10 supergravity contains de Roo,
Bergshoeff

α′RµνρσRµνρσ .

Such a term makes sense only perturbatively, since when treated
on its own, the theory has inevitable ghosts.

While many aspects of the supergravities can be discussed with
small α′, non-trivial application requires that the higher-order
terms contribute none infinitesimally. E.g. Cosmology, Ad-
S/CFT correspondence, etc.



Gauss-Bonnet and Lovelock gravities
from String Theory

In string theory, one can perform picture change or field redefi-
nition a la

gµν → g̃µν = gµν + c1α
′Rµν + c2α

′Rgµν ,

such that the Riemann-squared term becomes the Gauss-Bonnet
term

α′RµνρσRµνρσ → α′ (RµνρσRµνρσ − 4RµνRµν +R2) .

The equations of motion of the Gauss-Bonnet term remain sec-
ond order and hence can be ghost free.

One then typically appeals to the hand-waving argument that in
the enormous landscape of string vacua, there are cases where
the Gauss-Bonnet term dominates and the low-energy effective
theory can be treated on its own.

In fact, the Ricci scalar, Gauss-Bonnet term are both Euler in-
tegrands; the former is of two derivatives whilst the latter is of
four-derivatives. There are an infinite series of such Euler inte-
grands, giving rise to the general Lovelock gravities.



Including matter

Matter in two-derivatives supergravity are in general minimally
coupled, at least in the Einstein frame. However, when higher-
order terms involved, matters are non-minimally coupled. We
expect that there may exist ghost-free combination at some finite
order by appropriate field redefinition, as in the case of Lovelock
gravities.

Also the dimensional reduction of Lovelock gravity will give rise
to lower-dimensional gravities with non-minimal couplings.

The natural field content of the bosonic sector in the low-energy
effective theory consists the metric and various p-forms.

As a toy model, we consider higher-derivative gravities with one
non-minimally coupled p-form. The goal is to construct a higher-
order theory whose field equations of motion remain nevertheless
second order.



D = 4



Quadratic curvature extension

The Einstein gravity can be extended with quadratic curvature
invariants, namely

L4 =
√
−gκ

(
R+ αR2 + βRµνRµν + γRµνρσRµνρσ

)
.

The dimension of the parameters (α, β, γ) is length2. In four
dimensions, the Gauss-Bonnet combination

LGB =
√
−g(R2 − 4RµνRµν +RµνρσRµνρσ)

is a total derivative, so we can set γ = 0, or write the Lagrangian

L =
√
−gκ

(
R− αCµνρσCµνρσ + βR2

)
.

where C is the Weyl tensor. It is equivalent to the earlier La-
grangian up to a total derivative.



Properties

• The Maximally-symmetric vacuum of the theory is Minkows-
ki; higher derivative terms do not contribute to an effective
cosmological constant!

• the linearized theory around the Minkowski describes a gravi-
ton and a massive scalar, together with a ghost-like massive
spin-2 mode.

K.S. Stelle proved that, owing to higher derivatives, the theory
is renormalizable! PRD 16,953 (1977).



Black holes

How the quadratic curvature invariants affects black holes in D =
4?

Ricci-flat metrics, including Schwarzschild and Kerr metrics, do
not have any modification!

Does the theory admit new black holes?

L =
√
−g

(
κR− αCµνρσCµνρσ + βR2

)
.

If κ = 0 = β, the resulting theory is conformal gravity, and new
black holes indeed exist.

• staticµRiegert§ Phys.Rev.Lett. 53 (1984) 315-318

• rotatingµLiu and L§JHEP 1302 (2013) 139



New black holes

We are interested in the cases with κ 6= 0 6= β. It can be shown
that for asymptotic black holes with a horizon, then its Ricci
scalar must vanish, i.e. R = 0. Nelson (PRD 82 (2010) 104026.

This in particular implies that there is no new black hole in the
Starobinski R+R2 theory in four dimensions.

Recently, a new black hole with R = 0, but Rµν 6= 0 was con-
structed numerically. Perkins, L, Pope, Stelle, 1502.01028.



Asymptotic falloffs

metric ansatzµds2 = −h(r)dt2 + dr2

f(r) + r2dΩ2
2

Asymptotic behavior

h = 1−
2M

r
−
c1e
−µ2r

r
−
c2e

µ2r

r
,

f = 1−
2M

r
− 1

2c1(µ2 + 1
r)e−µ2r + 1

2c2(µ2 − 1
r)eµ2r ,

where µ2
2 = 1/(2α). If c1 = c2 = 0, it yields the Schwarzschild

metric"

Must set c2 = 0, but can have c1 6= 0. This gives a new black
hole, with Yukawa falloffs associated with the massive spin-2
mode.

New black hole emerges when M ≤ 0.434
√

2κα.



Compare new BHs with the Schwarzschild
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The masses (left plot) and temperatures (right plot) of the
Schwarzschild (dashed line) and non-Schwarzschild (solid line)
black holes as a function of the horizon radius r0.
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The first plot shows the entropy as a function of mass, and the
second shows the free energy F = M − TS as a function of T ,
for the Schwarzschild (dashed line) and non-Schwarzschild (solid
line) black holes.
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It is clear that we have

Cnew < CSchw < 0 .



With a cosmological constant

Still four dimensions, but with a cosmological constant

L =
√
−g(R− 2Λ + αR2 + βRµν) .

The maximally-symmetric spacetime is (A)dS. The linearized
gravity contains a graviton, a massive scalar and ghost-like mas-
sive spin-2 modes.

When β = −3α, the scalar has infinity mass and decouples. When
furthermore, α = − 1

2Λ, the ghost-like massive mode disappears,
and is replaced by the log mode, leading to critical gravity. L,
Pope, 1101.1971

Higher-D: Deser, Liu, Lu, Pope, Sisman, Tekin, 1101.4009.

3-D: Li, Song, Strominger, 0801.4566;
Bergshoeff, Holm, Townsend, 0901.1766, and more.



D ≥ 5

Ghost-free combinations



Lovelock gravities

We start with an Euler integrand of (2k)’th order

E(k) =
1

2k
δ
c1d1···ckdk
a1b1···akbkR

a1b1
c1d1
· · ·Rakbkckdk

,

where Rabcd denotes the Riemann tensor Rabcd and

δ
β1···βs
α1···αs = s!δβ1

[α1
· · · δβs

αs]
.

This implies that the Euler integrands can also be expressed as

E(k) = (2k)!
2k

R
[a1b1
a1b1

· · ·Rakbk]
akbk

.

The low-lying examples are

E(0) = 1 , E(1) = R , E(2) = R2−4RµνRµν+RµνρσRµνρσ , etc.

The term
√
−gE(k) in the Lagrangian contributes

E
(k) ν
µ = − 1

2k+1δ
a1b1···akbk ν
c1d1···ckdk µR

a1b1
c1d1
· · ·Rakbkckdk

to the Einstein’s equation of motion.



A striking property is that no Riemann-tensor factor acquires any
derivative in the equations of motion. This is a consequence of
the fact that the variation of the Riemann tensor, namely

δRµνρσ = ∇ρδΓµσν −∇σδΓµρν
yields a total derivative term in the Lagrangian for the polynomial
combinations of the Euler integrands. This is largely due to the
Bianchi identity of the Riemann tensor, namely

∇[αR
µν
ρσ] = 0 = ∇[βR

µν]
ρσ .



Criticality in EGB gravity

Zhong-Ying Fan, Bin Chen and L, 1606.02728.

Einstein-Gauss-Bonnet theory contains three Euler integrands:

L = κ
√
−g
[(
R− 2Λ0

)
+ γ

(
R2 − 4RµνR

µν +RµνρσR
µνρσ

)]
,

Unlike in D = 4, higher-derivative terms can modify the effec-
tive cosmological constant. The maximally-symmetric vacuum is
(A)dS with the effective cosmological constant Λ

κ
[

1
2

(
Λ− Λ0

)
+ ∆0 Λ2

]
= 0 , with ∆0 ≡ (D−3)(D−4)

(D−1)(D−2)γ .

Thus the two effective cosmological constants are given by

Λ± =
±
√

1 + 8∆0 Λ0 − 1

4∆0
.

When Λ0 = −1/(8∆0), the two effective cosmological constants
Λ± become the same, and the two (A)dS vacua degenerate into
one, with the effective cosmological constant

Λ+ = Λ− = Λ∗ ≡ 2Λ0 .



Linearized gravity

We now study the linearized equations of motion of the metric
perturbation

gµν = ḡµν + hµν ,

around one of the (A)dS vacua for general parameters. They are
simply

κeff GLµν = 0 , κeff = κ(1 + 4∆0Λ) .

It can be easily establish that in each Λ± vacuum, the spectrum
is described by a graviton mode. In Λ+, the graviton has positive
kinetic energy; whilst in Λ−, it has negative kinetic energy and
hence ghost-like.

In string theory the bare cosmological constant Λ0 vanishes, and
hence Λ+ = 0 and Λ− = −1/(2∆0). It follows that the Minkowski
vacuum remains ghost free under the α′ correction. Note that γ
is positive in string theory and hence the other vacuum is AdS,
with ghost-like graviton modes.



Criticality: Gravity without graviton

When the Gauss-Bonnet coupling constant γ and the bare cos-
mological constant are related as follows

∆0 = −
1

8Λ0
= −

1

4Λ∗
,

the two (A)dS vacua coalesce into one, with the effective cos-
mological constant being 2Λ0.

In this case, we have κeff = 0 and hence the linearized equations
of motion are automatically satisfied.

The absence of the kinetic term for the fluctuation hµν at the
quadratic order implies that the theory does not have any prop-
agator, and hence it is no longer proper to take hµν as the usual
graviton modes.

We have thus a theory of gravity without (linear) graviton.



Black holes at criticality

Schwarzschild-like Black holes in EGB theory were obtained by
Boulware, Deser (PRL, 55 (1985) 2656; Cai (PRD 65 (2002)
084014). The solutions degenerate at the critical point.

We find the most general spherically-symmetric solutions involve
two types:

ds2 = −hdt2 +
dr2

f
+ r2dΩ2

D−2,k ,

with

type 1 : h = f = g2r2 + k −
µ

r
D−5

2

,Λ = −1
2(D − 1)(D − 2)g2 ,

type 2 : f = g2r2 + k , h is an arbitrary function of r.

The first type describes a black hole with M ∼ µ2; the second
type can have diverse interpretations.



Criticality in a general quadratic theory

In a general quadratic extended theory, we can have further crit-
ical points in the parameter spaces where

• log mode emerges;

• no bilinear kinetic term for the linearized scalar mode;

• no bilinear kinetic term for the linearized transverse and trace-
less modes;

• no bilinear kinetic term for all linearized modes. (EGB)

These critical points are common places in higher-derivative grav-
ities.

We are not very clear about the physical implication of all these
phenomena.

The theories and solutions deserve further study.



Including matter

Generalizations of Einstein gravity with non-minimally coupled
derivative matter:

• General coordinate covariance or invariance.

• The metric is the fundamental field, together with a p-form.

• nonlinear higher total derivatives using polynomial invariants
constructed from the Riemann tensor and the p-form.

• Matter thus couples non-minimally.

Requirement: Field equations remain second order in derivatives,
analogous to Lovelock gravities.



With 2-form field strength

Consider a Maxwell field A whose field strength is F = dA. In-
troduce (L, Xing-Hui Feng, 1512.09153.)

Zabcd = F abFcd .

Owing to the Bianchi identity of the Maxwell field, namely

∇[αFρσ] = 0 = ∇[βFµν] ,

the Z tensor satisfies the property

∇[α∇
[βZ

µν]
ρσ] = ∇[αF

[µν∇β]Fρσ] + 2F [µν Rβ]
[ρσ

λ Fα]λ .

In other words, although each term involves a total of four deriva-
tives, both Aµ and gµν have at most two derivatives acting di-
rectly. This property is crucial our construction.

With these preliminaries, we consider polynomial invariants of the
tensor Rabcd and Zabcd analogous to the Euler integrants, namely

L(m,n) = (2(m+n))!
2m+n R

[a1b1
a1b1

· · ·Rambmambm
Z
ã1b̃1
ã1b̃1
· · ·Z ãmb̃m]

ãmb̃m
.

It is clear that when n = 0, the above gives rise to the Euler
integrands, i.e.

L(k,0) = E(k) .



The Lagrangian for the general theory is then given by

L =
√
−g

∑
k=0

∑
m+n=k

γmnL
(m,n) ,

where γmn are coupling constants. It is somewhat tedious but
straightforward to verify that all the field equations remain second
order in derivatives.



General p-form 1512.09153.

The construction in the previous section can be easily general-
ized to general (p − 1)-form potential A(p−1) whose p-form field
strength is given by

F(p) = dA(p−1) , Fa1···ap = p∇[a1Aa2···ap] .

For simplicity of notations, we construct corresponding Z tensors

Za
1···ap
b1···bp = F a

1···apFb1···bp .

The generalizing polynomial of the p-form to L(m,n) of the 2-form
field strength is then given by

L(m,n),p =
(2m+ pn)!

2m(p!)n
R

[a1b1
[a1b1

· · ·Rambmambm
Z
a1

1···a
p
1

a1
1···a

p
1
· · ·Za

1
n···a

p
n]

a1
n···a

p
n]
,

When p is odd, we have L(m,n),p = 0 for n ≥ 2.

As p increases, the above construction is not unique. We shall
not classify all possible ghost-free structures here.



p = 1, Horndeski gravity

When p = 1, the 1-form field strength of an axion-like scalar χ is
dχ = ∂µχdxµ. A low-lying example of Einstein-Horndeski gravity
is

I =
1

16π

∫
dnx
√
−g L , L = κ(R− 2Λ)− 1

2(αgµν − γGµν)∂µχ∂νχ .

The theory was constructed by Horndeski in the 70s.
(Int.J.Theor.Phys.10,363 (1974).)

It was recently “rediscovered” in cosmology by covariantizing
higher-derivative Galileon gravity. Galileon Gravity: Nicolis, Rat-
tazzi and Trincherini, 0811.2197; Galileon/Horndeski relation: D-
effayet and Steer, 1307.2450.



AdS Black holes and Thermodynamics

Static (AdS) black holes in Horndeski gravity were constructed
(e.g. Anabalon, Cisterna and Oliva, 1312.3597.) (See also, Ri-
naldi, 1208.0103; Babichev, Charmousis, 1312.3204, Minamitsu-
ji, 1312.3759, Sotiriou, Zhou, 1408.1698, Babichev, Charmousis,
Hassaine, 1503.02545.)

Thermodynamical properties were recently analysed in our papers
1509.07142, 1512.02659.



Three surprises

We found three surprises 1509.07142, 1512.02659.

• The Wald entropy formula S = −1
8

∫
dn−2x

√
h ∂L
∂Rabcd

εabεcd is
not valid.

• The black hole quantum statistic relation IT = M−TS is not
valid, where I is the Euclidean action.

• the completion of the first law requires an introduction of

scalar charge on the horizon. It turns out that
√

(∂χ)2 ∼ Qχ
does not vanish on the horizon, and the first law becomes
dM = TdS + ΦedQe + Φ+

χ dQ
+
χ , where M appears in gtt as

−2M/r.

At least the Wald entropy formula is is consistent with the QSR.

By “invalid”, we mean that the resulting mass M is not propor-
tional to µ in −µ/r in gtt, associated with the graviton condensate,
but rather a very convoluted function of µ involving an inverse
function of the hypergeometric function.

Since one does not expect surprises in classical gravity, so it is
worth checking the papers out.



Non-minimally coupled Maxwell field p = 2

Lagrangian

L =
√
−g
(
R− 2Λ0 − 1

4F
2 + γL(1,1)

)
,

where

L(1,1) = 1
4δ
cdc̃d̃
abã̃b

RabcdZ
ã̃b
c̃d̃

= RF2 − 4RabF
acF bc +RabcdF

abF cd .

In other words, the theory is the Einstein-Maxwell theory with
a cosmological constant, with an additional L(1,1) term. The
Einstein equations of motion are

Gµν + Λ0gµν − 1
2(F2

µν − 1
4gµνF

2) + γL
(1,1)
(µν) = 0 ,

where

L
(1,1)
µν = −1

2gµνL
(1,1) + 1

2δ
cdc̃d̃
abãµR

ab
cd Fc̃d̃F

ã
ν + 1

4δ
cdc̃d̃
aµã̃b

RaνcdZ
ã̃b
c̃d̃

+1
2gcµδ

cdc̃d̃
νbã̃b
∇b∇d (Z ã̃b

c̃d̃
) .

The Maxwell equation is

∇µF̂µν = 0 , with F̂µν ≡ Fµν − δcdµν
abã̃b

RabcdF
ã̃b .

Owing to the Bianchi identity of the Riemann tensor, the differ-
ential operator ∇µ can only land on F , but not R.



Black holes in four dimensions

The general static black holes involve three parameters, the mass
M , electric charge Qe and magnetic charge Qm. We find analyt-
ical solutions for the following parametrizations (1512.09153)

• Purely magnetic Qe = 0;

• Purely electric z = 2 charged Lifshitz black hole Qm = 0;

• Small Qe and Qm, up to quadratic order in Q2
e and Q2

m;

• Small coupling γ, up to the linear order of γ, with general
dyonic charge.

Black hole thermodynamics

• Wald entropy formula works.

• QSR does not. Maybe a general feature for these theories,
and hence possible for all string theories.



E.g. z = 2 Lifshitz black hole

When the parameters satisfy 8γΛ0 = 3, we have

ds2 = −hdt2 +
dr2

f
+ r2dΩ2

2,ε , A = φdt ,

f = g2r2 + ε−
gq
√
r2 + 4µ

2r
, h = (r2 + 4µ)f ,

φ = g(r2 − r2
0) , Λ0 = −1

3g
2 .

T =

√
f ′(r0)h′(r0)

4π
, S = πr2

0 ,

M = 1
2gqµ , Qe = 1

4q , Φe = −g(r2
0 + 2µ) .

dM = TdS + ΦedQe , M = 1
2(TS + ΦeQe) .



Application in the AdS/CFT

Viscosity/entropy ratio

η

S
=

1

4π

r4
0 + 32γQ2

e

r4
0 + 32γQ2

m
, QeQm = 0 .

The result was obtained without having to know the detail of the
solutions and hence the parameters are universally applicable.

This is satisfactory since one of our motivation is to construct
higher-derivative gravities where the coupling constants do not
have to be small.



Einstein-vector theory

Let us consider the Einstein-Maxwell gravity

L =
√
−g(R−

1

4
F2) , F = dA .

we add a non-minimal coupling between gravity and the vector
√
−g γ GµνAµAν ,

where Gµν = Rµν − 1
2gµνR is the Einstein tensor and γ is some

coupling constant. (1511.03681, with Wei-Jian Geng.)

The theory can be viewed as the gauging of the axion global
shifting symmetry of Horndeski gravity: ∂µχ→ ∂µχ+Aµ → Aµ.

(* This “gauging” can be done to any p-form field strength to
become p-form potential. *)

We see immediately that the U(1) symmetry is broken. So now
the question is whether this term can be easily invalidated by an
experiment or observation?



Experiment test

Owing to the fact that gravity is extremely weak compared to
other forces, we typically ignore gravity in elementary particle
physics, in our current experimental scale.

This term is unlikely to have any testable effect on LHC physics.



Observational test: Is light still light?

In the Minkowski vacuum or some more general backgrounds
such as Schwarzschild or Kerr black holes, Gµν vanishes. The
linear fluctuations of the theory in these backgrounds consist
only the massless graviton and photon, and hence the U(1) gauge
symmetry emerges. So we do see light as light at the linear level.

However, in our universe, Gµν 6= 0.



Observational effect, due to matter

In our current Universe, the contribution to the spacetime cur-
vature due to electric-magnetic fields are negligible, and hence
it can be viewed as a background with vanishing A. The matter
energy-momentum tensor in the Einstein equation

Gµν = Tmat
µν ,

has mainly three sources

• Baryon and lepton matter. Typically localized. For dust-
like distributed matter, its direct interaction with light is far
greater than this term.

• Dark energy: Could give a global mass to A, although not
necessary. Extremely small anyway. Couloum’s law remains
effective long ranged.

• Dark matter: Can give a Lorentz violating and gauge-symmetry
breaking, and should be observable.

√
−g γ GµνAµAν →

√
−g γ TDM

µν AµAν ,

No observable effects within the scale of the solar system.



Two-derivative theory

We shall focus on the simpler theory where curvature appears
linearly

L =
√
−g
(
R− 2Λ0 − 1

4F
2 − 1

2µ
2
0A

2 + βRA2 + γGµνAµAν
)
.

Here (Λ0, µ0, β, γ) are constants.

Vacuum: (A)dS with

Gµν = −Λ0gµν , A = 0 ,

Vacuum linear fluctuations consist only of a massless graviton
and a Proca field with mass

µ2
eff = µ2

0 − 4D
D−2βΛ0 + 2γΛ0 .

Becomes a Maxwell field if µeff = 0.



Vector Cosmology

FLRW ansatz

ds2 = −dt2 + a(t)2(dx2
1 + dx2

2 + dx2
3) , A = φ(t)dt .

If A were a Maxwell field, this ansatz would be a pure gauge.

Cosmological application were also studied by Jimenez, Maroto



de Sitter bounce

Redefine the parameters

µ2
0 = 12β µ2ν , γ =

2β(2ν − 1)

ν
.

The general solution is given by

a = [cosh(µt)]ν , φ2 = sinh(µt)[cosh(µt)]1−3ν ψ ,

where

ψ̇ =
µν

β
[cosh(µt)]3ν−2 −

Λ0[cosh(µt)]3ν

3βµν [sinh(µt)]2
.

This can be solved in terms of hypergeometric functions, given
by

ψ =
ν

β

(
ψ0 + 2F1[1

2,−
3
2(ν − 1); 3

2;− sinh2(µt)] sinh(µt)

+
Λ0

Λeff sinhµt
2F1[−1

2,−
1
2(3ν − 1); 1

2;− sinh2(µt)]
)
,

where Λeff = 3µ2ν2 and ψ0 is an integration constant, which we
shall set 0. The metric function a clearly describes a bounce at
t = 0.



The reality condition for φ for all the comoving time range (−∞,∞)
gives some restrictions on Λ0 and ψ0. We shall focus on the case
with βν > 0.

For ν > 2
3, in the asymptotic t → ±∞ region, the function φ

approaches a constant, given by

φ2 →
ν

(3ν − 2)β

(
1−

Λ0

Λeff

)
.

Thus the full reality condition requires that 0 ≤ Λ0 ≤ Λeff. In one
limit, Λ0 = 0, we have

φ2 =
ν

β
[cosh(µt)]1−3ν sinh2(µt) 2F1[1

2,−
3
2(ν − 1); 3

2;− sinh2(µt)] .

This de Sitter bounce is generated by “dark energy” without
bared cosmological constant. Although the hypergeometric func-
tion is already rather straightforward, we present the simplest
ν = 1 solution in which the hypergeometric function becomes
identity.



The ν = 1 bouncing universe with Λ0 = 0 is

ds2 = −dt2 + cosh2(µt)(dx2
1 + dx2

2 + dx2
3) , A =

tanhµt
√
β

dt .

In the other limit with Λ0 = Λeff, we have

φ2 =
ν

β
[cosh(µt)]1−3ν

2F1[1
2,−

3
2(ν − 1); 1

2;− sinh2(µt)] .

The ν = 1 solution is given by

ds2 = −dt2 + cosh2(µt)(dx2
1 + dx2

2 + dx2
3) , A =

1
√
β coshµt

dt .

The Λeff = Λ0 solutions are particularly interesting, since as t→
±∞, we have φ → 0. Furthermore, it turns out in this case, the
effective mass µeff of the “photon” field, vanishes precisely.

Thus the Λ0 = Λeff solutions describe the bounce between two de
Sitter vacua with A = 0, whose linear spectrum contains precisely
one graviton and one photon.



Resolving cosmic singularity?

A concrete example of Λ0 = Λeff = 3µ2ν2, and ν = 1.

ds2 = −dt2 + cosh2(µt)(dx2
1 + dx2

2 + dx2
3) , A =

1
√
β coshµt

dt .

µ2
0 = 4βµ2 , γ = 2β , Λ0 = 3µ2 .



Static solutions Black holes

Let us consider

L1 =
√
−g
(
R− 1

4F
2 + γGµνAµAν

)
.

Schwarzschild and Kerr black holes are solutions, and hence New-
tonian gravity can be recovered. But we find a new asymptotically-
flat black hole for γ = 1

4, namely

ds2 = −fdt2 +
dr2

f
+ r2dΩ2

2 , A = 2
√

2 f dt , f = 1−
√
r0

r
.

Such a black hole cannot be ruled out since Newtonian gravity is
not application in the scale of a galaxy. For γ 6= 1

4, the leading
falloff is the standard 1/r.

Not clear if there is any significance of this solution.



Wormholes

The theory

L2 =
√
−g
(
R− 2Λ0 − 1

4F
2 + γ(Gµν + Λ0gµν)AµAν

)
.

Solutions (Asymptotically (A)dS)

ds2 = −h dt2 +
dr2

f
+ r2dΩ2

2,ε , A = φdt .

f = −1
3Λ0r

2 +ε−m
r , h = h0 + 1

2

(
1+

√
1 + 4h0

f

)
f , φ =

√
−2h0

γ .

Asymptotically flat Λ0 = 0 and ε = 1:

h =


h0 + 1

2(h0 − 1)2
(

1 +
√

1 + 4h0
(h0−1)2f

)
f, 0 < h0 < 1;

1, h0 = 1;

h0 + 1
2(h0 − 1)2

(
1−

√
1 + 4h0

(h0−1)2f

)
f, h0 > 1 .

f = 1−
m

r
, φ = φ0 ≡

√
−

2h0

γ
, γ < 0 .



A superpotential method

Consider the ansatz:

ds2 = a2b4 dρ2 − a2dt2 + b2dΩ2
2 , A = φ dt ,

where (a, b, φ) are functions of the radial coordinate ρ. We find
that the effective one-dimensional Lagrangian is L = T −V where
the kinetic T and potential V energies are

T =
(

2−
γφ2

a2

)
a′b′

ab
+
(

1 +
γφ2

a2

)
b′2

b2
+

2γφφ′b′

a2b
+

φ′2

4a2
,

V =
1

4
b2(−4a2 + 4Λ0a

2b2 − 2γφ2 + 2γΛ0b
2φ2) .

The superpotential method is first to treat the kinetic term T as
some one-dimensional σ-model

T = 1
2gij(X

i)′(Xj)′ .

If the potential V can be expressed in terms of a superpotential
W as

V = −1
2g
ij dW
dXi

dW
dXj ,

the Lagrangian then admits special solutions that satisfy the first-
order equations

(Xi)′ = gij
∂W

∂Xj
.



For the static ansatz, we find that a superpotential indeed exists,
given by

W =
1

a
(2a2 + γφ2)

√
b(b ε− 1

3Λ0b
3 −m) ,

where m is an arbitrary constant, which turns out to be the mass
of the solution. The resulting first-order equations are

a′ =
ab(3m− Λ0b

3)(2a2 + γφ2)2

6W (2a2 − γφ2)
, b′ = −

b2(3m− Λ0b
3)(2a2 + γφ2)2

3W
, φ′ = 0 .

These two first-order equations can be solved easily and we find
that the solutions are the wormholes that we saw earlier.

The wormholes arise as solutions of first-order system is sugges-
tive that they are stable against perturbation.



Lifshitz black holes

ds2 = `2
(
− r2zfdt2 +

dr2

r2
+ r2(dx2

1 + dx2
2)
)
, A = qrz `fdt .

f = 1−
(r0

r

)1+1
2z ,

q2 =
4(z − 1)(4− z)(3z + 2)

z(z + 2)(z + 10)
, `2 =

z(z + 2)(2 + 5z + 4z2 − 2z3)

µ2
0(z − 1)(4− z)(3z + 2)

,

γ = −
(z + 2)(8− 8z + 5z2)

2(z − 1)(z − 4)(3z + 2)
, β = −

z2 − z + 2

2(z − 1)(3z + 2)
,

Λ0 = −
z(z + 2)(3 + 5z + z2)q2

4(z − 1)(4− z)(3z + 2)`2
.



Charged Lifshitz black holes

With an additional Maxwell field A, we find a charged z = 6
Lifshitz black hole. We present the solution in four dimensions

ds2 = `2
(
− r12fdt2 +

dr2

r2f
+ r2(dx2

1 + dx2
2)
)
, A =

√
5

8(1+10β) f r
6 `dt ,

A = (ψ0 +Qr4) `dt , f = 1−
4(1 + 10β)Q2

(4 + 25β)r4
,

Λ0 =
(7 + 40β)µ2

0

256β(1 + 10β)
, γ = −2− 30β , `2 = −

384β

µ2
0

.

where the parameter − 1
10 < β ≤ ∞, with the following constraint

− 1
10 < β < 0 , µ2

0 > 0 ;
β = 0 , µ2

0 = 0 ;
β > 0 , µ2

0 < 0 .



Randall-Sundrum domain walls

ds2 = dr2 + a(r)2(−dt2 + dx2
1 + dx2

2 + dx2
3) , A = φ(r) dr .

We rewrite the parameters in terms of (µ, ν) given by

µ2
0 = 16β µ2ν , γ =

2β(5ν + 2)

3ν
.

The domain-wall solutions are given by

a =
1

coshν(µr)
, φ2 =

3ν

2β
[cosh(µr)]1+4νψ ,

ψ = ψ0 sinh(µr) + sinh2(µr) 2F1[1
2,

3
2 + 2ν; 3

2;− sinh2(µr)]

+
Λ0

Λeff
2F1[−1

2,
1
2 + 2ν; 1

2;− sin2(µr)] ,

where Λeff = −6µ2ν2, and ψ0 is an integration constant. Keep
in mind that the parameters of the solution should be that φ2 is
non-negative for all r ∈ (−∞,∞).



Trapping of gravity

It is subtler than the Randall-Sundrum case; but we believe that
it traps gravity. The D = 4 on-shell graviton is

hµν = ξµνe
ip·x , p2 = 0 = p · ξ = ξµµ .∫

dr
√
−g |Ψ0|2 =

∫ ∞
−∞

dr [cosh(µr)]−4ν .

Also substitute the background into the action, we have∫ ∞
−∞

dr
√
−gL ∼

∫ ∞
−∞

µ2ν(5ν cosh(2µr)− 5ν − 4)

[cosh(µr)]2+4ν

= 6µν
2ν+1

(
2F1[1,−2ν − 1; 2ν + 1;−1]− 1

)
.

Both are finite for positive ν.



Conclusions

• Higher-derivative gravities contain many interesting critical
points.

• Lovelock gravities can be generalized to include a generic
non-minimally coupled p-form.

• The construction provides toy models of higher-derivative ef-
fective theories of strings.

• Theories contain rich structures in the solution space.

• In higher-derivative gravities with non-minimally coupled mat-
ter, one cannot read off the matter energy-momentum tensor
by simply calculating the Einstein curvature tensor Gµν, and
hence many no-go theorem can be evaded.

• Unusual black hole thermodynamics arises.

• QSR may be generally invalid. This appears to be a rather
universal feature in theories involving non-minimally coupled
derivative matter.

• What we have done so far is only the tip of the iceberg, and
there is no reason to rule them out.

• Quantum gravity remains elusive until one understands the
vast space of possible theories that respect the underlying
symmetry principle of General Relativity.


