Divide and Conquer - An Integrability Status Report

Pedro Vieira
Perimeter Institute \& ICTP-SAIFR

Punch-line and an highlight

- In AdS_{5}, string amplitudes with complex topologies can be cut into rectangular, pentagonal or hexagonal patches which can be Bootstrapped using Integrability at any 't Hooft coupling.
- Amplitudes are given as infinite sums and integrals arising from stitching back these patches.
- Sometimes we can re-sum (part of) these sums/integrals (often finding hints of yet to be understood structures).
- Comparisons with weak and strong coupling computations work (so far) and they are key in developing new integrability tools themselves. "Shut up, calculate and contemplate"

Outline

- 2D and Integrability
- Spectrum (i.e. cylinder)
- Beyond the Spectrum (i.e. other topologies)
- Open problems

Start in 2D

- Strings are two dimensional.
- 4D large N gauge theories are also string theories when properly thought of.
- Correlation functions of n single trace operators $=\mathrm{n}$ closed strings
- Flux tubes = open strings

```
string tension = \sqrt{}{\lambda}
string coupling = 1/N
```


A Zoo of 2D Possibilities

Cylinder
[Beisert et al review 2009]

Pair of pants

Sphere with Four Punctures

Sphere with Four Punctures and one Handle

Disk with Circular Boundary
[Giombi, Roiban, Tseytlin 2017]

Disk with Null Polygonal Boundary [Alday, Maldacena 2007,...]

A Zoo of 2D Possibilities

Cylinder
[Beisert et al review 2009]

Pair of pants

Sphere with Four Punctures

Sphere with Four Punctures and one Handle

Disk with Circular Boundary [Giombi, Roiban, Tseytlin 2017]

Disk with Null Polygonal Boundary [Alday, Maldacena 2007,...]

Integrability

Generic case
Oliver: So Walter, roughly speaking what are the chances that the world is going to be destroyed?
Walter: It is 50%. If you have something that can happen and something that won't necessarily happen, its gonna either happen or not happen and so the best is 1 in $2 \ldots$
Oliver: I'm not sure that's how probability works Walter.
$P_{\text {initial }}=\left\{p_{1}, p_{2}, p_{3}\right\}$

Integrability

In 2D

$$
Q_{1}=\sum p_{j}, Q_{2}=\sum p_{j}^{2}, \Rightarrow\left\{p_{1}, p_{2}\right\}=\left\{p_{1}^{\prime}, p_{2}^{\prime}\right\}
$$

Integrability : If

$$
\exists Q_{3}=\sum p_{j}^{3} \Rightarrow\left\{p_{1}, p_{2}, p_{3}\right\}=\left\{p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}\right\}
$$

Integrable Spin Chains at Weak Coupling,

Integrable Classical Ripples at Strong Coupling

composite operator in the gauge theory:

Integrable Spin Chain
[Minahan, Zarembo; Beisert, Staudacher]

Integrability persists at any coupling (true but not proved)

dual string state:

Integrable Classical String

$$
\mathcal{N}=4 S Y M
$$

Unusual and rich 2D particle theory

$$
E(p)=\sqrt{1+16 g^{2} \sin ^{2} \frac{p}{2}}
$$

half spin-chain magnon, HALF RELATIVISTIC PARTICLE
$S\left(p^{\prime}, p\right)$

Rapidity u

$$
\left\{\begin{array}{l}
e^{i p(u)}=\frac{x(u+i / 2)}{x(u-i / 2)} \\
E(u)=\frac{2 i g}{x(u+i / 2)}-\frac{2 i g}{x(u-i / 2)} \Leftrightarrow E(p)=\sqrt{1+16 g^{2} \sin ^{2} \frac{p}{2}} \\
x(u)=\frac{u+\sqrt{u^{2}-4 g^{2}}}{2 g}
\end{array}\right.
$$

Crossing particle into antiparticle is a path in u :

A mirror transformation - or Wick rotation - is half that.

Both are non-perturbative

Analogue of usual hyperbolic rapidity

$\left\{\begin{array}{l}p(\theta)=m \sinh (\theta) \\ E(\theta)=m \cosh (\theta)\end{array} \Leftrightarrow E(p)=\sqrt{m^{2}+p^{2}}\right.$
Crossing here is just translation of rapidity by $\mathbf{i} \pi$. A mirror transformation - or Wick rotation - is half that.

The Planar Spectrum of a Gauge Theory

Quantum Spectral Curve

Cute spectrum plots

[Gromov, Levkovich-Maslyuuk, Sizov, 2015]

Figure 1: Riemann surface of the function $S(\Delta)$ for twist-2 operators. Plot of the real part of $S(\Delta)$ for complex values of Δ, generated from about 2200 numerical data points for $\lambda \approx 6.3$. We have mapped two Riemann sheets of this function. The thick red lines show the position of cuts. The upper sheet corresponds to physical values of the spin. Going through a cut we arrive at another sheet containing yet more cuts.
[Gromov, Kazakov, Korchemsky, Negro, Sizov 2017]

Figure 8. Real and imaginary part of the scaling dimension of the nine lowest lying states with $J=3$. The curve that starts at $\Delta(0)=3$ corresponds to the operator $\operatorname{tr}\left(\phi_{1}^{3}\right)$. The pair of states that start at $\Delta(0)=3+2 k$ with $k=1,2,3,4$ correspond to the operators of the form (1.2) (or rather to their linear combinations diagonalizing the dilatation operator).

> N=4 SYM with extreme imaginary twists [Gurdogan, Kazakov 2015]

That is it about the spectrum

Cylinder
[Beisert et al review 2009]

Pair of pants

Sphere with Four Punctures

Sphere with Four Punctures and one Handle

Disk with Circular Boundary
[Giombi, Tseytlin 2017]

Disk with Null Polygonal Boundary [Alday, Maldacena 2007,...]

... with hindsight, the spectrum was in The Book.
(The Bethe ansatz story; the more sophisticated quantum spectral curve story is definitely new)

The rest is less obvious as it involves dealing with Integrable theories on spaces of various topologies.

Same wonderful 't Hooft world-sheet fabric

As such, we should be able to tame any physical observable with a good large N limit - as well as any $1 / \mathrm{N}$ correction to it.

What can we do?

- Local operators are not the most natural thing in a string theory. After all, in quantum gravity (2d word-sheet gravity in this case) we have no local observables. We have S-matrices. They were key in the spectrum solution.

Creative Patchwork

Pentagon transition amplitude

Spoiler:
Pentagons control scattering amplitudes and Wilson loops.
Hexagons govern correlation functions.

Free Relativistic Massive Boson

Free Relativistic Massive Boson

$\frac{f_{n}\left(\theta, \theta^{\prime}\right)}{f_{n}\left(\theta^{\prime}, \theta\right)}=1, \quad f_{n}\left(\theta+i \pi, \theta^{\prime}\right) \sim \frac{1}{\theta^{\prime}-\theta} \times 1, \quad f_{n}\left(\theta, \theta^{\prime}-i \pi\right) \sim \frac{1}{\theta^{\prime}-\theta} \times 1 \quad f_{n}\left(\theta+i n \frac{\pi}{2}, \theta^{\prime}\right)=f_{n}\left(\theta^{\prime}, \theta\right)$

Free Relativistic Massive Boson

Free Relativistic Massive Boson

N=4 SYM one can bootstrap two cases:

Global AdS:

[Basso, Komatsu, PV]
[Bereinstein, Maldacena, Nastase]

Fundamental relation

(Holds both for the GKP pentagons and for the BMN hexagons)

Why?

No idea

Null Wilson Loops and Scattering Amplitudes

* In planar N=4 SYM WL = Scattering Amplitudes

[Alday, Maldacena; Drummond, Korchemsky, Sokatchev;
Brandhuber, Heslop, Travaglini; Drummond, Henn, Korchemsky, Sokatchev; Berkovits, Maldacena]

Amplitudes = Sum over Flux Tube states
= Open String Partition Function

Basic idea

1. Use the spectrum to describe the propagation
2. Tesselate the flux tube world-sheet as quilt to tame the null polygonal geometry

4D Amplitudes as 2D Flux Tube Gas

4D Amplitudes as 2D Flux Tube Gas

4D Amplitudes as 2D Flux Tube Gas

4D Amplitudes as 2D Flux Tube Gas

Tree Level Example

[Caron-Huot;Mason,Skinner]

Tree Level Example

Tree Level Example

Tree Level Example

Tree Level Example

From Integrability, a totally different computation yields

$$
S\left(D_{1}, D_{2}\right)=\frac{\Gamma\left(\frac{1}{2}-\frac{i p_{1}}{2}\right) \Gamma\left(\frac{1}{2}+\frac{i p_{2}}{2}\right) \Gamma\left(\frac{i p_{1}}{2}-\frac{i p_{2}}{2}\right)}{\prod\left(\frac{1}{2}-\frac{i p_{2}}{2}\right) \Gamma\left(\frac{1}{2}+\frac{i p_{1}}{2}\right) \Gamma\left(\frac{i p_{2}}{2}-\frac{i p_{1}}{2}\right)}
$$

Weak Coupling @ many loops

$$
\mathcal{W}_{\text {hex }}=1+e^{-\tau}\left(e^{i \phi}+e^{-i \phi}\right) \mathcal{A}+e^{-2 \tau}\left(e^{2 i \phi}+e^{-2 i \phi}\right) \mathcal{B}+e^{-2 \tau} \mathcal{C}+\mathcal{O}\left(e^{-3 \tau}\right)
$$

$$
\begin{aligned}
& \mathcal{A}=g^{2}\left[e^{\sigma}(2 \sigma-1)+\ldots\right]+g^{4}\left[e^{\sigma}(4-4 \sigma) \tau+e^{\sigma}\left(-\frac{2 \pi^{2} \sigma}{3}-4 \sigma+6\right)+\ldots\right]+g^{6}\left[e^{\sigma}(4 \sigma-6) \tau^{2}+e^{\sigma}\left(-4 \sigma^{2}+\frac{8 \pi^{2} \sigma}{3}+24 \sigma-\frac{5 \pi^{2}}{3}-36\right) \tau+e^{\sigma}\left(-6 \sigma^{2}+\frac{22 \pi^{4} \sigma}{45}+\frac{5 \pi^{2} \sigma}{3}+36 \sigma\right.\right. \\
& \left.\left.+4 \zeta(3)-\pi^{2}-60\right)+\ldots\right]+g^{8}\left[e^{\sigma}\left(\frac{16}{3}-\frac{8 \sigma}{3}\right) \tau^{3}+e^{\sigma}\left(8 \sigma^{2}-4 \pi^{2} \sigma-48 \sigma-8 \zeta(3)+\frac{14 \pi^{2}}{3}+80\right) \tau^{2}+e^{\sigma}\left(-\frac{8 \sigma^{3}}{3}+4 \pi^{2} \sigma^{2}+48 \sigma^{2}-\frac{12 \pi^{4} \sigma}{5}-\frac{52 \pi^{2} \sigma}{3}-240 \sigma-24 \zeta(3)+\frac{4 \pi^{4}}{3}\right.\right. \\
& \left.\left.+\frac{52 \pi^{2}}{3}+400\right) \tau+e^{\sigma}\left(-\frac{16 \sigma^{3}}{3}+\frac{14 \pi^{2} \sigma^{2}}{3}+80 \sigma^{2}-\frac{146 \pi^{6} \sigma}{315}-\frac{4 \pi^{4} \sigma}{3}-\frac{52 \pi^{2} \sigma}{3}-400 \sigma-8 \sigma^{2} \zeta(3)-16 \sigma \zeta(3)^{2}+24 \sigma \zeta(3)-40 \zeta(5)-\frac{4 \pi^{2} \zeta(3)}{3}-48 \zeta(3)+\frac{71 \pi^{4}}{90}+\frac{40 \pi^{2}}{3}+700\right)+\ldots\right]+\mathcal{O}\left(g^{10}\right) \\
& \mathcal{B}=g^{2}\left[e^{2 \sigma}\left(-\sigma-\frac{1}{4}\right)+\ldots\right]+g^{4}\left[e^{2 \sigma}\left(3 \sigma-\frac{1}{2}\right) \tau+e^{2 \sigma}\left(2 \sigma^{2}+\frac{\pi^{2} \sigma}{3}+\frac{\sigma}{2}+\frac{\pi^{2}}{6}-\frac{3}{8}\right)+\ldots\right]+g^{6}\left[e^{2 \sigma}\left(-\frac{9 \sigma}{2}+\frac{21}{8}\right) \tau^{2}+e^{2 \sigma}\left(-\frac{7 \sigma^{2}}{2}-2 \pi^{2} \sigma-\frac{9 \sigma}{2}-\frac{\pi^{2}}{8}+\frac{27}{4}\right) \tau+e^{2 \sigma}\left(-\frac{4}{3} \pi^{2} \sigma^{2}\right.\right. \\
& \left.\left.-\frac{27 \sigma^{2}}{8}-\frac{11 \pi^{4} \sigma}{45}-\frac{13 \pi^{2} \sigma}{24}-\frac{3 \sigma}{4}-\frac{5 \zeta(3)}{2}-\frac{11 \pi^{4}}{90}-\frac{\pi^{2}}{16}+\frac{105}{16}\right)+\ldots\right]+g^{8}\left[e^{2 \sigma}\left(\frac{9 \sigma}{2}-\frac{9}{2}\right) \tau^{3}+e^{2 \sigma} \tau^{2}\left(\frac{3 \sigma^{2}}{2}+\frac{9 \pi^{2} \sigma}{2}+\frac{35 \sigma}{2}+5 \zeta(3)-\frac{13 \pi^{2}}{8}-\frac{113}{4}\right)+e^{2 \sigma} \tau\left(-\frac{7 \sigma^{3}}{2}+\frac{7 \pi^{2} \sigma^{2}}{2}+\frac{29 \sigma^{2}}{2}\right.\right. \\
& \left.+\frac{9 \pi^{4} \sigma}{5}+\frac{13 \pi^{2} \sigma}{4}+\frac{91 \sigma}{4}+\frac{37 \zeta(3)}{2}+\frac{17 \pi^{4}}{90}-\frac{13 \pi^{2}}{6}-\frac{629}{8}\right)+e^{2 \sigma}\left(-\frac{4 \sigma^{4}}{3}-\frac{5 \sigma^{3}}{6}+\frac{6 \pi^{4} \sigma^{2}}{5}+\frac{41 \pi^{2} \sigma^{2}}{24}+\frac{\mathbf{7 9} \sigma^{2}}{4}+\frac{\mathbf{7 3 \pi} \pi^{6} \sigma}{315}+\frac{47 \pi^{4} \sigma}{90}+\frac{3 \pi^{2} \sigma}{2}+\frac{\mathbf{2 1 \sigma}}{8}+5 \sigma^{2} \zeta(3)+8 \sigma \zeta(3)^{2}\right. \\
& \left.\left.-\frac{5 \sigma \zeta(3)}{2}+25 \zeta(5)+4 \zeta(3)^{2}+\frac{5 \pi^{2} \zeta(3)}{6}+\frac{39 \zeta(3)}{2}+\frac{73 \pi^{6}}{630}+\frac{121 \pi^{4}}{1440}-\frac{17 \pi^{2}}{24}-\frac{5815}{64}\right)+\ldots\right]+\mathcal{O}\left(g^{10}\right) \\
& \mathcal{C}=g^{2}\left[4 \sigma-2 e^{2 \sigma}+\ldots\right]+g^{4}\left[8 e^{2 \sigma} \sigma \tau+e^{2 \sigma}\left(4 \sigma^{2}+\frac{\boldsymbol{\pi}^{2}}{\mathbf{3}}+\frac{\mathbf{7}}{\mathbf{2}}\right)-\frac{\mathbf{4 \boldsymbol { \pi } ^ { 2 }} \boldsymbol{\sigma}}{\mathbf{3}}+\ldots\right]+g^{6}\left[e^{2 \sigma}\left(-8 \sigma^{2}-8 \sigma-\frac{2 \pi^{2}}{3}+8\right) \tau^{2}+\boldsymbol{e}^{2 \sigma} \boldsymbol{\tau}\left(-8 \sigma^{2}-\frac{\mathbf{1 6} \boldsymbol{\pi}^{2} \sigma}{\mathbf{3}}-\mathbf{6 \sigma}+\mathbf{8 \zeta}(\mathbf{3})-\frac{\mathbf{2} \boldsymbol{\pi}^{2}}{\mathbf{3}}\right)+\frac{\mathbf{4 4} \boldsymbol{\pi}^{4} \boldsymbol{\sigma}}{\mathbf{4 5}}\right. \\
& \left.+e^{\mathbf{2} \sigma}\left(-\frac{\mathbf{1 0}}{\mathbf{3}} \boldsymbol{\pi}^{\mathbf{2}} \boldsymbol{\sigma}^{\mathbf{2}}-\mathbf{4 \sigma ^ { 2 }}-\frac{\mathbf{2 \boldsymbol { \pi } ^ { 2 } \sigma}}{\mathbf{3}}+\mathbf{1 2 \sigma}-\mathbf{8 \sigma} \boldsymbol{\zeta}(\mathbf{3})+\mathbf{8 \zeta}(\mathbf{3})-\frac{\mathbf{3 \pi ^ { 4 }}}{\mathbf{1 0}}+\frac{\boldsymbol{\pi}^{\mathbf{2}}}{\mathbf{3}}-\frac{\mathbf{1 4 1}}{\mathbf{4}}\right)+\ldots\right]+g^{8}\left[e^{2 \sigma} \tau^{3}\left(\frac{32 \sigma^{3}}{9}+\frac{32 \sigma^{2}}{3}+\frac{8 \pi^{2} \sigma}{9}-\frac{32 \sigma}{3}-16 \zeta(3)+\frac{8 \pi^{2}}{9}\right)+\boldsymbol{e}^{\mathbf{2} \sigma} \boldsymbol{\tau}^{2}\left(-\frac{\mathbf{3 2} \sigma^{\mathbf{3}}}{\mathbf{3}}\right.\right. \\
& \left.+\frac{32 \pi^{2} \sigma^{2}}{3}+28 \sigma^{2}+\frac{16 \pi^{2} \sigma}{3}+16 \sigma-16 \sigma \zeta(3)-32 \zeta(3)+\frac{14 \pi^{4}}{15}-3 \pi^{2}-\frac{87}{2}\right)+e^{2 \sigma} \tau\left(-\frac{8}{9} \pi^{2}-\frac{80 \sigma^{3}}{3}+\frac{32 \pi^{2} \sigma^{2}}{3}+48 \sigma^{2}+\frac{226 \pi^{4} \sigma}{45}-\frac{16 \pi^{2} \sigma}{3}+22 \sigma+16 \sigma^{2} \zeta(3)\right. \\
& \left.-64 \zeta(5)-\frac{16 \pi^{2} \zeta(3)}{3}-24 \zeta(3)+\frac{14 \pi^{4}}{15}+4 \pi^{2}+8\right)+e^{2 \sigma}\left(-\frac{8 \pi^{2} \sigma^{3}}{9}-\frac{64 \sigma^{3}}{3}+\frac{10 \pi^{4} \sigma^{2}}{3}+5 \pi^{2} \sigma^{2}+\frac{137 \sigma^{2}}{2}+\frac{22 \pi^{4} \sigma}{45}-8 \pi^{2} \sigma-168 \sigma+16 \sigma^{3} \zeta(3)-32 \sigma^{2} \zeta(3)\right. \\
& \left.\left.+64 \sigma \zeta(5)+\frac{16}{3} \pi^{2} \sigma \zeta(3)+56 \sigma \zeta(3)-64 \zeta(5)-\frac{16 \pi^{2} \zeta(3)}{3}-48 \zeta(3)+\frac{296 \pi^{6}}{945}-\frac{\pi^{4}}{20}+\frac{25 \pi^{2}}{12}+\frac{3217}{8}\right)-32 \sigma \zeta(3)^{2}-\frac{292 \pi^{6} \sigma}{315}+\ldots\right]+\mathcal{O}\left(g^{10}\right)
\end{aligned}
$$

This data was used intensively by Dixon et al in the so called Hexagon program [Dixon,Drummond,Henn],[Dixon,Duhr,Pennington,Von Hippel],[Dixon, Drummond, Duhr,Pennington],[Dixon,Von Hippel],... With some Steinmann technology, this is no longer needed (up to 5 loops)! Integrability derivation?
[Caron-Huot,Dixon,Von Hippel 2017]

Strong Coupling. The Emergence of Strings

$$
\mathcal{W}^{\text {string }} \simeq \exp \left(-\frac{\sqrt{\lambda}}{2 \pi} Y Y_{c}\right)=1-\frac{\sqrt{\lambda}}{2 \pi}\left(e^{i \phi}+e^{-i \phi}\right) \int_{\mathbb{R}} \frac{d \theta}{\pi \cosh ^{2}(2 \theta)} e^{-\sqrt{2} \tau \cosh \theta+i \sqrt{2} \sigma \sinh \theta}
$$

Direct computation of the Area. (using classical Integrability of the string sigma model)

$$
+\frac{\sqrt{\lambda}}{2 \pi} \int_{\mathbb{R}+i 0} \frac{d \theta}{\pi \sinh ^{2}(2 \theta)} e^{-2 \tau \cosh \theta+2 i \sigma \sinh \theta}+\ldots
$$

Purely Geometrical Problem.

Strong Coupling. The Emergence of Strings

$$
\mathcal{W}^{\text {string }} \simeq \exp \left(-\frac{\sqrt{\lambda}}{2 \pi} Y Y_{c}\right)=1-\frac{\sqrt{\lambda}}{2 \pi}\left(e^{i \phi}+e^{-i \phi}\right) \int_{\mathbb{R}} \frac{d \theta}{\pi \cosh ^{2}(2 \theta)} e^{-\sqrt{2} \tau \cosh \theta+i \sqrt{2} \sigma \sinh \theta}
$$

Direct computation of the Area. (using classical Integrability of the string sigma model)

$$
+\frac{\sqrt{\lambda}}{2 \pi} \int_{\mathbb{R}+i 0} \frac{d \theta}{\pi \sinh ^{2}(2 \theta)} e^{-2 \tau \cosh \theta+2 i \sigma \sinh \theta}+\ldots
$$

Purely Geometrical Problem.
We see two excitations with mass $\sqrt{2}$ and one excitation with mass 2

We see two excitations with mass $\sqrt{2}$ and one excitation with mass 2

The two lightest modes are the transverse excitations of the flux tube. The sum over multi-particle gluons exponentiates at strong coupling yielding precisely the corresponding terms in the Y -system.

We see two excitations with mass $\sqrt{2}$ and one excitation with mass 2

The mass 2 excitation corresponding to the missing direction in AdS, is an emergent excitation which arises at strong coupling as a sort of bound-state made out of two fermionic excitations each of mass 1 .
[Basso,Sever,PV]
Counterpart to the QCD flux tube axion excitation proposed by Flauger, Dubosky and Gorbenko? (next talk)

Tailoring 3pt Functions

The Hexagon twist operators can then once again be Bootstrapped using Integrability and the results can be then compared against direct perturbative computations:
[Basso, Komatsu, PV, 2015] = [Dolan, Osborn 2001] up to 2 loops
[Basso, Gonçalves, Komatsu, PV, 2016] = [Eden 2012; Chicherin, Drummond, Heslop, Sokatchev] @ 3 loops [Basso, Gonçalves, Komatsu, 2017] = [Gonçalves 2017; Eden, Paul 2016] @ 4 loops

The last one is more than just a check as it also fixes some ambiguities in the original prescription.

Four-Point Functions

[Basso, Coronado, Komatsu, Tat Lam, PV, Zhong, 2017]

Four-Point Functions

One loop example from Fleury and Komatsu:

$$
\begin{aligned}
& \sum_{a} \int d v \frac{\left(\frac{z}{\bar{z}}\right)^{a / 2}-\left(\frac{\bar{z}}{z}\right)^{a / 2}}{\left(\frac{z}{\bar{z}}\right)^{1 / 2}-\left(\frac{\bar{z}}{z}\right)^{1 / 2}} \times \frac{a}{v^{2}+\frac{a^{2}}{4}} \times(z \bar{z})^{-i v} \\
& \quad \propto \frac{2 \operatorname{Li}_{2}(z)-2 \operatorname{Li}_{2}(\bar{z})+\log z \bar{z} \log \frac{1-z}{1-\bar{z}}}{z-\bar{z}} \quad\left(=\frac{x_{13}^{2} x_{24}^{2}}{\pi^{2}} \int \frac{d^{4} x_{5}}{x_{15}^{2} x_{25}^{2} x_{35}^{2} x_{45}^{2}}\right)
\end{aligned}
$$

[Fleury, Komatsu 2017] (see also Eden,Stronfrini 2017)

An alternative different story full of bootstraps?

Unified Picture

Cylinder

Pair of pants

Sphere with Four Punctures

Sphere with n Punctures and h handles

Disk with Circular Boundary and n insertions

[Kim, Kiryu 2017]
[Kim, Kiryu, Komatsu, Nishimura to appear]
Disk with null n-gon boundary

Open Problems

- Carry out some non-planar example in detail. Work in progress with Bargheer, Basso, Caetano, Komatsu, Fleury
- Connect Hexagons and Pentagons. (Large spin perhaps...) Inspiring first connection a few weeks ago by Basso and Dixon.
- Is there a master Quantum Curve for all quantities in $\mathrm{N}=4 \mathrm{SYM}$ re-summing all these gluing sums and integrals?
Very nice partial recent results by Bajnok, Janik. Are strong coupling Y-systems hints or red herrings? Partial resummations at strong couplings by Jiang, Komatsu, Kostov, Serban, see also Kazama, Komatsu, Nishimura
- Find interesting physical limits where the expressions simplify. Bulk Locality, Regge limit, Rastelli and Zhou's results, Heavy-Heavy-Light's...
- Relate the CFT/OPE cutting to the String theory/Hexagonalization cutting. Work in progress with Coronado and Komatsu
- General lessons for CFT's? General lessons for string theory? Can we define closed String theories as collections of hexagons obeying some set of consistency relations?

