M-theory S-Matrix from 3d SCFT

Silviu S. Pufu, Princeton University

Based on:

- arXiv:1711.07343 with N. Agmon and S. Chester
- arXiv:1804.00949 with S. Chester and X. Yin

Also:

OIST, June 26, 2018
Motivation

- Learn about gravity / string theory / M-theory from CFT.
- 3d maximally supersymmetric ($\mathcal{N} = 8$) CFTs w/ gravity duals: explicit Lagrangians; no marginal coupling; SUSY.
- Most well-understood example:
 M-theory on $\text{AdS}_4 \times S^7 \iff U(N)_k \times U(N)_{-k}$ ABJM theory at CS level $k = 1$.
- Last 10 years: progress in QFT calculations
 - using supersymmetric localization;
 - using conformal bootstrap in CFTs.
- What do these calculations tell us about M-theory?
 - Example: S^3 partition function of ABJM theory can be written as an N-dim’l integral. What info about M-theory does it contain?
Motivation

- Learn about gravity / string theory / M-theory from CFT.
- 3d maximally supersymmetric ($\mathcal{N} = 8$) CFTs w/ gravity duals: explicit Lagrangians; no marginal coupling; SUSY.
- Most well-understood example: M-theory on $\text{AdS}_4 \times S^7 \iff U(N)_k \times U(N)_{-k}$ ABJM theory at CS level $k = 1$.
- Last 10 years: progress in QFT calculations using supersymmetric localization;
 - using conformal bootstrap in CFTs.
- What do these calculations tell us about M-theory?
- Example: S^3 partition function of ABJM theory can be written as an N-dim’l integral. What info about M-theory does it contain?
Motivation

- Learn about gravity / string theory / M-theory from CFT.
- 3d maximally supersymmetric ($\mathcal{N} = 8$) CFTs w/ gravity duals: explicit Lagrangians; no marginal coupling; SUSY.
- Most well-understood example: M-theory on $\text{AdS}_4 \times S^7 \iff U(N)_k \times U(N)_{-k}$ ABJM theory at CS level $k = 1$.
- Last 10 years: progress in QFT calculations
 - using supersymmetric localization;
 - using conformal bootstrap in CFTs.
- What do these calculations tell us about M-theory?
 - Example: S^3 partition function of ABJM theory can be written as an N-dim’l integral. What info about M-theory does it contain?
Motivation

- Learn about gravity / string theory / M-theory from CFT.

- 3d maximally supersymmetric ($\mathcal{N} = 8$) CFTs w/ gravity duals: explicit Lagrangians; no marginal coupling; SUSY.

- Most well-understood example:
 M-theory on $AdS_4 \times S^7 \iff U(N)_k \times U(N)_{-k}$ ABJM theory at CS level $k = 1$.

- Last 10 years: progress in QFT calculations
 - using supersymmetric localization;
 - using conformal bootstrap in CFTs.

- What do these calculations tell us about M-theory?

- Example: S^3 partition function of ABJM theory can be written as an N-dim’l integral. What info about M-theory does it contain?
\textbf{This talk:} Reconstruct M-theory S-matrix \textit{perturbatively at small momentum} (scatter gravitons and superpartners).

Equivalently, reconstruct the derivative expansion of the M-theory effective action. Schematically,

\[S = \int d^{11} x \sqrt{g} \left[R + \text{Riem}^4 + \cdots + \text{(SUSic completion)} \right]. \]

Restrict momenta to be in 4 out of the 11 dimensions.
This talk: Reconstruct M-theory S-matrix perturbatively at small momentum (scatter gravitons and superpartners).

Equivalently, reconstruct the derivative expansion of the M-theory effective action. Schematically,

\[S = \int d^{11}x \sqrt{g} \left[R + \text{Riem}^4 + \cdots + \text{(SUSic completion)} \right]. \]

Restrict momenta to be in 4 out of the 11 dimensions.
This talk: Reconstruct M-theory S-matrix perturbatively at small momentum (scatter gravitons and superpartners).

Equivalently, reconstruct the derivative expansion of the M-theory effective action. Schematically,

\[S = \int d^{11}x \sqrt{g} \left[R + \text{Riem}^4 + \cdots + (\text{SUSic completion}) \right]. \]

Restrict momenta to be in 4 out of the 11 dimensions.
From the 4d point of view, we can scatter:
- graviton (1);
- gravitinos (8);
- gravi-photons (28);
- gravi-photinos (56);
- scalars ($70 = 35 + 35$)

At leading order in small momentum (i.e. momentum squared), scattering amplitudes are those in $\mathcal{N} = 8$ SUGRA at tree level. Amplitude depends on the type of particle, e.g.

$$A_{\text{SUGRA, tree}}(h^- h^- h^+ h^+) = \frac{\langle 12 \rangle^4 [34]^4}{stu},$$
$$A_{\text{SUGRA, tree}}(S_1 S_1 S_2 S_2) = \frac{tu}{s},$$

e tc.

but they’re all related by SUSY. (See Elvang & Huang’s book.)
From the 4d point of view, we can scatter:

- graviton (1);
- gravitinos (8);
- gravi-photons (28);
- gravi-photinos (56);
- scalars ($70 = 35 + 35$)

At **leading** order in small momentum (i.e. momentum squared), scattering amplitudes are those in $\mathcal{N} = 8$ SUGRA at tree level. Amplitude depends on the type of particle, e.g.

$$
\mathcal{A}_{\text{SUGRA, tree}}(h^- h^- h^+ h^+) = \frac{\langle 12 \rangle^4 [34]^4}{stu},
$$

$$
\mathcal{A}_{\text{SUGRA, tree}}(S_1 S_1 S_2 S_2) = \frac{tu}{s},
$$

etc.

but they’re all related by SUSY. (See Elvang & Huang’s book.)
Momentum expansion

- Momentum expansion takes a universal form (independent of the type of particle):
 \[\mathcal{A} = \mathcal{A}_{\text{SUGRA, tree}} \left(1 + \ell_p^6 f_{R^4}(s, t) + \ell_p^9 f_{1\text{-loop}}(s, t) \right. \\
 \left. + \ell_p^{12} f_{D^6 R^4}(s, t) + \ell_p^{14} f_{D^8 R^4}(s, t) + \cdots \right). \]

- \(f_{D^{2n} R^4} = \) symmetric polyn in \(s, t, u \) of degree \(n + 3 \)

- Known from type II string theory + SUSY [Green, Tseytlin, Gutperle, Vanhove, Russo, Pioline, …] :
 \[f_{R^4}(s, t) = \frac{stu}{3 \cdot 2^7}, \quad f_{D^6 R^4}(s, t) = \frac{(stu)^2}{15 \cdot 2^{15}}. \]

- \(\ell_p^{10} f_{D^4 R^4} \) allowed by SUSY, but known to vanish.

- **This talk:** Reproduce \(f_{R^4} \) from 3d SCFT.
Flat space limit of CFT correlators

- **Idea**: Flat space scattering amplitudes can be obtained as limit of CFT correlators [Polchinski '99; Susskind '99; Giddings '99; Penedones '10; Fitzpatrick, Kaplan '11].

- **For a CFT\(_3\)** operator \(\phi(x)\) with \(\Delta_\phi = 1\),

 \[
 \left\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \right\rangle_{\text{conn}} = \frac{1}{x_{12}^2 x_{34}^2} g(U, V)
 \]

 go to Mellin space

 \[
 g(U, V) = \int \frac{ds \, dt}{(4\pi i)^2} U^{t/2} V^{(u-2)/2} \Gamma^2 \left(1 - \frac{s}{2}\right) \Gamma^2 \left(1 - \frac{t}{2}\right) \Gamma^2 \left(1 - \frac{u}{2}\right) M(s, t)
 \]

 where \(s + t + u = 4\) and \(U = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}\), \(V = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}\).

- From the large \(s, t\) limit of \(M(s, t)\) one can extract 4d scattering amplitude \(A(s, t)\) [Penedones '10; Fitzpatrick, Kaplan '11].
Flat space limit of CFT correlators

- **Idea:** Flat space scattering amplitudes can be obtained as limit of CFT correlators [Polchinski '99; Susskind '99; Giddings '99; Penedones '10; Fitzpatrick, Kaplan '11].

- For a CFT\(_3\) operator \(\phi(x)\) with \(\Delta \phi = 1\),

\[
\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle_{\text{conn}} = \frac{1}{x_{12}^2 x_{34}^2} g(U, V)
\]

go to Mellin space

\[
g(U, V) = \int \frac{ds \, dt}{(4\pi i)^2} U^{t/2} V^{(u-2)/2} \Gamma^2 \left(1 - \frac{s}{2}\right) \Gamma^2 \left(1 - \frac{t}{2}\right) \Gamma^2 \left(1 - \frac{u}{2}\right) M(s, t)
\]

where \(s + t + u = 4\) and \(U = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, \ V = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}\).

- From the large \(s, t\) limit of \(M(s, t)\) one can extract 4d scattering amplitude \(\mathcal{A}(s, t)\) [Penedones '10; Fitzpatrick, Kaplan '11].
To obtain scattering amplitude of graviton + superpartners in M-theory, look at **stress tensor multiplet** in ABJM theory (ABJM theory is a 3d $\mathcal{N} = 8$ SCFT, and so it has $\mathfrak{so}(8)_R$ R-symmetry):

focus on this

<table>
<thead>
<tr>
<th>dimension</th>
<th>spin</th>
<th>$\mathfrak{so}(8)_R$</th>
<th>couples to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>35_c</td>
<td>scalars</td>
</tr>
<tr>
<td>3/2</td>
<td>1/2</td>
<td>56_v</td>
<td>gravi-photinos</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>35_s</td>
<td>pseudo-scalars</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>28</td>
<td>gravi-photons</td>
</tr>
<tr>
<td>5/2</td>
<td>3/2</td>
<td>8_v</td>
<td>gravitinos</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>graviton</td>
</tr>
</tbody>
</table>

Task: find the Mellin amplitude $M(s, t)$ corresponding to $\langle S_{IJ} S_{KL} S_{MN} S_{PQ} \rangle$ by solving superconformal Ward identity [Dolan, Gallot, Sokatchev '04] order by order in $\ell_p^2 \propto N^{-1/3} \propto c_T^{-2/9}$.

Here, $\langle T_{\mu\nu} T_{\rho\sigma} \rangle \propto c_T \propto N^{3/2}$.
Require: 1) at order ℓ_p^{2k}, $M(s, t)$ should not grow faster than $(k + 1)^{st}$ power of s, t, u;
2) right analytic properties to correspond to a bulk tree-level Witten diagram.

Number of such solutions to Ward identity is:

<table>
<thead>
<tr>
<th>degree in s, t, u</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>11D vertex</td>
<td>R</td>
<td>R^4</td>
<td>D^4R^4</td>
<td>D^6R^4</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scaling</td>
<td>c_T^{-1}</td>
<td>$c_T^{-\frac{5}{3}}$</td>
<td>$(0 \times) c_T^{-\frac{19}{9}}$</td>
<td>$c_T^{-\frac{7}{3}}$</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of params</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>...</td>
<td>4</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

(degree 1 in [Zhou ’18]; degree ≥ 2 in [Chester, SSP, Yin ’18].)
So:

- To determine $M(s, t)$ to order $1/c_T$ we should compute one CFT quantity.
- To determine $M(s, t)$ to order $1/c_T^{5/3}$ we should compute two CFT quantities.
- Require: 1) at order ℓ_p^{2k}, $M(s, t)$ should not grow faster than $(k + 1)$st power of s, t, u;
- 2) right analytic properties to correspond to a bulk tree-level Witten diagram.

Number of such solutions to Ward identity is:

<table>
<thead>
<tr>
<th>degree in s, t, u</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>11D vertex</td>
<td>R</td>
<td>R^4</td>
<td>D^4R^4</td>
<td>D^6R^4</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scaling</td>
<td>c_T^{-1}</td>
<td>$c_T^{-\frac{5}{3}}$</td>
<td>$(0 \times)c_T^{-\frac{19}{9}}$</td>
<td>$c_T^{-\frac{7}{3}}$</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of params</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>...</td>
</tr>
</tbody>
</table>

(degree 1 in [Zhou '18]; degree ≥ 2 in [Chester, SSP, Yin '18].)

So:

- To determine $M(s, t)$ to order $1/c_T$ we should compute one CFT quantity.
- To determine $M(s, t)$ to order $1/c_T^{5/3}$ we should compute two CFT quantities.
The CFT quantities can be, for instance, squared OPE coefficients appearing in the superconformal block decomposition. Schematically,

$$\langle S_{IJ} S_{KL} S_{MN} S_{PQ} \rangle = \frac{1}{x_{12}^2 x_{34}^2} \sum_{\mathcal{M}} \lambda^2_{\mathcal{M}} g_{\mathcal{M}}(U, V).$$

(\mathcal{M} is a superconformal multiplet appearing in the $S \times S$ OPE.)

$T_{\mu\nu}$ Ward identity gives $\lambda^2_{\text{stress}} = 256/c_T$. Using SUSY tricks, one can compute [Agmon, Chester, SSP '17]:

$$\lambda^2_{B,2} = \frac{32}{3} - \frac{1024(4\pi^2 - 15)}{9\pi^2} \frac{1}{c_T} + 40960 \left(\frac{2}{9\pi^8} \right)^{\frac{1}{3}} \frac{1}{c_T^{5/3}} + \cdots$$

where “stress” is the stress tensor multiplet, and “($B, 2$)” is a 1/4-BPS mutliplet appearing in the OPE $S \times S$.

Silviu Pufu (Princeton University)
Using these two expressions, we determined $M(s, t)$ to order $1/c_T^{5/3}$.

The flat space limit implies $f_{R^4}(s, t) = \frac{stu}{3 \cdot 2^7}$, as expected.

This is a precision test of AdS/CFT beyond supergravity!!
Using these two expressions, we determined $M(s, t)$ to order $1/c^5_T$.

The flat space limit implies $f_{R^4}(s, t) = \frac{stu}{3.27}$, as expected.

This is a precision test of AdS/CFT beyond supergravity!!
Using these two expressions, we determined $M(s, t)$ to order $1/c_T^{5/3}$.

The flat space limit implies $f_{R^4}(s, t) = \frac{stu}{3^{2/7}}$, as expected.

This is a precision test of AdS/CFT beyond supergravity!!
OPE coefficients from SUSic localization

- It is hard to calculate correlation functions at separated points using SUSic localization. See however [Gerkchovitz, Gomis, Ishtiaque, Karasik, Komargodski, SSP ’16; Dedushenko, SSP, Yacoby ’16].

How were c_T and $\lambda^2_{(B,2)}$ computed?

- From derivatives of the S^3 partition function with respect to an $\mathcal{N} = 4$-preserving mass parameter m, which can be computed using supersymmetric localization.

- (For c_T, see also [Chester, Lee, SSP, Yacoby ’14] for another method based on [Closset, Dumitrescu, Festuccia, Komargodski, Seiberg ’12].)
OPE coefficients from SUSic localization

- It is hard to calculate correlation functions at separated points using SUSic localization. See however [Gerkchovitz, Gomis, Ishtiaque, Karasik, Komargodski, SSP '16; Dedushenko, SSP, Yacoby '16].

How were \(c_T \) and \(\chi^2_{(B,2)} \) computed?

- From derivatives of the \(S^3 \) partition function with respect to an \(\mathcal{N} = 4 \)-preserving mass parameter \(m \), which can be computed using supersymmetric localization.

- (For \(c_T \), see also [Chester, Lee, SSP, Yacoby '14] for another method based on [Closset, Dumitrescu, Festuccia, Komargodski, Seiberg '12].)
Mass-deformed S^3 partition function

- For an $\mathcal{N} = 4$-preserving mass deformation of ABJM theory, $Z_{S^3}(m)$ is [Kapustin, Willett, Yaakov ’09] :

$$Z_{S^3}(m) = \int d^N \lambda \ d^N \mu \ e^{i k \sum_i (\lambda_i^2 - \mu_i^2)} \frac{\prod_{i<j} \sinh^2(\lambda_i - \lambda_j) \sinh^2(\mu_i - \mu_j)}{\prod_{i,j} \cosh(\lambda_i - \mu_j + m) \cosh(\lambda_i - \mu_j)}$$

- Small N: can evaluate integral exactly.
- Large N: rewrite $Z_{S^3}(m)$ as the partition function of non-interacting Fermi gas of N particles with [Marino, Putrov ’11; Nosaka ’15]

$$U(x) = \log(2 \cosh x) - mx, \quad T(p) = \log(2 \cosh p).$$

Resummed perturbative expansion [Nosaka ’15] :

$$Z_{S^3}(m) \sim \mathrm{Ai} \left(f_1(m) N - f_2(m) \right)$$

for some known functions $f_1(m)$ and $f_2(m)$. ($\log Z \propto N^{3/2}$)
Mass-deformed S^3 partition function

- For an $\mathcal{N} = 4$-preserving mass deformation of ABJM theory, $Z_{S^3}(m)$ is [Kapustin, Willett, Yaakov ’09]:

\[
Z_{S^3}(m) = \int d^N\lambda\,d^N\mu\,e^{ik\sum_i(\lambda_i^2-\mu_i^2)} \frac{\prod_{i<j}\sinh^2(\lambda_i - \lambda_j)\sinh^2(\mu_i - \mu_j)}{\prod_{i,j}\cosh(\lambda_i - \mu_j + m)\cosh(\lambda_i - \mu_j)}
\]

- Small N: can evaluate integral exactly.
- Large N: rewrite $Z_{S^3}(m)$ as the partition function of non-interacting Fermi gas of N particles with [Marino, Putrov ’11; Nosaka ’15]

\[
U(x) = \log(2\cosh x) - mx, \quad T(p) = \log(2\cosh p).
\]

Resummed perturbative expansion [Nosaka ’15]:

\[
Z_{S^3}(m) \sim Ai\left(f_1(m)N - f_2(m)\right)
\]

for some known functions $f_1(m)$ and $f_2(m)$. ($\log Z \propto N^{3/2}$)
Topological sector

- $3d \mathcal{N} = 4$ SCFTs have a 1d topological sector [Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees ’13; Chester, Lee, SSP, Yacoby ’14; Dedushenko, SSP, Yacoby ’16] defined on a line $(0, 0, x)$ in \mathbb{R}^3.

- $\langle \mathcal{O}_1(x_1) \ldots \mathcal{O}_n(x_n) \rangle$ depends only on the ordering of x_i on the line.

- Ops in 1d are 3d $1/2$-BPS operators $\mathcal{O}(\vec{x})$ placed at $\vec{x} = (0, 0, x)$ and contracted with x-dependent R-symmetry polarizations.

- The operators $\mathcal{O}(x)$ are in the cohomology of a supercharge $Q = “Q + S”$ cohomology s.t. translations in x are Q-exact.

- The topological sector is defined either on a line in flat space or on a great circle of S^3.

- In ABJM, construct 1d operators $S_\alpha(x)$ from S_{IJ}, $\alpha = 1, 2, 3$. Their 2-pt function depends on c_T; their 4-pt function depends on c_T and $\lambda^2_{(B,2)}$.
Topological sector

- 3d $\mathcal{N} = 4$ SCFTs have a 1d topological sector [Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees ’13; Chester, Lee, SSP, Yacoby ’14; Dedushenko, SSP, Yacoby ’16] defined on a line $(0, 0, x)$ in \mathbb{R}^3.

- $\langle O_1(x_1) \ldots O_n(x_n) \rangle$ depends only on the ordering of x_i on the line.

- Ops in 1d are 3d 1/2-BPS operators $O(\vec{x})$ placed at $\vec{x} = (0, 0, x)$ and contracted with x-dependent R-symmetry polarizations.

- The operators $O(x)$ are in the cohomology of a supercharge $Q = "Q + S"$ cohomology s.t. translations in x are Q-exact.

- The topological sector is defined either on a line in flat space or on a great circle of S^3.

- In ABJM, construct 1d operators $S_\alpha(x)$ from S_{IJ}, $\alpha = 1, 2, 3$. Their 2-pt function depends on c_T; their 4-pt function depends on c_T and $\lambda^2_{(B, 2)}$.
Topological sector

- 3d $\mathcal{N} = 4$ SCFTs have a 1d topological sector [Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees '13; Chester, Lee, SSP, Yacoby '14; Dedushenko, SSP, Yacoby '16] defined on a line $(0, 0, x)$ in \mathbb{R}^3.

- $\langle O_1(x_1) \ldots O_n(x_n) \rangle$ depends only on the ordering of x_i on the line.

- Ops in 1d are 3d 1/2-BPS operators $O(\vec{x})$ placed at $\vec{x} = (0, 0, x)$ and contracted with x-dependent R-symmetry polarizations.

- The operators $O(x)$ are in the cohomology of a supercharge $Q = "Q + S"$ cohomology s.t. translations in x are Q-exact.

- The topological sector is defined either on a line in flat space or on a great circle of S^3.

- In ABJM, construct 1d operators $S_\alpha(x)$ from S_{IJ}, $\alpha = 1, 2, 3$. Their 2-pt function depends on c_T; their 4-pt function depends on c_T and $\lambda^2_{(B,2)}$.

Silviu Pufu (Princeton University)
Topological sector

- 3d $\mathcal{N} = 4$ SCFTs have a 1d topological sector [Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees ’13; Chester, Lee, SSP, Yacoby ’14; Dedushenko, SSP, Yacoby ’16] defined on a line $(0, 0, x)$ in \mathbb{R}^3.

- $\langle \mathcal{O}_1(x_1) \ldots \mathcal{O}_n(x_n) \rangle$ depends only on the ordering of x_i on the line.

- Ops in 1d are 3d 1/2-BPS operators $\mathcal{O}(\vec{x})$ placed at $\vec{x} = (0, 0, x)$ and contracted with x-dependent R-symmetry polarizations.

- The operators $\mathcal{O}(x)$ are in the cohomology of a supercharge $Q = "Q + S"$ cohomology s.t. translations in x are Q-exact.

- The topological sector is defined either on a line in flat space or on a great circle of S^3.

- In ABJM, construct 1d operators $S_\alpha(x)$ from S_{IJ}, $\alpha = 1, 2, 3$. Their 2-pt function depends on c_T; their 4-pt function depends on c_T and $\lambda^2_{(B,2)}$.

From $Z_{S^3}(m)$ to OPE coefficients

- One can show $Z_{S^3}(m) = Z_{S^1}(m)$, and so derivatives of the Z_{S^3} w.r.t. m corresponds to integrated correlators in the 1d theory.
- From 2 derivatives of Z_{S^3} w.r.t. m we can extract c_T.
- From 4 derivatives of Z_{S^3} w.r.t. m we can extract $\lambda_{(B,2)}^2$.
- So the (resummed) perturbative expansion of c_T, $\lambda_{B,2}^2$ can be written in terms of derivatives of the Airy function!
- Eliminating N gives

$$\lambda_{(B,2)}^2 = \frac{32}{3} - \frac{1024(4\pi^2 - 15)}{9\pi^2} \frac{1}{c_T} + 40960 \left(\frac{2}{9\pi^8} \right)^{\frac{1}{3}} \frac{1}{c_T^{5/3}} + \cdots$$

- (Tangent: For 2d bulk dual of the 1d topological sector of ABJM theory, see [Mezei, SSP, Wang ’17]. The 1d theory is exactly solvable, and its 2d bulk dual is 2d YM.)
From $Z_{S^3}(m)$ to OPE coefficients

- One can show $Z_{S^3}(m) = Z_{S^1}(m)$, and so derivatives of the Z_{S^3} w.r.t. m corresponds to integrated correlators in the 1d theory.

- From 2 derivatives of Z_{S^3} w.r.t. m we can extract c_T.

- From 4 derivatives of Z_{S^3} w.r.t. m we can extract $\lambda^2_{(B,2)}$.

- So the (resummed) perturbative expansion of c_T, $\lambda^2_{B,2}$ can be written in terms of derivatives of the Airy function!

- Eliminating N gives

$$\lambda^2_{B,2} = \frac{32}{3} - \frac{1024(4\pi^2 - 15)}{9\pi^2} \frac{1}{c_T} + 40960 \left(\frac{2}{9\pi^8} \right)^{\frac{1}{3}} \frac{1}{c_T^{5/3}} + \cdots$$

(Tangent: For 2d bulk dual of the 1d topological sector of ABJM theory, see [Mezei, SSP, Wang ’17]. The 1d theory is exactly solvable, and its 2d bulk dual is 2d YM.)
From $Z_{S^3}(m)$ to OPE coefficients

- One can show $Z_{S^3}(m) = Z_{S^1}(m)$, and so derivatives of the Z_{S^3} w.r.t. m corresponds to integrated correlators in the 1d theory.

- From 2 derivatives of Z_{S^3} w.r.t. m we can extract c_T.

- From 4 derivatives of Z_{S^3} w.r.t. m we can extract $\lambda_{(B,2)}^2$.

- So the (resummed) perturbative expansion of $c_T, \lambda_{(B,2)}^2$ can be written in terms of derivatives of the Airy function!

- Eliminating N gives

$$\lambda_{(B,2)}^2 = \frac{32}{3} - \frac{1024(4\pi^2 - 15)}{9\pi^2} \frac{1}{c_T} + 40960 \left(\frac{2}{9\pi^8} \right)^{\frac{1}{3}} \frac{1}{c_T^{5/3}} + \cdots$$

- (Tangent: For 2d bulk dual of the 1d topological sector of ABJM theory, see [Mezei, SSP, Wang ’17]. The 1d theory is exactly solvable, and its 2d bulk dual is 2d YM.)
Beyond f_{R^4}?

Can one go beyond reconstructing f_{R^4}?

More SUSic localization results for ABJM theory are available: Z_{S^3} as a function of three real mass parameters; partition function on a squashed sphere, etc.

Cannot use the 1d topological sector in this case, but it is very likely that this extra data will show $f_{D^4 R^4} = 0$ and maybe even determine $f_{D^6 R^4}$. (Work in progress with D. Binder and S. Chester.)

Another approach: conformal bootstrap.

Generally, we obtain bounds on various quantities.

If the bounds are saturated, then we can solve for the CFT data.
Beyond f_{R^4}?

- Can one go beyond reconstructing f_{R^4}?
- More SUSic localization results for ABJM theory are available: Z_{S^3} as a function of three real mass parameters; partition function on a squashed sphere, etc.
 - Cannot use the 1d topological sector in this case, but it is very likely that this extra data will show $f_{D^4 R^4} = 0$ and maybe even determine $f_{D^6 R^4}$. (Work in progress with D. Binder and S. Chester.)

Another approach: conformal bootstrap.

- Generally, we obtain bounds on various quantities.
- If the bounds are saturated, then we can solve for the CFT data.
Beyond f_{R^4}?

- Can one go beyond reconstructing f_{R^4}?

- More SUSic localization results for ABJM theory are available: Z_{S^3} as a function of three real mass parameters; partition function on a squashed sphere, etc.

 - Cannot use the 1d topological sector in this case, but it is very likely that this extra data will show $f_{D^4R^4} = 0$ and maybe even determine $f_{D^6R^4}$. (Work in progress with D. Binder and S. Chester.)

- Another approach: conformal bootstrap.

 - Generally, we obtain bounds on various quantities.

 - If the bounds are saturated, then we can solve for the CFT data.
Known $\mathcal{N} = 8$ SCFTs

A few families of $\mathcal{N} = 8$ SCFTs:

With holographic duals:

- $\text{ABJM}_{N,1}: U(N)_1 \times U(N)_{-1} \leftrightarrow AdS_4 \times S^7$.
- $\text{ABJM}_{N,2}: U(N)_2 \times U(N)_{-2} \leftrightarrow AdS_4 \times S^7 / \mathbb{Z}_2$.
- $\text{ABJ}_{N,2}: U(N)_2 \times U(N + 1)_{-2} \leftrightarrow AdS_4 \times S^7 / \mathbb{Z}_2$.

Without known holographic duals:

- $\text{BLG}_k: SU(2)_k \times SU(2)_{-k}$.
Bootstrap bounds [Agmon, Chester, SSP ’17]

- Bounds from conformal bootstrap applying to all $\mathcal{N} = 8$ SCFTs.

![Diagram with plot](image)

- SUGRA (leading large c_T) saturates bootstrap bounds.
- Conjecture: $\text{ABJM}_{N,1}$ or $\text{ABJM}_{N,2}$ or $\text{ABJ}_{N,2}$ saturate bound at all N in the limit of infinite precision.
Bootstrap bounds [Agmon, Chester, SSP ’17]

- Bounds from conformal bootstrap applying to all $\mathcal{N} = 8$ SCFTs.

- SUGRA (leading large c_T) saturates bootstrap bounds.
- Conjecture: $\text{ABJM}_{N,1}$ or $\text{ABJM}_{N,2}$ or $\text{ABJ}_{N,2}$ saturate bound at all N in the limit of infinite precision.
Bound saturation \implies read off CFT data

- On the boundary of the bootstrap bounds, the solution to crossing should be unique \implies can find $\langle S_{IJ} S_{KL} S_{MN} S_{PQ} \rangle$ and solve for the spectrum !! [Agmon, Chester, SSP ’17]

Red lines are leading SUGRA **tree level** results [Zhou ’17; Chester ’18].

Lowest operators have the form $S_{IJ} \partial_{\mu_1} \cdots \partial_{\mu_\ell} S^{IJ}.$
\(\lambda_{(A,2)}^2 \) and \(\lambda_{(A,+)}^2 \) from extremal functional

Semishort \((A, 2)_j \) and \((A, +)_j \) OPE coefficients for low spin \(j \) in terms of \(\frac{16}{c_T} \) from extremal functional:

- Red line is tree level SUGRA result [Chester '18].
- \(\lambda_{(A,+)}^2 \) appears close to linear in \(16/c_T \).
- More precision needed.
\(\lambda_{(A,2)}^2_j \) and \(\lambda_{(A,+)}^2_j \) from extremal functional

Semishort \((A, 2)_j\) and \((A, +)_j\) OPE coefficients for low spin \(j\) in terms of \(\frac{16}{c_T}\) from extremal functional:

- Red line is tree level SUGRA result [Chester ’18].
- \(\lambda_{(A,+)}^2_j\) appears close to linear in \(16/c_T\).
- More precision needed.
Conclusion

- Can compute OPE coefficients in $\mathcal{N} = 8$ SCFTs with Lagrangian descriptions using supersymmetric localization.

- For ABJM theory, we can reproduce the $f_{R^4}(s, t) = \frac{stu}{3 \cdot 2^7}$ term in the flat space 4-graviton scattering amplitude.

- Bootstrap bounds are almost saturated by $\mathcal{N} = 8$ SCFTs with holographic duals.

For the future:

- Generalize to other dimensions, other 4-point function, less SUSY. (See [Chester, Perlmutter '18] on 6d as well as Shai Chester’s talk & poster.)

- Study other SCFTs from which one can compute scattering amplitudes of gauge bosons on branes. (?)

- Loops in AdS.
Conclusion

- Can compute OPE coefficients in $\mathcal{N} = 8$ SCFTs with Lagrangian descriptions using supersymmetric localization.

- For ABJM theory, we can reproduce the $f_{R^4}(s, t) = \frac{stu}{3 \cdot 2^7}$ term in the flat space 4-graviton scattering amplitude.

- Bootstrap bounds are almost saturated by $\mathcal{N} = 8$ SCFTs with holographic duals.

For the future:

- Generalize to other dimensions, other 4-point function, less SUSY. (See [Chester, Perlmutter '18] on 6d as well as Shai Chester’s talk & poster.)

- Study other SCFTs from which one can compute scattering amplitudes of gauge bosons on branes. (?)

- Loops in AdS.