Divide and Conquer - An Integrability Status Report

Pedro Vieira Perimeter Institute & ICTP-SAIFR

Punch-line and an highlight

- In AdS₅, string amplitudes with complex topologies can be cut into rectangular, pentagonal or hexagonal patches which can be *Bootstrapped using Integrability at any 't Hooft coupling*.
- Amplitudes are given as infinite sums and integrals arising from stitching back these patches.
- Sometimes we can re-sum (part of) these sums/integrals (often finding hints of yet to be understood structures).
- Comparisons with weak and strong coupling computations work (so far) and they are key in developing new integrability tools themselves. "Shut up, calculate and contemplate"

[..., Komatsu, Fleury "Hexagonalization of Correlation Functions" 1611.05577, ...]

Outline

- 2D and Integrability
- Spectrum (i.e. cylinder)
- Beyond the Spectrum (i.e. other topologies)
- Open problems

Start in 2D

- Strings are two dimensional.
- 4D large N gauge theories are *also* string theories when properly thought of.
 - Correlation functions of n single trace operators = n closed strings
 - Flux tubes = open strings

A Zoo of 2D Possibilities

Cylinder [Beisert et al review 2009]

Sphere with Four Punctures

Sphere with Four Punctures and one Handle

Disk with Circular Boundary [Giombi, Roiban, Tseytlin 2017]

Disk with Null Polygonal Boundary [Alday, Maldacena 2007,...]

2D QFT on funny topologies

A Zoo of 2D Possibilities

Disk with Circular Boundary Cylinder Sphere with Four Punctures [Giombi, Roiban, Tseytlin 2017] [Beisert et al review 2009] Sphere with Four Punctures Pair of pants Disk with Null Polygonal Boundary and one Handle [Alday, Maldacena 2007,...]

Integrability

[BHs at the LHC]

Integrability

In 2D $Q_1 = \sum p_j , Q_2 = \sum p_j^2 , \Rightarrow \{p_1, p_2\} = \{p'_1, p'_2\}$ Integrability : If $\exists Q_3 = \sum p_j^3 \Rightarrow \{p_1, p_2, p_3\} = \{p'_1, p'_2, p'_3\}$

Integrable Spin Chains at Weak Coupling, Integrable Classical Ripples at Strong Coupling

composite operator in the gauge theory:

 $\mathcal{N}=4$ SYM

Unusual and rich 2D particle theory

$$E(p) = \sqrt{1 + 16g^2 \sin^2 \frac{p}{2}}$$

HALF SPIN-CHAIN MAGNON, HALF RELATIVISTIC PARTICLE

Rapidity u

$$\begin{cases} e^{ip(u)} = \frac{x(u+i/2)}{x(u-i/2)} \\ E(u) = \frac{2ig}{x(u+i/2)} - \frac{2ig}{x(u-i/2)} \\ x(u) = \frac{u+\sqrt{u^2-4g^2}}{2g} \end{cases} \Leftrightarrow E(p) = \sqrt{1+16g^2 \sin^2 \frac{p}{2}} \end{cases}$$

Crossing particle into antiparticle is a path in u:

A **mirror** transformation - or Wick rotation - is half that.

Both are non-perturbative

Analogue of usual hyperbolic rapidity

$$p(\theta) = m \sinh(\theta)$$

$$\Leftrightarrow E(p) = \sqrt{m^2 + p^2}$$

$$E(\theta) = m \cosh(\theta)$$

Crossing here is just translation of rapidity by $i\pi$. A mirror transformation - or Wick rotation - is half that.

The Planar Spectrum of a Gauge Theory

Quantum Spectral Curve

[Gromov, Kazakov, Leurent, Volin]

Cute spectrum plots

[Gromov, Levkovich-Maslyuuk, Sizov, 2015]

[Gromov, Kazakov, Korchemsky, Negro, Sizov 2017]

Figure 1: Riemann surface of the function $S(\Delta)$ for twist-2 operators. Plot of the real part of $S(\Delta)$ for complex values of Δ , generated from about 2200 numerical data points for $\lambda \approx 6.3$. We have mapped two Riemann sheets of this function. The thick red lines show the position of cuts. The upper sheet corresponds to physical values of the spin. Going through a cut we arrive at another sheet containing yet more cuts.

Figure 8. Real and imaginary part of the scaling dimension of the nine lowest lying states with J = 3. The curve that starts at $\Delta(0) = 3$ corresponds to the operator $tr(\phi_1^3)$. The pair of states that start at $\Delta(0) = 3 + 2k$ with k = 1, 2, 3, 4 correspond to the operators of the form (1.2) (or rather to their linear combinations diagonalizing the dilatation operator).

N=4 SYM with extreme imaginary twists [Gurdogan, Kazakov 2015]

That is it about the spectrum

Cylinder [Beisert et al review 2009]

Pair of pants

Sphere with Four Punctures

Sphere with Four Punctures and one Handle

Disk with Circular Boundary [Giombi, Tseytlin 2017]

Disk with Null Polygonal Boundary [Alday, Maldacena 2007,...]

... with hindsight, the spectrum was in The Book.

(The Bethe ansatz story; the more sophisticated quantum spectral curve story is definitely new)

The rest is less obvious as it involves dealing with Integrable theories on spaces of various topologies.

Same wonderful 't Hooft world-sheet fabric tailored into different topologies

As such, we should be able to tame any physical observable with a good large N limit - as well as any 1/N correction to it.

What can we do?

• Local operators are *not* the most natural thing in a string theory. After all, in quantum gravity (2d word-sheet gravity in this case) we have no local observables. We have S-matrices. They were key in the spectrum solution.

["Form factors of branch-point twist fields in quantum integrable models and entanglement entropy", Cardy, Castro-Alvaredo, Doyon, 2007]

Creative Patchwork

Pentagon transition amplitude

Spoiler:

Pentagons control scattering amplitudes and Wilson loops. **Hexagons** govern correlation functions.

$$\frac{f_n(\theta, \theta')}{f_n(\theta', \theta)} = 1, \qquad f_n(\theta + i\pi, \theta') \sim \frac{1}{\theta' - \theta} \times 1, \qquad f_n(\theta, \theta' - i\pi) \sim \frac{1}{\theta' - \theta} \times 1 \qquad f_n(\theta + in\frac{\pi}{2}, \theta') = f_n(\theta', \theta)$$

N=4 SYM one can bootstrap **two** cases:

Fundamental relation

Null Wilson Loops and Scattering Amplitudes

Amplitudes = Sum over Flux Tube states = Open String Partition Function

Basic idea

- 1. Use the spectrum to describe the propagation
- 2. Tesselate the flux tube world-sheet as quilt to tame the null polygonal geometry

From Integrability, a *totally* different computation yields

$$S(p_1, p_2) = \frac{\Gamma\left(\frac{1}{2} - \frac{ip_1}{2}\right)\Gamma\left(\frac{1}{2} + \frac{ip_2}{2}\right)\Gamma\left(\frac{ip_1}{2} - \frac{ip_2}{2}\right)}{\Gamma\left(\frac{1}{2} - \frac{ip_2}{2}\right)\Gamma\left(\frac{1}{2} + \frac{ip_1}{2}\right)\Gamma\left(\frac{ip_2}{2} - \frac{ip_1}{2}\right)}$$

From Integrability, a *totally* different computation yields

$$S(p_1, p_2) = \frac{\Gamma\left(\frac{1}{2} - \frac{ip_1}{2}\right)\Gamma\left(\frac{1}{2} + \frac{ip_2}{2}\right)\Gamma\left(\frac{ip_1}{2} - \frac{ip_2}{2}\right)}{\Gamma\left(\frac{1}{2} - \frac{ip_2}{2}\right)\Gamma\left(\frac{1}{2} + \frac{ip_1}{2}\right)\Gamma\left(\frac{ip_2}{2} - \frac{ip_1}{2}\right)}$$

Weak Coupling @ many loops

$$\mathcal{W}_{\text{hex}} = 1 + e^{-\tau} \left(e^{i\phi} + e^{-i\phi} \right) \mathcal{A} + e^{-2\tau} \left(e^{2i\phi} + e^{-2i\phi} \right) \mathcal{B} + e^{-2\tau} \mathcal{C} + \mathcal{O}(e^{-3\tau})$$

$$\begin{split} \mathcal{A} &= g^2 \Big[e^{\pi} (2\sigma - 1) + \ldots \Big] + g^4 \Big[e^{\pi} (4 - 4\sigma) \tau + e^{\sigma} \Big(-\frac{2\pi^2 \sigma}{3} - 4\sigma + 6 \Big) + \ldots \Big] + g^6 \Big[e^{\pi} (4\sigma - 6) \tau^2 + e^{\sigma} \Big(-4\sigma^2 + \frac{8\pi^2 \sigma}{3} + 24\sigma - \frac{5\pi^2}{3} - 36 \Big) \tau + e^{\sigma} \Big(-6\sigma^2 + \frac{22\pi^4 \sigma}{3} + \frac{5\pi^2 \sigma}{3} + 36\sigma + 4\zeta(3) - \pi^2 - 60 \Big) + \ldots \Big] + g^8 \Big[e^{\sigma} \Big(\frac{16}{3} - \frac{8\sigma}{3} \Big) \tau^3 + e^{\sigma} \Big(8\sigma^2 - 4\pi^2 \sigma - 48\sigma - 8\zeta(3) + \frac{14\pi^2}{3} + 80 \Big) \tau^2 + e^{\sigma} \Big(-\frac{8\sigma^3}{3} + 4\pi^2 \sigma^2 + 48\sigma^2 - \frac{12\pi^4 \sigma}{5} - \frac{52\pi^2 \sigma}{3} - 240\sigma - 24\zeta(3) + \frac{4\pi^4}{3} + \frac{52\pi^2}{3} + 240\sigma - \frac{52\pi^2 \sigma}{3} - 400\sigma + 8\sigma^2 \zeta(3) - 16\sigma \zeta(3)^2 + 24\sigma \zeta(3) - 40\zeta(5) - \frac{4\pi^2 \zeta(3)}{3} - 48\zeta(3) + \frac{71\pi^4}{3} + 700 \Big) + \ldots \Big] + \mathcal{O}(g^{10}) \\ \mathcal{B} &= g^2 \Big[e^{3\sigma} \Big(-\sigma - \frac{1}{4} \Big) + \ldots \Big] + g^4 \Big[e^{3\sigma} \Big(3\sigma - \frac{1}{2} \Big) \tau + e^{3\sigma} \Big(2\sigma^2 + \frac{\pi^2 \sigma}{3} + \frac{\sigma}{2} + \frac{\pi^2}{6} - \frac{3}{8} \Big) + \ldots \Big] + g^6 \Big[e^{2\sigma} \Big(-\frac{9\sigma}{2} + \frac{21}{8} \Big) \tau^2 + e^{2\sigma} \Big(-\frac{7\sigma^2}{2} - 2\pi^2 \sigma - \frac{9\sigma}{2} - \frac{\pi^2}{8} + \frac{27}{4} \Big) \tau + e^{2\sigma} \Big(-\frac{4}{3} \pi^2 \sigma^2 \Big) \\ &- \frac{27\sigma^2}{8} - \frac{11\pi^4 \sigma}{4} - \frac{13\pi^2 \sigma}{24} - \frac{3\sigma}{4} - \frac{5\zeta(3)}{2} - \frac{11\pi^4}{90} - \frac{\pi^2}{16} + \frac{105}{10} \Big) + \ldots \Big] + g^6 \Big[e^{2\sigma} \Big(\frac{9\sigma}{2} - \frac{9}{2} \Big) \tau^3 + e^{2\sigma} \Big(-\frac{7\sigma^2}{2} + \frac{73\sigma}{2} + \frac{5\sigma}{2} + \frac{5}{2} \Big) + \tau^2 + \frac{27\sigma^2}{2} \Big(\frac{3\sigma^2}{2} + \frac{9\pi^2 \sigma}{4} + \frac{73\pi^2 \sigma}{3} + \frac{27\pi^2 \sigma}{4} \Big) + \frac{27\sigma^2 \sigma}{2} + \frac{7\pi^2 \sigma^2}{4} \Big) + \frac{27\sigma^2 \sigma^2}{4} \Big) + \frac{27\sigma^2 \sigma^2 \sigma^2 \sigma^2 + \frac{10\pi^2 \sigma^2}{4} + \frac{7\pi^2 \sigma^2}{4} \Big) + \frac{27\sigma^2 \sigma^2 \sigma^2 \sigma^2 \sigma^2 + \frac{11\pi^4}{4} - \frac{17\pi^2 \sigma^2}{2} + \frac{20\sigma^2}{2} \Big) + \frac{2\pi^2 \sigma^2 \sigma^2 \sigma^2 + \frac{11\pi^4 \sigma^2}{4} + \frac{7\pi^2 \sigma^2}{3} + \frac{27\sigma^2 \sigma^2}{4} \Big) + \frac{2\pi^2 \sigma^2 \sigma^2 \sigma^2 + \frac{2\pi^2 \sigma^2}{4} + \frac{2\pi^2 \sigma^2 \sigma^2 + \frac{2\pi^2 \sigma^2}{4} + \frac{2\pi^2 \sigma^2 \sigma^2}{4} \Big) + \frac{2\pi^2 \sigma^2 \sigma^2 + \frac{2\pi^2 \sigma^2}{4} + \frac{2\pi^2 \sigma^2}{4} + \frac{2\pi^2 \sigma^2 \sigma^2}{4} + \frac{2\pi^2 \sigma^2 \sigma^2}{4} + \frac{2\pi^2 \sigma^2 \sigma^2}{4} \Big) + \frac{2\pi^2 \sigma^2 \sigma^2 + \frac{2\pi^2 \sigma^2}{4} + \frac{2\pi^2 \sigma^2 \sigma^2}{4} \Big) + \frac{2\pi^2 \sigma^2 \sigma^2 + \frac{2\pi^2 \sigma^2}{4} + \frac{2\pi^2 \sigma^2}{4} + \frac{2\pi^2 \sigma^2}{4} \Big) + \frac{2\pi^2 \sigma^2 \sigma^2}{6} \Big) + \frac{2\pi^2 \sigma^2 \sigma^2 + \frac{2\pi^2 \sigma^2}{4} + \frac{2\pi^2 \sigma^2}{4} + \frac{2\pi^2 \sigma^2}{4} + \frac{2\pi^2 \sigma^2}{4} \Big) + \frac{2\pi^2 \sigma^2 \sigma^2}{4} \Big) + \frac{2\pi^2 \sigma^2 \sigma^2$$

This data was used intensively by Dixon et al in the so called Hexagon program [Dixon,Drummond,Henn],[Dixon,Duhr,Pennington,Von Hippel],[Dixon, Drummond, Duhr,Pennington],[Dixon,Von Hippel],... With some Steinmann technology, this is no longer needed (up to 5 loops)! Integrability derivation? [Caron-Huot,Dixon,Von Hippel 2017]

Strong Coupling. The Emergence of Strings

$$\mathcal{W}^{\text{string}} \simeq \exp\left(-\frac{\sqrt{\lambda}}{2\pi}YY_c\right) = 1 - \frac{\sqrt{\lambda}}{2\pi}\left(e^{i\phi} + e^{-i\phi}\right) \int_{\mathbb{R}} \frac{d\theta}{\pi\cosh^2(2\theta)} e^{-\sqrt{2}\tau\cosh\theta + i\sqrt{2}\sigma\sinh\theta}$$

Direct computation of the Area. (using classical Integrability of the string sigma model) *Purely Geometrical Problem.*

$$+\frac{\sqrt{\lambda}}{2\pi}\int_{\mathbb{R}+i0}\frac{d\theta}{\pi\sinh^2(2\theta)}e^{-2\tau\cosh\theta+2i\sigma\sinh\theta}+\dots$$

Strong Coupling. The Emergence of Strings

$$\mathcal{W}^{\text{string}} \simeq \exp\left(-\frac{\sqrt{\lambda}}{2\pi}YY_c\right) = 1 - \frac{\sqrt{\lambda}}{2\pi} \left(e^{i\phi} + e^{-i\phi}\right) \int_{\mathbb{R}} \frac{d\theta}{\pi \cosh^2(2\theta)} e^{-\sqrt{2}\tau \cosh\theta + i\sqrt{2}\sigma \sinh\theta}$$

Direct computation of the Area. (using classical Integrability of the string sigma model) *Purely Geometrical Problem.*

$$+\frac{\sqrt{\lambda}}{2\pi}\int_{\mathbb{R}+i0}\frac{d\theta}{\pi\sinh^2(2\theta)}e^{-2\tau\cosh\theta+2i\sigma\sinh\theta}+\dots$$

ki

We see two excitations with mass $\sqrt{2}$ and one excitation with mass 2

[Alday,Maldacena] (4pt),Area[Alday,Maldacena] (special case of 8pt),[Alday,Gaiotto,Maldacena] (6pt)[Alday,Maldacena,Sever,PV] (general configuration)

U(1) charge -2

[Alday,Maldacena,Sever,PV] (general c

Tailoring 3pt Functions

[Basso, Komatsu, PV, 2015]

The Hexagon twist operators can then once again be Bootstrapped using Integrability and the results can be then compared against direct perturbative computations:

[Basso, Komatsu, PV, 2015] = [Dolan, Osborn 2001] up to 2 loops [Basso, Gonçalves, Komatsu, PV, 2016] = [Eden 2012; Chicherin, Drummond, Heslop, Sokatchev] @ 3 loops [Basso, Gonçalves, Komatsu, 2017] = [Gonçalves 2017; Eden, Paul 2016] @ 4 loops

The last one is more than just a check as it also fixes some ambiguities in the original prescription.

Four-Point Functions

Four-Point Functions

An alternative different story full of bootstraps?

Unified Picture

Open Problems

- Carry out some non-planar example in detail. Work in progress with <u>Bargheer, Basso, Caetano, Komatsu, Fleury</u>
- Connect Hexagons and Pentagons. (Large spin perhaps...)
 Inspiring first connection a few weeks ago by <u>Basso and Dixon.</u>
- Is there a master Quantum Curve for all quantities in N=4 SYM re-summing all these gluing sums and integrals?
 Very nice partial recent results by <u>Bajnok, Janik.</u> Are strong coupling Y-systems hints or red herrings? Partial resummations at strong couplings by <u>Jiang, Komatsu, Kostov, Serban</u>, see also <u>Kazama, Komatsu, Nishimura</u>
- Find interesting physical limits where the expressions simplify. Bulk Locality, Regge limit, Rastelli and Zhou's results, Heavy-Heavy-Light's...
- Relate the CFT/OPE cutting to the String theory/Hexagonalization cutting.
 Work in progress with <u>Coronado and Komatsu</u>
- General lessons for CFT's? General lessons for string theory? Can we *define* closed String theories as collections of hexagons obeying some set of consistency relations?