Bootstrapping $4d \mathcal{N} = 2$ theories

Madalena Lemos

Strings 2018
Jun 28 2018, OIST

together with C. Beem, M. Cornaglioatto, P. Liendo, W. Peelaers, L. Rastelli, V. Schomerus, B. van Rees
What is the 3d Ising model of 4d (S)CFTs?

One \mathbb{Z}_2—even, one \mathbb{Z}_2—odd relevant scalar operator
3d Ising Model

[Poland Simmons-Duffin Kos, Simmons-Duffin, Poland Simmons-Duffin Kos Vichi]

What other theories are within reach?

What is the 3d Ising model of 4d (S)CFTs?

One \mathbb{Z}_2—even, one \mathbb{Z}_2—odd relevant scalar operator
Outline

1 The Superconformal Bootstrap Program

2 (A_1, A_2) Argyres-Douglas Theory

3 Landscape of $4d \mathcal{N} = 2$ SCFTs

4 Summary & Outlook
1. The Superconformal Bootstrap Program

2. (A_1, A_2) Argyres-Douglas Theory

3. Landscape of $4d \mathcal{N} = 2$ SCFTs

4. Summary & Outlook
What is the space of consistent $4d$ SCFTs?
The Superconformal Bootstrap Program

What is the space of consistent $4d$ SCFTs?

→ Maximally supersymmetric theories: $\mathcal{N} = 4$ SYM (?)
What is the space of consistent $4d$ SCFTs?

- Maximally supersymmetric theories: $\mathcal{N} = 4$ SYM (?)

- $\mathcal{N} = 2$ theories: growing list of theories [see Argyres’ talk]
What is the space of consistent 4d SCFTs?

→ Maximally supersymmetric theories: $\mathcal{N} = 4$ SYM (?)
→ $\mathcal{N} = 3$ theories [García-Etxebarria Regalado]
→ $\mathcal{N} = 2$ theories: growing list of theories [see Argyres’ talk]
What is the space of consistent 4d SCFTs?

→ Maximally supersymmetric theories: $\mathcal{N} = 4$ SYM (?)
→ $\mathcal{N} = 3$ theories [García-Etxebarria Regalado]
→ $\mathcal{N} = 2$ theories: growing list of theories [see Argyres' talk]

Can we bootstrap specific theories?
The Superconformal Bootstrap Program

What is the space of consistent 4d SCFTs?

→ Maximally supersymmetric theories: $\mathcal{N} = 4$ SYM (?)
→ $\mathcal{N} = 3$ theories [García-Etxebarria Regalado]
→ $\mathcal{N} = 2$ theories: growing list of theories [see Argyres’ talk]

Can we bootstrap specific theories?

→ “Simplest” $\mathcal{N} = 2$ Argyres-Douglas theory?
Conformal field theory defined by [see Simmons-Duffin’s talk]

Set of local operators and all their correlation functions

Operator Product Expansion

\[O_1(x) O_2(0) = \sum_{k} f_{O_1 O_2 O_k} x^{\Delta_k - \Delta_1 - \Delta_2} (O_k(0) + \ldots) \]
Conformal field theory defined by [see Simmons-Duffin’s talk]
Set of local operators and all their correlation functions

Operator Product Expansion

\[\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_{k_{\text{prim.}}} f_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} x^{\Delta_k - \Delta_1 - \Delta_2} (\mathcal{O}_k(0) + \ldots) \]
Conformal field theory defined by \(\{ \mathcal{O}_{\Delta, \ell, \ldots}(x) \} \) and \(\{ f_{\mathcal{O}_i \mathcal{O}_j \mathcal{O}_k} \} \)

Operator Product Expansion

\[
\mathcal{O}_1(x) \mathcal{O}_2(0) = \sum_{k \text{prim.}} f_{\mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_k} x^{\Delta_k - \Delta_1 - \Delta_2} (\mathcal{O}_k(0) + \ldots)
\]
Conformal field theory defined by [see Simmons-Duffin’s talk]
\{\mathcal{O}_{\Delta,\ell,...}(x)\} \text{ and } \{f_{\mathcal{O}_i\mathcal{O}_j\mathcal{O}_k}\}

Operator Product Expansion

\[\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_{k_{\text{prim}}} f_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} x^{\Delta_k-\Delta_1-\Delta_2} (\mathcal{O}_k(0) + \ldots) \]

Subject to

- Unitarity
- Associativity of the operator product algebra
Conformal field theory defined by \(\{ \mathcal{O}_{\Delta,\ell} \} \) and \(\{ f_{\mathcal{O}_i\mathcal{O}_j\mathcal{O}_k} \} \)

Operator Product Expansion

\[
\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_{k \text{prim.}} f_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} x^{\Delta_k - \Delta_1 - \Delta_2} (\mathcal{O}_k(0) + \ldots)
\]

Subject to

▶ Unitarity
▶ Crossing equations for all four-point functions
Conformal field theory defined by \[\{ \mathcal{O}_{\Delta, \ell, \ldots}(x) \} \text{ and } \{ f_{\mathcal{O}_i \mathcal{O}_j \mathcal{O}_k} \} \] [see Simmons-Duffin’s talk]
Conformal field theory defined by [see Simmons-Duffin’s talk]
\{\mathcal{O}_{\Delta,\ell,...}(x)\} \text{ and } \{f_{i,j,k}\}

The Superconformal Bootstrap

- Conformal families \leadsto Superconformal families
Conformal field theory defined by [see Simmons-Duffin’s talk]
\(\{\mathcal{O}_{\Delta,\ell,...}(x)\}\) and \(\{f_{\mathcal{O}_i\mathcal{O}_j\mathcal{O}_k}\}\)

The Superconformal Bootstrap

- Conformal families \(\leadsto\) Superconformal families
- Finite re-organization of an infinite amount of data
Conformal field theory defined by \[\{ \mathcal{O}_{\Delta,\ell,...}(x) \} \] and \(\{ f_{\mathcal{O}_i \mathcal{O}_j \mathcal{O}_k} \} \)

The Superconformal Bootstrap

- Conformal families \(\rightsquigarrow \) Superconformal families
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?
The Superconformal Bootstrap

Conformal field theory defined by \[\{ \mathcal{O}_{\Delta,\ell,...}(x) \} \text{ and } \{ f_{\mathcal{O}_i \mathcal{O}_j \mathcal{O}_k} \} \]

The Superconformal Bootstrap

- Conformal families \(\rightsquigarrow \) Superconformal families
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?

\[\rightarrow \text{ Yes, for } 4d \mathcal{N} \geq 2 \quad [\text{Beem ML Liendo Peelaers Rastelli van Rees}] \]

(and also \(6d \mathcal{N} = (2, 0) \) and \(2d \mathcal{N} = (0, 4) \) \[\text{[Beem Rastelli van Rees]}\])
Conformal field theory defined by \[\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\} \text{ and } \{f_{\mathcal{O}_i \mathcal{O}_j \mathcal{O}_k}\} \]}

The Superconformal Bootstrap

- Conformal families \(\rightsquigarrow\) Superconformal families
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?

\[\rightarrow\text{ Yes, for } 4d \mathcal{N} \geq 2 \quad [\text{Beem ML Liendo Peelaers Rastelli van Rees}]\]

(and also \(6d \mathcal{N} = (2, 0)\) and \(2d \mathcal{N} = (0, 4) \quad [\text{Beem Rastelli van Rees}]\))

\[\rightarrow\text{ Subsector } \mathcal{N} \geq 2 \text{ SCFTs captured by } 2d \text{ chiral algebra} \]
A solvable subsector

$4d \mathcal{N} = 2$ SCFTs $\rightarrow 2d$ chiral algebra
A solvable subsector

4d $\mathcal{N} = 2$ SCFTs \rightarrow 2d chiral algebra

- $SU(2)_R$ current \mapsto 2d stress tensor $T(z)$
A solvable subsector

\[4d \mathcal{N} = 2 \text{ SCFTs} \rightarrow 2d \text{ chiral algebra} \]

- \(SU(2)_R \) current \(\rightarrow \) 2d stress tensor \(T(z) \)

\(\mathcal{O}_{2d} \sum \mathcal{O}_{2d} f^2 \mathcal{O}_{2d} \rightarrow f^2 \mathcal{O}_{4d} \geq \mathcal{O}_{4d} \) unitarity

\[\Rightarrow \] New unitarity bounds

assumptions: interacting theory, unique stress tensor
A solvable subsector

$4d$ $\mathcal{N} \geq 2$ $\text{SCFTs} \rightarrow 2d$ chiral algebra

- Super-stress tensor multiplet$_{4d}$ \leftrightarrow (Super-)stress tensor$_{2d}$
A solvable subsector

$4d \, \mathcal{N} \geq 2$ SCFTs $\rightarrow 2d$ chiral algebra

- Super-stress tensor multiplet$_{4d} \leftrightarrow$ (Super-)stress tensor$_{2d}$

A trivial statement in $2d$

\rightarrow (super-)stress tensor four-point function fixed in terms of c_{2d}
A solvable subsector

$4d \mathcal{N} \geq 2$ SCFTs $\rightarrow 2d$ chiral algebra

- Super-stress tensor multiplet$_{4d} \mapsto (\text{Super-})\text{stress tensor}_{2d}$

A trivial statement in $2d$

$\rightarrow (\text{super-})\text{stress tensor four-point function fixed in terms of} \quad c_{2d} \quad \left(\langle TT \rangle \propto c \right)$
A solvable subsector

$4d \mathcal{N} \geq 2$ SCFTs $\rightarrow 2d$ chiral algebra

- Super-stress tensor multiplet$_{4d}$ \leftrightarrow (Super-)stress tensor$_{2d}$

A trivial statement in $2d$

\rightarrow (super-)stress tensor four-point function fixed in terms of $c_{2d} = -12c_{4d}$ ($\langle TT \rangle \propto c$)
A solvable subsector

$4d \mathcal{N} \geq 2$ SCFTs $\rightarrow 2d$ chiral algebra

- Super-stress tensor multiplet$_{4d} \leftrightarrow$ (Super-)stress tensor$_{2d}$

A trivial statement in $2d$

\rightarrow (super-)stress tensor four-point function fixed in terms of $c_{2d} = -12c_{4d}$ ($\langle TT \rangle \propto c$)

$\rightarrow 2d$ Superblock decomposition:

$$\sum_{\mathcal{O}_{2d}} f_{\mathcal{O}_{2d}}^2 \mathcal{O}_{2d}$$
A solvable subsector

$4d \mathcal{N} \geq 2$ SCFTs \rightarrow $2d$ chiral algebra

- Super-stress tensor multiplet$_{4d} \leftrightarrow$ (Super-)stress tensor$_{2d}$

A trivial statement in $2d$

\rightarrow (super-)stress tensor four-point function fixed in terms of $c_{2d} = -12c_{4d}$ \hspace{1cm} ($\langle TT \rangle \propto c$)

\rightarrow $2d$ Superblock decomposition:

$$\sum_{\mathcal{O}_{2d}} f_{\mathcal{O}_{2d}}^2 \quad \begin{array}{c}
\mathcal{O}_{2d} \\
\mathcal{O}_{2d}
\end{array}$$

\rightarrow $f_{\mathcal{O}_{2d}}^2$
A solvable subsector

$4d\ \mathcal{N} \geq 2\ \text{SCFTs} \rightarrow 2d\ \text{chiral algebra}$

- Super-stress tensor multiplet$_{4d} \leftrightarrow (\text{Super-})\text{stress tensor}_{2d}$

A trivial statement in $2d$

$\rightarrow (\text{super-})\text{stress tensor four-point function fixed in terms of}$

$c_{2d} = -12c_{4d}$ \quad (\langle TT \rangle \propto c)$

$\rightarrow 2d\ \text{Superblock decomposition:}$

\[\sum_{\mathcal{O}_{2d}} f_{\mathcal{O}_{2d}}^2 \]

$\rightarrow f_{\mathcal{O}_{2d}}^2 \sim f_{\mathcal{O}_{4d}}^2$

assumptions: interacting theory, unique stress tensor
A solvable subsector

4d $\mathcal{N} \geq 2$ SCFTs \rightarrow 2d chiral algebra

- Super-stress tensor multiplet$_{4d} \leftrightarrow$ (Super-)stress tensor$_{2d}$

A trivial statement in 2d

\rightarrow (super-)stress tensor four-point function fixed in terms of $c_{2d} = -12c_{4d}$ \quad (\langle TT \rangle \propto c)$

\rightarrow 2d Superblock decomposition:

$\sum_{\mathcal{O}_{2d}} f_{\mathcal{O}_{2d}}^2 \mathcal{O}_{2d} \mathcal{O}_{2d}$

\rightarrow $f_{\mathcal{O}_{2d}}^2 \sim f_{\mathcal{O}_{4d}}^2 \geq 0$

4d unitarity

assumptions: interacting theory, unique stress tensor
A solvable subsector

4d $\mathcal{N} \geq 2$ SCFTs \rightarrow 2d chiral algebra

- Super-stress tensor multiplet$_{4d} \leftrightarrow$ (Super-)stress tensor$_{2d}$

A trivial statement in 2d

\rightarrow (super-)stress tensor four-point function fixed in terms of $c_{2d} = -12c_{4d}$ \quad (\langle TT \rangle \propto c)$

\rightarrow 2d Superblock decomposition:

$$\sum_{\mathcal{O}_{2d}} f_{\mathcal{O}_{2d}}^2 \quad \mathcal{O}_{2d}$$

\rightarrow $f_{\mathcal{O}_{2d}}^2 \sim f_{\mathcal{O}_{4d}}^2 \quad \geq 0 \Rightarrow$ New unitarity bounds

4d unitarity assumptions: interacting theory, unique stress tensor
Landscape of $4d \mathcal{N} \geq 2$ SCFTs

From $2d$ (super-)stress tensor four-point function
(assumptions: interacting theory, unique stress tensor)

$\rightarrow 4d \mathcal{N} = 4$ SCFTs $c = a \geq \frac{3}{4}$ [Beem Rastelli van Rees]
Landscape of $4d \, \mathcal{N} \geq 2$ SCFTs

From $2d$ (super-)stress tensor four-point function
(assumptions: interacting theory, unique stress tensor)

$\rightarrow \ 4d \, \mathcal{N} = 4$ SCFTs $c = a \geq \frac{3}{4} \quad \text{[Beem Rastelli van Rees]}$

$\rightarrow \ 4d \, \mathcal{N} \geq 3$ SCFTs $c = a > \frac{13}{24} \quad \text{[Cornagliotto ML Schomerus]}$

from interpreting \mathcal{O}_{2d} as a $4d$ operator

\[su(2) \quad \mathcal{N}=4 \text{ SYM} \]
Landscape of $4d \mathcal{N} \geq 2$ SCFTs

From $2d$ (super-)stress tensor four-point function
(assumptions: interacting theory, unique stress tensor)

$\rightarrow 4d \mathcal{N} = 4$ SCFTs $c = a \geq \frac{3}{4}$ [Beem Rastelli van Rees]
$\rightarrow 4d \mathcal{N} \geq 3$ SCFTs $c = a > \frac{13}{24}$ [Cornagliotto ML Schomerus]

from interpreting O_{2d} as a $4d$ operator

\[
\begin{align*}
\text{su}(2) & \quad \mathcal{N}=4 \text{ SYM} \\
\text{'smallest'} & \quad \mathcal{N}=3
\end{align*}
\]
Landscape of $4d \mathcal{N} \geq 2$ SCFTs

From $2d$ (super-)stress tensor four-point function

(assumptions: interacting theory, unique stress tensor)

$\rightarrow 4d \mathcal{N} = 4$ SCFTs $c = a \geq \frac{3}{4}$ [Beem Rastelli van Rees]
$\rightarrow 4d \mathcal{N} \geq 3$ SCFTs $c = a > \frac{13}{24}$ [Cornagliotto ML Schomerus]

from interpreting \mathcal{O}_{2d} as a $4d$ operator

$\rightarrow 4d \mathcal{N} \geq 2$ SCFTs $c \geq \frac{11}{30}$ [Liendo Ramirez Seo]
Landscape of $4d\ N \geq 2$ SCFTs

From $2d$ (super-)stress tensor four-point function
(assumptions: interacting theory, unique stress tensor)

→ $4d\ N = 4$ SCFTs $c = a \geq \frac{3}{4}$ [Beem Rastelli van Rees]
→ $4d\ N \geq 3$ SCFTs $c = a > \frac{13}{24}$ [Cornagliootto ML Schomerus]
from interpreting O_{2d} as a $4d$ operator
→ $4d\ N \geq 2$ SCFTs $c \geq \frac{11}{30}$ [Liendo Ramirez Seo]

↔ Saturated by the (A_1, A_2) Argyres-Douglas theory
1 The Superconformal Bootstrap Program

2 \((A_1, A_2)\) Agyres-Douglas Theory

3 Landscape of 4d \(\mathcal{N} = 2\) SCFTs

4 Summary & Outlook
The “simplest” Argyres-Douglas theory

→ Originally obtained on the Coulomb branch of a 4d $\mathcal{N} = 2$ susy gauge theory with gauge group $SU(3)$
The “simplest” Argyres-Douglas theory

→ Originally obtained on the Coulomb branch of a $4d$ $\mathcal{N} = 2$ susy gauge theory with gauge group $SU(3)$

→ $\mathcal{N} = 1$ Lagrangian description [see Song’s talk]
The “simplest” Argyres-Douglas theory

→ Originally obtained on the Coulomb branch of a $4d$ $\mathcal{N} = 2$ susy gauge theory with gauge group $SU(3)$

→ $\mathcal{N} = 1$ Lagrangian description [see Song’s talk]

→ Strongly coupled isolated SCFT – no marginal deformations
The “simplest” Argyres-Douglas theory

→ Originally obtained on the Coulomb branch of a 4d $\mathcal{N} = 2$ susy gauge theory with gauge group $SU(3)$

→ $\mathcal{N} = 1$ Lagrangian description [see Song’s talk]

→ Strongly coupled isolated SCFT – no marginal deformations

→ Just another SCFT
The “simplest” Argyres-Douglas theory

→ Originally obtained on the Coulomb branch of a 4d $\mathcal{N} = 2$ susy gauge theory with gauge group $SU(3)$

→ $\mathcal{N} = 1$ Lagrangian description [see Song’s talk]

→ Strongly coupled isolated SCFT – no marginal deformations

→ Just another SCFT

→ Chiral algebra[(A_1, A_2)] = Lee-Yang minimal model [Beem Rastelli]
The “simplest” Argyres-Douglas theory

→ Originally obtained on the Coulomb branch of a 4d \(\mathcal{N} = 2 \) susy gauge theory with gauge group \(SU(3) \)

→ \(\mathcal{N} = 1 \) Lagrangian description [see Song’s talk]

→ Strongly coupled isolated SCFT – no marginal deformations

→ Just another SCFT

→ Chiral algebra\([A_1, A_2]\) = Lee-Yang minimal model

[Beem Rastelli]

Our tools beyond protected subsector

► Numerical bootstrap

[Rattazzi Rychkov Tonni Vichi]
The “simplest” Argyres-Douglas theory

→ Originally obtained on the Coulomb branch of a 4d $\mathcal{N} = 2$ susy gauge theory with gauge group $SU(3)$
→ $\mathcal{N} = 1$ Lagrangian description [see Song’s talk]
→ Strongly coupled isolated SCFT – no marginal deformations
→ Just another SCFT
→ Chiral algebra[(A_1, A_2)] $= \text{Lee-Yang minimal model}$ [Beem Rastelli]

Our tools beyond protected subsector

- Numerical bootstrap
 [Rattazzi Rychkov Tonni Vichi]
- Lightcone bootstrap
 [Fitzpatrick Kaplan Poland Simmons-Duffin, Komargodski Zhiboedov]
The “simplest” Argyres-Douglas theory

\(\rightarrow\) Originally obtained on the Coulomb branch of a 4d \(\mathcal{N} = 2\) susy gauge theory with gauge group \(SU(3)\)

\(\rightarrow\) \(\mathcal{N} = 1\) Lagrangian description \([\text{see Song's talk}]\)

\(\rightarrow\) Strongly coupled isolated SCFT – no marginal deformations

\(\rightarrow\) Just another SCFT

\(\rightarrow\) Chiral algebra\([\mathcal{A}_1, \mathcal{A}_2]\) = Lee-Yang minimal model \([\text{Beem Rastelli}]\)

Our tools beyond protected subsector

\(\triangleright\) Numerical bootstrap
\([\text{Rattazzi Rychkov Tonni Vichi}]\)

\(\triangleright\) Lightcone bootstrap
\([\text{Fitzpatrick Kaplan Poland Simmons-Duffin, Komargodski Zhiboedov}]\)

\(\leftrightarrow\) Lorentzian inversion formula of \([\text{Caron-Huot}]\)
The “simplest” Argyres-Douglas theory

How can we approach it?
The “simplest” Argyres-Douglas theory

How can we approach it?

- Known: $4d \\mathcal{N} = 2$ chiral operator ϕ

\[\Delta_\phi = \frac{6}{5} \]

Two OPE channels:

$\phi\phi \sim \phi^2 + \cdots$

$\phi\bar{\phi} \sim \text{Identity} + \text{Super-stress tensor} + \cdots$

Conformal blocks \mapsto superconformal blocks (only in $\phi\bar{\phi}$ channel)
The “simplest” Argyres-Douglas theory

How can we approach it?

- Known: $4d \, \mathcal{N} = 2$ chiral operator ϕ \hspace{1cm} $(\mathcal{Q}_\alpha^I \phi = 0)$

\begin{equation}
\Delta \phi = \frac{6}{5}
\end{equation}
The “simplest” Argyres-Douglas theory

How can we approach it?

- Known: 4d $\mathcal{N} = 2$ chiral operator ϕ \hspace{1cm} ($Q^I_\alpha \phi = 0$)

$$\Delta \phi = \frac{6}{5}$$

$U(1)_r$ charge $r = \Delta \phi$
The “simplest” Argyres-Douglas theory

How can we approach it?

► Known: $4d \, \mathcal{N} = 2$ chiral operator ϕ \quad ($Q^I_\alpha \phi = 0$)

\[\Delta_\phi = \frac{6}{5} \]

$U(1)_r$ charge $r = \Delta_\phi$

► Study $\langle \phi(x_1)\phi(x_2)\bar{\phi}(x_3)\bar{\phi}(x_4) \rangle$
The “simplest” Argyres-Douglas theory

How can we approach it?

- Known: $4d \mathcal{N} = 2$ chiral operator ϕ \hfill $(Q^I_\alpha \phi = 0)$
 \[\Delta \phi = \frac{6}{5} \]

 $U(1)_r$ charge $r = \Delta \phi$

- Study $\langle \phi(x_1) \phi(x_2) \bar{\phi}(x_3) \bar{\phi}(x_4) \rangle$
 conjugate of ϕ
The “simplest” Argyres-Douglas theory

How can we approach it?

- Known: $4d \mathcal{N} = 2$ chiral operator ϕ \hspace{1cm} ($Q^I_\alpha \phi = 0$)

 \[\Delta \phi = \frac{6}{5} \]

 $U(1)_r$ charge $r = \Delta \phi$

- Study $\langle \phi(x_1)\phi(x_2)\bar{\phi}(x_3)\bar{\phi}(x_4) \rangle$

 \[\text{conjugate of } \phi \]

- Two OPE channels:

 \[\phi\phi \sim \phi^2 + \cdots \]
The “simplest” Argyres-Douglas theory

How can we approach it?

- Known: 4d $\mathcal{N} = 2$ chiral operator $\phi \quad (Q^I_\alpha \phi = 0)$
 \[\Delta_\phi = \frac{6}{5} \]
 $U(1)_r$ charge $r = \Delta_\phi$

- Study $\langle \phi(x_1)\phi(x_2)\bar{\phi}(x_3)\bar{\phi}(x_4) \rangle$
 conjugate of ϕ

- Two OPE channels:
 $\leftrightarrow \phi\phi \sim \phi^2 + \cdots$
 $\leftrightarrow \phi\bar{\phi} \sim \text{Identity} + \text{Super-stress tensor} + \cdots$
The “simplest” Argyres-Douglas theory

How can we approach it?

- Known: 4d $\mathcal{N} = 2$ chiral operator ϕ \quad ($Q^I_\alpha \phi = 0$)

\[
\Delta_\phi = \frac{6}{5}
\]

$U(1)_r$ charge $r = \Delta_\phi$

- Study $\langle \phi(x_1) \phi(x_2) \phi(x_3) \phi(x_4) \rangle$

\[\text{conjugate of } \phi\]

- Two OPE channels:

\[\phi \phi \sim \phi^2 + \cdots\]

\[\phi \phi \sim \text{Identity} + \text{Super-stress tensor} + \cdots\]

- Conformal blocks \leadsto superconformal blocks
The “simplest” Argyres-Douglas theory

How can we approach it?

► Known: 4d $\mathcal{N} = 2$ chiral operator ϕ ($Q_\alpha^I \phi = 0$)

$$\Delta_\phi = \frac{6}{5}$$

$U(1)_r$ charge $r = \Delta_\phi$

► Study $\langle \phi(x_1) \phi(x_2) \overline{\phi}(x_3) \overline{\phi}(x_4) \rangle$

conjugate of ϕ

► Two OPE channels:

$\leftrightarrow \phi \phi \sim \phi^2 + \cdots$

$\leftrightarrow \phi \overline{\phi} \sim \text{Identity} + \text{Super-stress tensor} + \cdots$

► Conformal blocks \rightsquigarrow superconformal blocks

(only in $\phi \overline{\phi}$ channel) [Fitzpatrick Kaplan Khandker Li Poland Simmons-Duffin]
Minimum allowed central charge

Does $\langle \phi \phi \phi \phi \rangle$ know about $c \geq \frac{11}{30}$?
Does $\langle \phi \phi \bar{\phi} \phi \rangle$ know about $c \geq \frac{11}{30}$?
Minimum allowed central charge

Does $\langle \phi \phi \bar{\phi} \bar{\phi} \rangle$ know about $c \geq \frac{11}{30}$?

[Cornaglioni ML Liendo]
Does $\langle \phi \phi \bar{\phi} \bar{\phi} \rangle$ know about $c \geq \frac{11}{30}$?

[Cornaglotti ML Liendo]
Bounding OPE coefficients

\[\phi \phi \sim f_\phi^2 \phi^2 + \cdots \]

unknown

\[\Delta = 2 \Delta_\phi \]
Bounding OPE coefficients

\[\phi \phi \sim f^2_{\phi^2} \phi^2 + \cdots \]

unknown

\[\Delta = 2\Delta_{\phi} \]

Excluded

Excluded

[Cornagliotto ML Liendo]
Bounding OPE coefficients

\[\phi \phi \sim f_{\phi^2}^2 \phi^2 + \cdots \]

unknown
\[\Delta = 2\Delta_{\phi} \]

Excluded

Unique solution at \(c_{\text{min}} \)

[Cornaglott ML Liendo]
\(\phi \phi \sim f_{\phi^2}^2 \phi^2 \Delta = 2\Delta \phi \)

\((A_1, A_2)\) lives here \(\sim 1.2\% \)
Lorentzian inversion formula

\[\phi \phi \sim f_\phi^2 \phi^2 + f_{C_\ell}^2 C_{\ell>0} + \cdots \]

\[\Delta = 2\Delta_\phi \quad \Delta = 2\Delta_\phi + \ell \]
Lorentzian inversion formula

\[\phi \phi \sim f_{\phi^2}^2 \phi^2 + f_{C_{\ell}}^2 C_{\ell>0} + \cdots \]

\[\Delta = 2\Delta \phi \quad \Delta = 2\Delta \phi + \ell \]

[Cornagliotto ML Liendo]
Lorentzian inversion formula

\[\phi\phi \sim f_{\phi}^2 \phi^2 + f_{C\ell}^2 C_{\ell>0} + \cdots \]

\[\Delta = 2\Delta_{\phi} \quad \Delta = 2\Delta_{\phi} + \ell \]

Inverting the \(\phi\phi \) OPE

→ Same as bosonic inversion, valid for \(\ell > 1 \)
Inverting the $\phi \phi$ OPE

→ Same as bosonic inversion, valid for $\ell > 1$
→ Feed in low twist in t/u-channel: $\bar{\phi} \phi$ OPE
Lorentzian inversion formula

\[\phi \phi \sim f_{\phi^2}^2 \phi^2 + f_{C_\ell}^2 C_{\ell>0} + \cdots \]

\[\Delta = 2\Delta_\phi \quad \Delta = 2\Delta_\phi + \ell \]

Inverting the \(\phi \phi \) OPE

\[\rightarrow \text{Same as bosonic inversion, valid for } \ell > 1 \]
\[\rightarrow \text{Feed in low twist in } t/u\text{-channel: } \bar{\phi} \phi \text{ OPE} \]
\[\leftrightarrow \text{Only input: } \bar{\phi} \phi \sim 1 + \text{Stress tensor multiplet} \]
Lorentzian inversion formula

\[\phi \phi \sim f_{\phi}^2 \phi^2 + f_{C,\ell}^2 C_{\ell>0} + \cdots \]

\[\Delta = 2\Delta_{\phi} \]
\[\Delta = 2\Delta_{\phi} + \ell \]

Inverting the \(\phi \phi \) OPE

→ Same as bosonic inversion, valid for \(\ell > 1 \)

→ Feed in low twist in \(t/u \)-channel: \(\bar{\phi} \phi \) OPE

 ← Only input: \(\bar{\phi} \phi \sim 1 + \text{Stress tensor multiplet} \)

→ Get \(s \)-channel (\(\phi \phi \)) large spin

[Cornaglio ML Liendo]
Lorentzian inversion formula

\[\phi \phi \sim f^2_{\phi^2} \phi^2 + f^2_{C_\ell} C_{\ell>0} + \cdots \]

\[\Delta = 2\Delta_\phi \quad \Delta = 2\Delta_\phi + \ell \]

\[\Rightarrow \text{Rigorous bounds for } (A_1, A_2) \]

Inverting the \(\phi \phi \) OPE

\[\rightarrow \text{Same as bosonic inversion, valid for } \ell > 1 \]
\[\rightarrow \text{Feed in low twist in } t/u\text{-channel: } \bar{\phi} \phi \text{ OPE} \]
\[\leftarrow \text{Only input: } \bar{\phi} \phi \sim 1 + \text{Stress tensor multiplet} \]
\[\rightarrow \text{Get } s\text{-channel } (\phi \phi) \text{ large spin} \]

[Cornaglito ML Liendo]
Lorentzian inversion formula

\[\phi^2 \sim f_{\phi^2}^2 \phi^2 + f_{C_{\ell}}^2 C_{\ell > 0} + \cdots \]

\[\Delta = 2\Delta_{\phi} \quad \Delta = 2\Delta_{\phi} + \ell \]

\[\Rightarrow \text{Rigorous bounds for } (A_1, A_2) \]

\[\sim \text{analytic approximation} \]

Inverting the $\phi\phi$ OPE

→ Same as bosonic inversion, valid for $\ell > 1$

→ Feed in low twist in t/u-channel: $\bar{\phi}\phi$ OPE

← Only input: $\bar{\phi}\phi \sim 1 + \text{Stress tensor multiplet}$

→ Get s-channel ($\phi\phi$) large spin

[Cornagliozzo ML Liendo]
1. The Superconformal Bootstrap Program

2. (A_1, A_2) Argyres-Douglas Theory

3. Landscape of $4d \mathcal{N} = 2$ SCFTs

4. Summary & Outlook
Landscape of $4d \mathcal{N} \geq 2$ SCFTs

Projection of space of SCFTs to an axis

$\rightarrow 4d \mathcal{N} = 4$ SCFTs $c = a \geq \frac{3}{4}$ [Beem Rastelli van Rees]

$\rightarrow 4d \mathcal{N} \geq 3$ SCFTs $c = a > \frac{13}{24}$ [Cornaglioitto ML Schomerus]

$\rightarrow 4d \mathcal{N} \geq 2$ SCFTs $c \geq \frac{11}{30}$ [Liendo Ramirez Seo]
Landscape of $4d \, \mathcal{N} \geq 2$ SCFTs

Projection of space of SCFTs to an axis

→ $4d \, \mathcal{N} = 4$ SCFTs $c = a \geq \frac{3}{4}$ [Beem Rastelli van Rees]
→ $4d \, \mathcal{N} \geq 3$ SCFTs $c = a > \frac{13}{24}$ [Cornagliotto ML Schomerus]
→ $4d \, \mathcal{N} \geq 2$ SCFTs $c \geq \frac{11}{30}$ [Liendo Ramirez Seo]

Finer view of the space of theories:

⇒ Organize theories by flavor symmetry
Landscape of $4d \mathcal{N} \geq 2$ SCFTs

Projection of space of SCFTs to an axis

$\rightarrow 4d \mathcal{N} = 4$ SCFTs $c = a \geq \frac{3}{4}$ [Beem Rastelli van Rees]
$\rightarrow 4d \mathcal{N} \geq 3$ SCFTs $c = a > \frac{13}{24}$ [Cornaglioattro ML Schomerus]
$\rightarrow 4d \mathcal{N} \geq 2$ SCFTs $c \geq \frac{11}{30}$ [Liendo Ramirez Seo]

Finer view of the space of theories:

\Rightarrow Organize theories by flavor symmetry

$\langle TT \rangle \propto c$, $\langle JJ \rangle \propto k$
4d $\mathcal{N} = 2$ SCFT with $su(2)$ flavor symmetry

- 4d Flavor current supermultiplet

![Graph showing the relationship between $1/k_{4d}$ and c_{4d} for different SCFTs with $su(2)$ flavor symmetry.](image-url)

Only for $su(2)$, $su(3)$, $so(8)$, g^2, f_{4d}, e_{6d}, e_{8d}. 15/21
4d $\mathcal{N} = 2$ SCFT with $su(2)$ flavor symmetry

- 4d Flavor current supermultiplet $\mapsto \langle JJJJ \rangle_{2d}$
4d $\mathcal{N} = 2$ SCFT with $su(2)$ flavor symmetry

- 4d Flavor current supermultiplet $\leftrightarrow \langle JJJJ \rangle_{2d} \sim f_{4d}^2 \geq 0$

[Beem ML Liendo Peelaers Rastelli van Rees]
4d $\mathcal{N} = 2$ SCFT with $su(2)$ flavor symmetry

- 4d Flavor current supermultiplet $\leftrightarrow \langle JJJJ \rangle_{2d} \sim \sum f_{4d}^2 \geq 0$

[Beem ML Liendo Peelaers Rastelli van Rees]
$4d \mathcal{N} = 2$ SCFT with $su(2)$ flavor symmetry

- $4d$ Flavor current supermultiplet $\leftrightarrow \langle JJJJ \rangle_{2d} \sim \sum f_{4d}^2 \geq 0$

- $\langle TTTT \rangle$ & $\langle JJTT \rangle \sim$ distinguishes more operators

Analytically ruled out

assumptions:
unique stress tensor, interacting SCFT

[Beem ML Liendo Peelaers Rastelli van Rees, ML Liendo]
4d $\mathcal{N} = 2$ SCFT with $su(2)$ flavor symmetry

- 4d Flavor current supermultiplet $\leftrightarrow \langle JJJJ\rangle_{2d} \sim \sum f_{4d}^2 \geq 0$
- $\langle TTTT\rangle$ & $\langle JJTT\rangle \sim$ distinguishes more operators

[Beem ML Liendo Peelaers Rastelli van Rees, ML Liendo]
$4d$ $\mathcal{N} = 2$ SCFT with $su(2)$ flavor symmetry

- $4d$ Flavor current supermultiplet $\leftrightarrow \langle JJJJ \rangle_{2d} \sim \sum f_{4d}^2 \geq 0$

- $\langle TTTT \rangle$ & $\langle JJTT \rangle$ \sim distinguishes more operators

Analytically ruled out

Argyres-Douglas SCFT

Only for $su(2)$, $su(3)$, $so(8)$, g_2, f_4, e_6, e_7, e_8

[Beem ML Liendo Peelaers Rastelli van Rees, ML Liendo]
1 The Superconformal Bootstrap Program

2 \((A_1, A_2)\) Argyres-Douglas Theory

3 Landscape of \(4d \, \mathcal{N} = 2\) SCFTs

4 Summary & Outlook
Constrained the “simplest” Argyres-Douglas theory
Constrained the “simplest” Argyres-Douglas theory

Zoom in to other strongly coupled $\mathcal{N} = 2$ SCFTs?
(at corners of $su(2)$, $su(3)$, e_6, e_7, e_8 exclusion curves)
Constrained the “simplest” Argyres-Douglas theory

Zoom in to other strongly coupled $\mathcal{N} = 2$ SCFTs?
(at corners of $su(2)$, $su(3)$, e_6, e_7, e_8 exclusion curves)

→ Mixed system: stress tensor & flavor current multiplets
Constrained the “simplest” Argyres-Douglas theory

Zoom in to other strongly coupled $\mathcal{N} = 2$ SCFTs?
(at corners of $su(2)$, $su(3)$, e_6, e_7, e_8 exclusion curves)

→ Mixed system: stress tensor & flavor current multiplets
→ Stronger numerical constraints on the space of theories?
Constrained the “simplest” Argyres-Douglas theory

Zoom in to other strongly coupled \(\mathcal{N} = 2 \) SCFTs?
(at corners of \(su(2) \), \(su(3) \), \(e_6 \), \(e_7 \), \(e_8 \) exclusion curves)

→ Mixed system: stress tensor & flavor current multiplets

→ Stronger numerical constraints on the space of theories?

Superblocks for Super-stress tensor multiplets
Summary & Outlook

Constrained the “simplest” Argyres-Douglas theory

Zoom in to other strongly coupled $\mathcal{N} = 2$ SCFTs?
(at corners of $su(2)$, $su(3)$, e_6, e_7, e_8 exclusion curves)

→ Mixed system: stress tensor & flavor current multiplets

→ Stronger numerical constraints on the space of theories?

Superblocks for Super-stress tensor multiplets

→ Bounds on (c, k) did not come from superprimary of stress tensor
Summary & Outlook

Constrained the “simplest” Argyres-Douglas theory

Zoom in to other strongly coupled $\mathcal{N} = 2$ SCFTs?
(at corners of $su(2)$, $su(3)$, e_6, e_7, e_8 exclusion curves)

→ Mixed system: stress tensor & flavor current multiplets
→ Stronger numerical constraints on the space of theories?

Superblocks for Super-stress tensor multiplets

→ Bounds on (c, k) did not come from superprimary of stress tensor – compute whole superblock?
Constrained the “simplest” Argyres-Douglas theory

Zoom in to other strongly coupled $\mathcal{N} = 2$ SCFTs?
(at corners of $su(2)$, $su(3)$, e_6, e_7, e_8 exclusion curves)

→ Mixed system: stress tensor & flavor current multiplets
→ Stronger numerical constraints on the space of theories?

Superblocks for Super-stress tensor multiplets
→ Bounds on (c, k) did not come from superprimary of stress tensor – compute whole superblock?
→ Two-dimensional long blocks [Cornagliotto ML Schomerus]
 needed for $c > \frac{13}{24}$ for $\mathcal{N} = 3$ SCFTs
Constrained the “simplest” Argyres-Douglas theory

Zoom in to other strongly coupled $\mathcal{N} = 2$ SCFTs?
(at corners of $su(2)$, $su(3)$, e_6, e_7, e_8 exclusion curves)

→ Mixed system: stress tensor & flavor current multiplets
→ Stronger numerical constraints on the space of theories?

Superblocks for Super-stress tensor multiplets
→ Bounds on (c, k) did not come from superprimary of stress tensor – compute whole superblock?
→ Two-dimensional long blocks [Cornagliotto ML Schomerus]

 needed for $c > \frac{13}{24}$ for $\mathcal{N} = 3$ SCFTs
→ Weight-shifting operators? [Karateev Kravchuk Simmons-Duffin]
Summary & Outlook

Constrained the “simplest” Argyres-Douglas theory

Zoom in to other strongly coupled $\mathcal{N} = 2$ SCFTs?
(at corners of $su(2)$, $su(3)$, e_6, e_7, e_8 exclusion curves)

→ Mixed system: stress tensor & flavor current multiplets
→ Stronger numerical constraints on the space of theories?

Superblocks for Super-stress tensor multiplets

→ Bounds on (c, k) did not come from superprimary of stress tensor – compute whole superblock?
→ Two-dimensional long blocks [Cornagliotto ML Schomerus]
 needed for $c > \frac{13}{24}$ for $\mathcal{N} = 3$ SCFTs
→ Weight-shifting operators? [Karateev Kravchuk Simmons-Duffin]

What is the “smallest” $\mathcal{N} = 3$ SCFT?
5. Lorentzian inversion formula for (A_1, A_2)

6. Constraining the space of $4d \mathcal{N} = 2$ SCFTs
Lorentzian inversion formula: Superconformal case

Invert $\phi\phi$ OPE

→ Same as bosonic inversion, valid for $\ell > 1$
→ Feed in $\bar{\phi}\phi \sim 1 + $ Stress tensor multiplet $+ \ldots$
Lorentzian inversion formula: Superconformal case

Invert $\phi\phi$ OPE

→ Same as bosonic inversion, valid for $\ell > 1$
→ Feed in $\bar{\phi}\phi \sim 1 + \text{Stress tensor multiplet} + \ldots$

Invert $\bar{\phi}\phi$ OPE

→ Supersymmetric inversion: valid for $\ell \geq 0$
Lorentzian inversion formula: Superconformal case

Invert $\phi\phi$ OPE

\Rightarrow Same as bosonic inversion, valid for $\ell > 1$

\Rightarrow Feed in $\bar{\phi}\phi \sim 1 + $ Stress tensor multiplet + . . .

Invert $\bar{\phi}\phi$ OPE

\Rightarrow Supersymmetric inversion: valid for $\ell \geq 0$

\Rightarrow Feed in low twist in t-channel ($\bar{\phi}\phi$)
Lorentzian inversion formula:
Superconformal case

Invert $\phi\phi$ OPE

→ Same as bosonic inversion, valid for $\ell > 1$

→ Feed in $\bar{\phi}\phi \sim 1 + \text{Stress tensor multiplet} + \ldots$

Invert $\bar{\phi}\phi$ OPE

→ Supersymmetric inversion: valid for $\ell \geq 0$

→ Feed in low twist in t-channel ($\bar{\phi}\phi$)

$\leftrightarrow \bar{\phi}\phi \sim 1 + \text{Stress tensor multiplet} + \ldots$
Lorentzian inversion formula: Superconformal case

Invert \(\phi \phi \) OPE

- Same as bosonic inversion, valid for \(\ell > 1 \)
- Feed in \(\bar{\phi} \phi \sim 1 + \text{Stress tensor multiplet} + \ldots \)

Invert \(\bar{\phi} \phi \) OPE

- Supersymmetric inversion: valid for \(\ell \geq 0 \)
- Feed in low twist in \(t \)-channel (\(\bar{\phi} \phi \))
 \[\leftrightarrow \bar{\phi} \phi \sim 1 + \text{Stress tensor multiplet} + \ldots \]
- and in \(u \)-channel (\(\phi \phi \))
 \[\leftrightarrow \phi \phi \sim \phi^2 + \ldots \]
\[\phi^2 \sim f_{\phi^2}^2 \phi^2 + f_{C_\ell}^2 C_{\ell>0} + \cdots \]

\[\Delta = 2\Delta_\phi \quad \Delta = 2\Delta_\phi + \ell \]

[Cornagliotto ML Liendo]
Bounding OPE coefficients

\[\phi \phi \sim f_{\phi^2}^2 \phi^2 + f_{\delta\ell}^2 C_{\ell>0} + \cdots \]

\[\Delta = 2\Delta \phi \]

\[\Delta = 2\Delta \phi + \ell \]

\[c_{f/\delta\ell} = 4 \]

[Coraglioitto ML Liendo]
A Lorentzian inversion formula

Inverting the $\phi\bar{\phi}$ OPE

→ Supersymmetric inversion: valid for $\ell \geq 0$
→ Only input: $\bar{\phi}\phi \sim 1 +$ Stress tensor multiplet
A Lorentzian inversion formula

Inverting the $\phi \bar{\phi}$ OPE

→ Supersymmetric inversion: valid for $\ell \geq 0$
→ Only input: $\bar{\phi} \phi \sim 1 + $ Stress tensor multiplet
5 Lorentzian inversion formula for \((A_1, A_2)\)

6 Constraining the space of \(4d \mathcal{N} = 2\) SCFTs
Constraining the space of $4d$ $\mathcal{N} = 2$ SCFTs

$su(2)$ flavor symmetry

Analytically ruled out

Numerically ruled out

[Beem, ML, Liendo, Peelaers, Rastelli, van Rees; ML, Liendo]

[Beem, ML, Liendo, Rastelli, van Rees]
Constraining the space of $4d \ N = 2$ SCFTs

e_6 flavor symmetry

Numerically ruled out

Ruled out

[Beem, ML, Liendo, Peelaers, Rastelli, van Rees; ML, Liendo]

[Beem, ML, Liendo, Rastelli, van Rees]
Constraining the space of $4d$ $\mathcal{N} = 2$ SCFTs

$su(4)$ flavor symmetry

Analytically ruled out

$[\text{Beem, ML, Liendo, Peelaers, Rastelli, van Rees}; \text{ML, Liendo}]$
Constraining the space of $4d \mathcal{N} = 2$ SCFTs

$su(2)$ flavor symmetry

Analytically ruled out

[Beem, ML, Liendo, Peelaers, Rastelli, van Rees; ML, Liendo]