

The Stereoscopic Holographic Dictionary

JAMES SULLY

B. Czech, L. Lamprou, S.McCandlish, B. Mosk, JS arXiv: 1604.03110

B. Czech, L. Lamprou, S.McCandlish, B. Mosk, JS arXiv: 160X.XXXX

(Related Work: de Boer, Haehl, Heller, Myers)

Strings 2016, Tsinghua University August 2016

Motivation

There is an uncomfortable asymmetry in our use of the holographic dictionary:

Boundary: Gauge-invariance is sacrosanct.

We always use gauge-invariant observables to probe the bulk and vice-versa.

Bulk: Diff-invariance is required... in the same way that flossing is required.

- When we visit an expert twice a year, we acknowledge the importance of diffinvariance.
- We really only worry about it once a month or so.

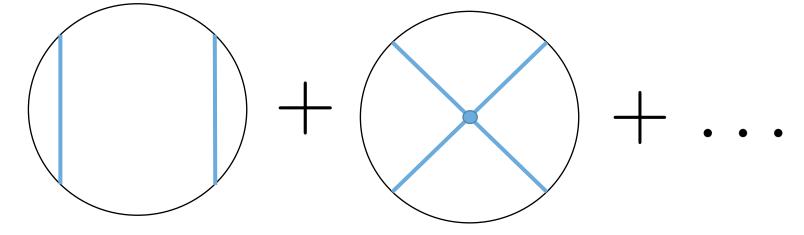
Worrying about diff-invariance is largely seen as adding unpleasant (and unnecessary) complications

So, instead, we just work with the 'local' effective operators.

What has locality done for us lately?

Using these non-invariant effective observables is **meant to be an easier** way to do bulk calculations:

$$\langle \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \mathcal{O}_4 \rangle =$$



— hard integrals ...

CFT:

$$\langle \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \mathcal{O}_4 \rangle = \sum_k C_{12k} C_{k34} g_k^{1234} (x_i)$$

How do we compare?

Standard picture is much easier?

Not really....

... then, are diff-invariant (non-local) variables really that bad?

Aim of this talk: NO.

Questions:

- 1. What is an **improved gauge/gravity dictionary** that is **gauge-invariant** on one side and **manifestly diff-invariant** on the other?
- 2. Can we find a **better connection to the natural CFT variables** that make the OPE so simple?

Answer:

Stereoscopic Dictionary:

Surface Operators in AdS (Non-local, diff-invariant)

 \rightarrow

Partial Waves of the OPE (building blocks of the OPE)

The Kinematic Dictionary

This will be a **powerful framework**. It brings together many familiar ideas in holography, including:

- 1. The Entanglement First Law and Einstein's Equations [Faulkner, Guica, Hartman, Lashkari, McDermont, Myers, Swingle, Van Raamsdonk]
- 2. Geodesic Witten diagrams and conformal blocks [Hijano, Kraus, Perlmutter, Snively]
- 3. The **HKLL** construction of interacting **'local' bulk fields** [Hamilton, Kabat, Lifschytz, Lowe; Kabat, Lifschytz]
- **4. de Sitter dynamics** for the variations of **EE** [de Boer, Heller, Myers, Neiman] [Nozaki, Numasawa, Prudenziati, Takayanagi], [Bhattacharya, Takayanagi]

Lesson from gauge theories

You might be familiar with a similar story:

We typically formulate a gauge theory in terms of a **gauge potential** $A\downarrow\mu\uparrow\alpha$ (X) and the corresponding **field strength** $F\downarrow\mu\nu\uparrow\alpha$, where the equation of motion is

$$(\nabla^{\mu} F_{\mu\nu})^a = 0$$

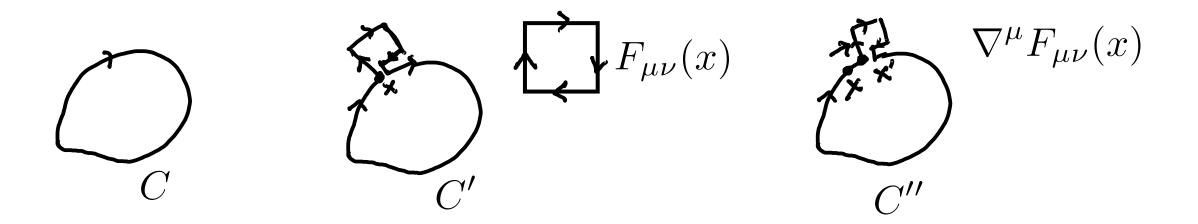
But the inclusion of the gauge field is just a **redundancy of the description**. It's unfortunate to have to use such an **inefficient representation** of the physics.

However, we do have a complete set of gauge-invariant observables $\Psi(C)=\mathrm{Tr}\left[\Pr\exp(\oint_c A_\mu dx^\mu)\right] \qquad W(C)=\langle\Psi(C)\rangle$

Can we express the dynamics of the theory in terms of these variables alone? (That is, can we write an equivalent EOM in the space of loops?)

Loops

How do we insert the equation of motion into a Wilson loop?



Loop Equation: $\Box_L W = 0$ (Classically)

• Can also define a field space Laplacian $\Box \downarrow F$, and view Wilson loop as a 'loop transform' W of the gauge field. At large N:

$$\Box_L W\left[A\right] = -W\left[\Box_F A\right]$$
 Intertwining Operators

Requirements for a new language

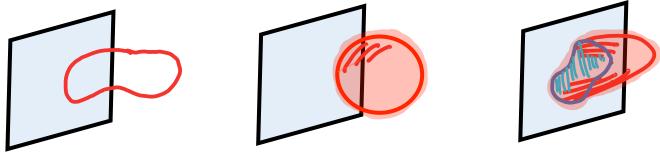
The loop equations are **analogous** to the organization of gravitational physics we have been looking for.

We might re-express our search for the correct language:

- 1. What is the right loop space for gravity?
- 2. What are the loop operators and their loop equations for bulk physics?
- 3. What do the loop equations and loop operators look like in the gauge theory?

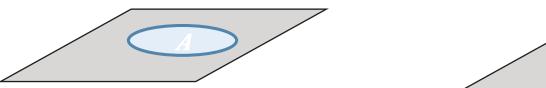
Loop Space = ?

We need to understand: what is the right loop space for gravitational physics in AdS/CFT?



Thankfully an example of the type of construction we're searching for has already been found: Ryu-Takayanagi Proposal.

The Ryu-Takayanagi (RT/HRT) proposal connects:



The **entanglement entropy** of a region A on the boundary.

The **area of a minimal surface** S in the gravitational dual

Integral Geometry

What is the lesson from Ryu-Takayanagi?

The CFT sees the bulk geometry naturally through codimension-2 minimal surfaces.

Boundary conditions are codimension-2 surfaces on the CFT cylinder

One could define the relevant loop space to be all possible spacelike surfaces.

• Probably enormously redundant: infinite-dimensional space

Let's define our loop space to be the space of minimal surfaces with spherical boundary conditions (in any frame)

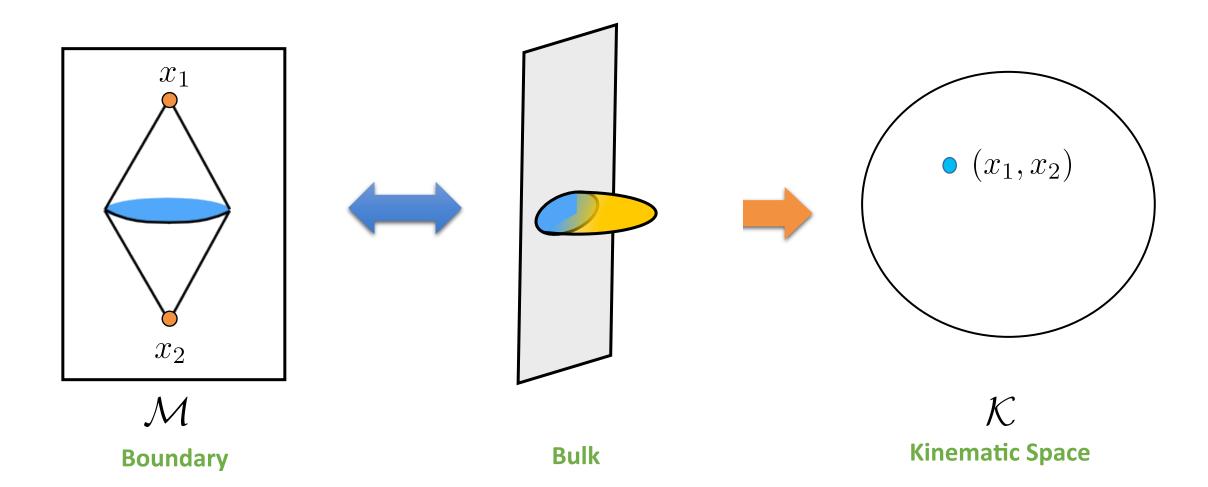
We will give it a new name: Kinematic Space

 Familiar object of study for some mathematicians: it is a primary object in the field of integral geometry.

Kinematic Space

What does kinematic space look like?

• Consider an ordered pair of timelike separated points on the boundary:



Kinematic Space

Can we assign a metric to kinematic space?

• For the **AdS vacuum**, the metric on K is **uniquely fixed by isometries** of the geometry:

- In some cases, we understand how to specify a metric on kinematic space even when it's not fixed by symmetry
- Geometries are equivalent
 ⇔ map from real space to kinematic space is invertible.
 - This is an active area of mathematical research (Boundary Rigidity / Lens Rigidity)

Kinematic Fields

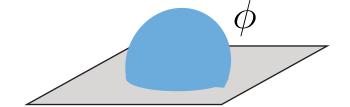
We want to generalize the Ryu-Takayanagi example to describe all of the bulk physics. We also need the right 'Wilson Loops' in addition to the right space.

• We can think of their areas as integrating the unit operator over the minimal

surface:

 $A = \int d^n x \sqrt{h}(1)$

$$\tilde{\phi} = \int d^n x \sqrt{h}(\phi)$$

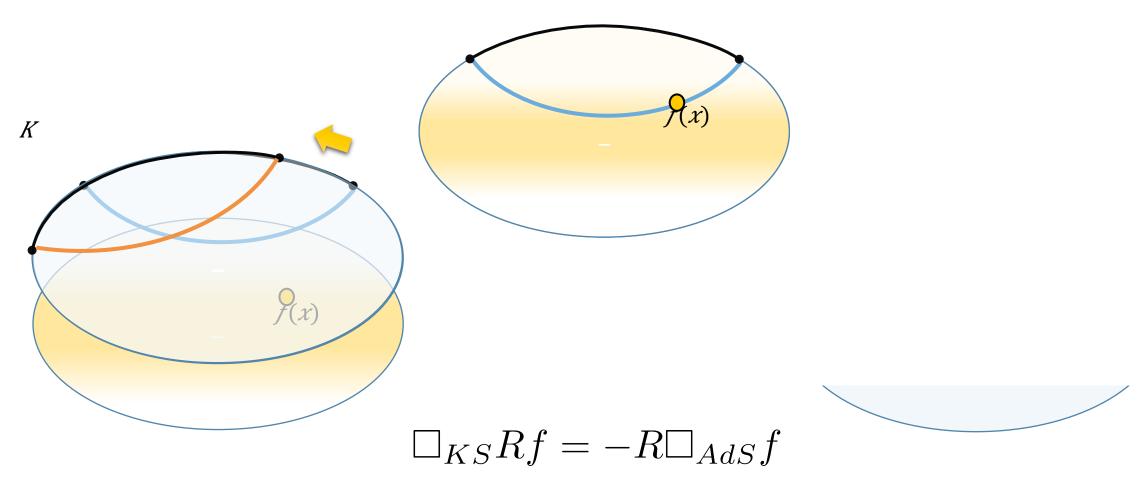


Radon Transform: $R[\phi] = \phi$

This bulk surface/geodesic operator is a non-local and diff-invariant bulk

Radon Transform

The Radon transform has nice properties under isometries of the geometry:



"Intertwining Operators"

Loop Equations in kinematic space

Intertwinement allows us to rewrite the dynamics of the gravitational theory in terms of dynamics on kinematic space:

Free Scalar Field:

$$\left(\Box_{AdS} - m^2\right)\phi(x) = 0 \iff \Box_{KS}Rf = -R\Box_{AdS}f$$

$$(\Box_{KS} + m^2)\tilde{\phi}(\gamma) = 0$$

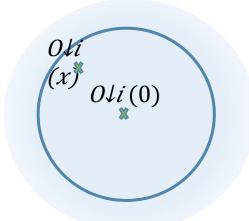
Loop EOM for free scalar = Kinematic Free scalar EOM

The Operator Product Expansion

We've found a **natural set of gravitational variables** that are non-local, and that contain the information normally specified using local 'differential' description.

We haven't succeeded unless these appear naturally in the dual gauge theory:

• Consider a quasi-primary operator $O\downarrow i(x)$ of dimensions $\Delta\downarrow i$. We can expand the product of two such operators using a local basis of operators:



$$\mathcal{O}_{i}(x)\,\mathcal{O}_{i}(0) = \sum_{k} C_{iik} |x|^{\Delta_{k}-2\Delta_{i}} \left(1 + b_{1} x^{\mu} \partial_{\mu} + b_{2} x^{\mu} x^{\nu} \partial_{\mu} \partial_{\nu} + \ldots\right) \mathcal{O}_{k}(0)$$

Dynamical Parameters

Conformal Kinematics

Let us introduce a more compact notation for this expansion

$$\mathcal{O}_i(x) \mathcal{O}_i(y) = |x - y|^{-2\Delta_i} \sum_{i} C_{iik} \mathcal{B}_k(x, y)$$

• We will call $B\downarrow k\uparrow (x,y)$ the 'OPE Block'

OPE Blocks as Kinematic Fields

• The OPE block carries coordinates of two points (x,y), so we might naturally identify it with a **'loop operator' living in our kinematic space**.

Consider a scalar block $(\Delta \downarrow k, l=0)$. Let's characterize this field:

1) What type of field is an OPE block on KS?

• Consider a conformal transformation $x \to x \uparrow f$. Then $\mathcal{B}_k(x,y) \to \mathcal{B}_k(x',y')$ So the OPE block is a scalar operator.

2) What is its equation of motion?

• Eigen-operator of the conformal Casimir: $\begin{bmatrix} L^2, \mathcal{B}_k\left(x,y\right) \end{bmatrix} = C_{\mathcal{O}_k}\mathcal{B}_k\left(x,y\right)$ $C_{\mathcal{O}_k} = -\Delta\left(\Delta - d\right)$

We represent this as

$$\mathcal{L}^2_{(B)} = 2\square_{\mathrm{KS}}$$

OPE Blocks as Kinematic Fields

We thus find an equation of motion for the OPE block

$$\left[\Box_{KS} + m_{\Delta_k}^2\right] \mathcal{B}_k(x, y) = 0$$

$$m_{\Delta_k}^2 = -C_{\Delta_k}$$

	Gravity	CFT	
EOM	$\left[\Box_{KS} + m_{\Delta_k}^2\right] \tilde{\phi_k}(\gamma) = 0$	$\left[\Box_{KS} + m_{\Delta_k}^2\right] \mathcal{B}_k\left(x, y\right) = 0$	
BCs	$\lim_{x \to 0} \tilde{\phi}_k(x,0) = x^{\Delta_k} \mathcal{O}_k(0)$	$\lim_{x \to 0} \mathcal{B}_k(x,0) = x^{\Delta_k} \mathcal{O}_k(0)$	
Constraint	'John's Equations'	'Spin'	

*Generic theory on KS has infinite tower of spins...

The Kinematic Dictionary

We have now established a **new organization of the holographic dictionary**

$$\mathcal{B}_k(x,y) = \tilde{\phi}(\gamma)$$

between OPE Blocks and geodesic operators (and extensions to surface operators).

Requirements for a new language

We might re-express our search for the correct language:

- 1. What is the right **loop space for gravity**?
 - A: Kinematic space of minimal surfaces
- 2. What are the loop operators and their loop equations for bulk physics?

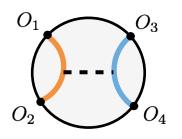
 A: Surface operators. Their loop equations take the form of simple equations of motion in kinematic space.
- 3. What do the loop equations and loop operators look like in the gauge theory?
 - A: The gauge theory sees the loops equations through the decomposition of the operator product expansion.

Some Applications

(see paper for details)

1. Geodesic Witten Diagrams

$$g_k(z,\bar{z}) = \langle 0 | \mathcal{B}_k(x_1, x_2) \mathcal{B}_k(x_3, x_4) | 0 \rangle$$

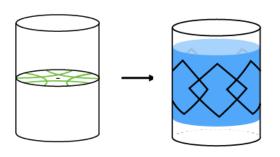


[Hijano, Kraus, Perlmutter, Snively]

2. Local Operators

- The radon transform is invertible: $\phi(\gamma) \rightarrow \phi(x)$
- Recover the spacelike smearing function of HKL

$$\phi(x,z) = \int d^d x' K(x,z|x') \mathcal{O}(x')$$



[Hamilton, Kabat, Lifschytz, Lowe]

3. Interactions

- Usefulness of construction isn't just kinematic—allows for simpler solution to bulk dynamics.
- For example, much of difficulty of finding interacting bulk fields comes from locality, not interactions!

$$\phi(x,z) = \int d^d x' K(x,z|x') \mathcal{O}(x') + \frac{1}{N} \sum_n a_n^{CFT} \int d^d x' K_n(x,z|x') \mathcal{O}_n(x')$$
$$\tilde{\phi}(\gamma) = \mathcal{B}_{\Delta}(\gamma) + \frac{1}{N} \sum_n a_n^{CFT} \mathcal{B}_n(\gamma)$$

[Kabat, Lifschytz]

4) Linearized Einstein Equations

• We have the linearized EOM: $\delta R_{\mu\nu}(x) = T_{\mu\nu}(x) - \frac{1}{d-1}Tg_{\mu\nu}$

• Can define Radon Transforms:

$$R_{\parallel} [s_{\mu\nu}] = \int_{B} \sqrt{h} h^{ab} \delta g_{ab}$$

$$R_{\perp} [s_{\mu\nu}] = \int_{B} \sqrt{h} (g^{ab} - h^{ab}) \delta g_{ab}$$

and prove an analogous intertwining relation: $R_{||}\left[2\delta R_{\mu\nu}
ight] = \Box_K R_{||}\left[\delta g_{\mu\nu}
ight]$

We find the Kinematic version of the EOM:

$$\left(\Box_{KS} + 2d\right) R_{\parallel} \left[\delta g\right] = -2R_{\perp} \left[T\right]$$

What about the CFT?

Cf. [Faulkner, Guica, Hartman, Lashkari, McDermont, Myers, Swingle, Van Raamsdonk]

$$H_{\text{mod}} = 2\pi \int_{|x| < R} \frac{R^2 - r^2}{2R} T_{00} \propto \mathcal{B}_{T_{00}}$$

H↓mod is just an OPE Block!

- Casimir Eqn: $\left(\Box_{KS}+2d\right)H_{\mathrm{mod}}=0$
- Using the 1/N expansion

$$H_{\mathrm{mod}} = A + H_{\mathrm{mod}}^{Bulk}$$
 $H_{\mathrm{mod}}^{Bulk} = \int_{\Sigma} d\Sigma T_{\mu\nu} \xi^{\mu} n^{\nu}$

• Then for a perturbation around the vacuum:

$$(\Box_{KS} + 2d) H_{\text{mod}} = 0$$
 \Leftrightarrow_{τ} $(\Box_{KS} + 2d) R_{\parallel} [\delta g] = R_{\perp} [T]$

Read in the opposite direction, this is a derivation of the bulk expression for Hlmod.

Summary

We found a set of **non-local**, **gauge-invariant building blocks** both in the bulk and on the boundary to build a **'better' holographic dictionary**.

- On the boundary: OPE blocks
- In the bulk: Geodesic/Surface Operators

Finding the right kinematic variables isn't just kinematics:

Our improved dictionary simplifies many dynamical bulk calculations.

Where next?

• Must extend formalism away from small perturbations about vacuum.