M-theory S-Matrix from 6d CFT

Shai M. Chester
Princeton University

Based on arXiv:1805.00892 with E. Perlmutter
M-theory S-Matrix

- M-theory is a quantum theory of interacting supergravitons in 11d with no dimensionless coupling.

- Graviton S-matrix in small momentum ($\ell_{11} \ll 1$) expansion:

\[
\mathcal{A}(s, t, u) = \ell_{11}^9 \mathcal{A}_R(s, t, u) + \sum_{m=0}^{\infty} \ell_{11}^{15+2m} \mathcal{A}_{D^2mR^4}(s, t, u) + \text{Loops}
\]

- Protected terms from type IIA string theory + duality [Green, Tseytlin]:
 \[
 \mathcal{A}_{R^4} = \mathcal{A}_R \frac{stu}{3 \cdot 2^7}, \quad \mathcal{A}_{D^2R^4} = \mathcal{A}_{D^4R^4} = 0, \quad \mathcal{A}_{D^6R^4} = \mathcal{A}_R \frac{(stu)^2}{15 \cdot 2^{15}}.
 \]

- Goal: Find all tree level terms $\mathcal{A}_{D^{2m}R^4}$ for $m > 3$ using AdS/CFT.
M-theory S-Matrix

- M-theory is a quantum theory of interacting supergravitons in 11d with no dimensionless coupling.

- Graviton S-matrix in small momentum ($\ell_{11} \ll 1$) expansion:

 \[
 = A(s, t, u) = \ell_{11}^9 A_R(s, t, u) + \sum_{m=0}^{\infty} \ell_{11}^{9+2m} A_{D^2mR^4}(s, t, u) + \text{Loops}
 \]

 \[
 + \text{Exchange} + \text{Exchange}
 \]

- Protected terms from type IIA string theory + duality [Green, Tseytlin]:

 \[
 A_{R^4} = A_R \frac{stu}{3 \cdot 2^7}, \quad A_{D^2 R^4} = A_{D^4 R^4} = 0, \quad A_{D^6 R^4} = A_R \frac{(stu)^2}{15 \cdot 2^{15}}.
 \]

- Goal: Find all tree level terms $A_{D^{2m}R^4}$ for $m > 3$ using AdS/CFT.
M-theory S-Matrix

- M-theory is a quantum theory of interacting supergravitons in 11d with no dimensionless coupling.

- Graviton S-matrix in small momentum ($\ell_{11} \ll 1$) expansion:

 $$= \mathcal{A}(s, t, u) + \text{Exchange} = \ell_{11}^9 \mathcal{A}_R(s, t, u) + \sum_{m=0}^{\infty} \mathcal{A}_{D^2 R^4}^{2m} = \ell_{11}^{15+2m} \mathcal{A}_{D^2 R^4}(s, t, u) + \text{Loops}$$

- Protected terms from type IIA string theory + duality [Green,Tseytlin] :
 $$\mathcal{A}_{R^4} = \mathcal{A}_R \frac{stu}{3 \cdot 2^7}, \quad \mathcal{A}_{D^2 R^4} = \mathcal{A}_{D^4 R^4} = 0, \quad \mathcal{A}_{D^6 R^4} = \mathcal{A}_R \frac{(stu)^2}{15 \cdot 2^{15}}.$$

- Goal: Find all tree level terms $\mathcal{A}_{D^2m R^4}$ for $m > 3$ using AdS/CFT.
M-theory S-Matrix

- M-theory is a quantum theory of interacting supergravitons in 11d with no dimensionless coupling.

- Graviton S-matrix in small momentum ($\ell_{11} \ll 1$) expansion:

\[
\mathcal{A}(s, t, u) = \ell^9_{11} A_R(s, t, u) + \sum_{m=0}^{\infty} \ell^{15+2m}_{11} A_{D^2 m R^4}(s, t, u) + \text{Loops}
\]

- Protected terms from type IIA string theory + duality [Green, Tseytlin]:

\[
\mathcal{A}_{R^4} = \mathcal{A}_R \frac{stu}{3 \cdot 2^7}, \quad \mathcal{A}_{D^2 R^4} = \mathcal{A}_{D^4 R^4} = 0, \quad \mathcal{A}_{D^6 R^4} = \mathcal{A}_R \frac{(stu)^2}{15 \cdot 2^{15}}.
\]

- Goal: Find all tree level terms $\mathcal{A}_{D^2 m R^4}$ for $m > 3$ using AdS/CFT.
M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.

We study \((2, 0)\) \(A_{N-1}\) 6d SCFT that describes stack of \(N\) M5 branes, and is dual at large \(N\) to M-theory on \(AdS_7 \times S^4\).

We compute:

\[
G_k(U, V) = x_{12}^{2k} x_{34}^{2k} \left\langle \mathcal{O}_k \mathcal{O}_k \mathcal{O}_k \mathcal{O}_k \right\rangle
\]

of \(k\)-th lowest dimension half-BPS operators in CFT\(_6\) in large \(N\) expansion.

\(U \equiv \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}\), \(V \equiv \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}\) are conformal cross ratios.

\(G_k\) dual to correlator of \(k\)-th lowest KK modes of M-theory on \(AdS_7 \times S^4\).

Flat space limit of \(G_k\) gives 11d S-matrix \(A|_{7d}\) with momenta restricted to 7d.
M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.

We study $(2, 0)$ A_{N-1} 6d SCFT that describes stack of N M5 branes, and is dual at large N to M-theory on $AdS_7 \times S^4$.

We compute: $G_k(U, V) = x_{12}^{2k} x_{34}^{2k} \langle O_k^1 O_k^2 O_k^3 O_k^4 \rangle$ of k-th lowest dimension half-BPS operators in CFT$_6$ in large N expansion.

- $U \equiv \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}$, $V \equiv \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$ are conformal cross ratios.

- G_k dual to correlator of k-th lowest KK modes of M-theory on $AdS_7 \times S^4$.

- Flat space limit of G_k gives 11d S-matrix $A|_{7d}$ with momenta restricted to 7d.
AdS/CFT for M-theory

- M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.

- We study \((2, 0)\) \(A_{N-1}\) 6d SCFT that describes stack of \(N\) M5 branes, and is dual at large \(N\) to M-theory on \(AdS_7 \times S^4\).

- We compute: \(G_k(U, V) = x_{12}^{2k} x_{34}^{2k} \langle \mathcal{O}_k^1 \mathcal{O}_k^2 \mathcal{O}_k^3 \mathcal{O}_k^4 \rangle\) of \(k\)-th lowest dimension half-BPS operators in CFT\(_6\) in large \(N\) expansion.

 - \(U \equiv \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}\), \(V \equiv \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}\) are conformal cross ratios.
 - \(G_k\) dual to correlator of \(k\)-th lowest KK modes of M-theory on \(AdS_7 \times S^4\).
 - Flat space limit of \(G_k\) gives 11d S-matrix \(A|_{7d}\) with momenta restricted to 7d.
AdS/CFT for M-theory

- M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.

- We study \((2, 0)\) \(A_{N-1}\) 6d SCFT that describes stack of \(N\) M5 branes, and is dual at large \(N\) to M-theory on \(AdS_7 \times S^4\).

- We compute: \(G_k(U, V) = x_{12}^{2k} x_{34}^{2k} \langle O_k^1 O_k^2 O_k^3 O_k^4 \rangle\) of \(k\)-th lowest dimension half-BPS operators in CFT\(_6\) in large \(N\) expansion.

- \(U \equiv \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, V \equiv \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}\) are conformal cross ratios.

- \(G_k\) dual to correlator of \(k\)-th lowest KK modes of M-theory on \(AdS_7 \times S^4\).

- Flat space limit of \(G_k\) gives 11d S-matrix \(A|_{7d}\) with momenta restricted to 7d.
M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.

We study $(2,0) \ A_{N-1}$ 6d SCFT that describes stack of N M5 branes, and is dual at large N to M-theory on $AdS_7 \times S^4$.

We compute: $G_k(U, V) = x_{12}^{2k} x_{34}^{2k} \langle O_k^1 O_k^2 O_k^3 O_k^4 \rangle$ of k-th lowest dimension half-BPS operators in CFT$_6$ in large N expansion.

$U \equiv \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, \ V \equiv \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$ are conformal cross ratios.

G_k dual to correlator of k-th lowest KK modes of M-theory on $AdS_7 \times S^4$.

Flat space limit of G_k gives 11d S-matrix $A|_{7d}$ with momenta restricted to 7d.
M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.

We study \((2, 0)\) \(A_{N-1}\) 6d SCFT that describes stack of \(N\) M5 branes, and is dual at large \(N\) to M-theory on \(AdS_7 \times S^4\).

We compute:
\[
G_k(U, V) = x_{12}^{2k} x_{34}^{2k} \langle O_k^{1} O_k^{2} O_k^{3} O_k^{4} \rangle
\]
of \(k\)-th lowest dimension half-BPS operators in CFT\(_6\) in large \(N\) expansion.

\[
U \equiv \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, \quad V \equiv \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}
\]
are conformal cross ratios.

\(G_k\) dual to correlator of \(k\)-th lowest KK modes of M-theory on \(AdS_7 \times S^4\).

Flat space limit of \(G_k\) gives 11d S-matrix \(\mathcal{A}|_{7d}\) with momenta restricted to 7d.
We use Mellin transform \(G_k(U, V) \rightarrow M_k(s, t, u) \) [Mack, Penedones], where \(s, t, u \) are like Mandelstam variables in Mellin space.

For \(N \) large, let \(M_{\text{tree}}^k(s, t, u) \equiv \sum_{p=1}^{\infty} M^{(p)}_k(s, t, u) \), where \(p \) is degree in \(s, t, u \rightarrow \infty \), and \(M^{(p)}_k \) fixed in terms of CFT\(_6\) data by:

1. Crossing symmetry.
2. Superconformal Ward identities [Dolan, Gallot, Sokatchev; Rastelli, Zhou].
3. Poles in \(s, t, u \) correspond to dimensions of operators in \(\mathcal{O}_k \times \mathcal{O}_k \), for tree level only allow poles for half-BPS operators.

Flat space limit of \(M^{(p)}_k(s, t, u) \) gives \(2p \) derivative contribution to \(\mathcal{A}|_{7d}(s, t, u) \) [Penedones], e.g. \(M^{(1)}_k \rightarrow \mathcal{A}_R|_{7d} \).
Tree Level Half-BPS Four Point functions: Constraints

- We use Mellin transform \(G_k(U, V) \rightarrow M_k(s, t, u) \) \([\text{Mack, Penedones}]\), where \(s, t, u \) are like Mandelstam variables in Mellin space.

- For \(N \) large, let \(M_{\text{tree}}^k(s, t, u) \equiv \sum_{p=1}^{\infty} M_k^{(p)}(s, t, u) \), where \(p \) is degree in \(s, t, u \rightarrow \infty \), and \(M_k^{(p)} \) fixed in terms of CFT_6 data by:

 1. Crossing symmetry.
 2. Superconformal Ward identities \([\text{Dolan, Gallot, Sokatchev; Rastelli, Zhou}]\).
 3. Poles in \(s, t, u \) correspond to dimensions of operators in \(\mathcal{O}_k \times \mathcal{O}_k \), for tree level only allow poles for half-BPS operators.

- Flat space limit of \(M_k^{(p)}(s, t, u) \) gives \(2p \) derivative contribution to \(A|_{7d}(s, t, u) \) \([\text{Penedones}]\), e.g. \(M_k^{(1)} \rightarrow A_R|_{7d} \).
Tree Level Half-BPS Four Point functions: Constraints

- We use Mellin transform $G_k(U, V) \rightarrow M_k(s, t, u)$ [Mack, Penedones], where s, t, u are like Mandelstam variables in Mellin space.

- For N large, let $M^{\text{tree}}_k(s, t, u) \equiv \sum_{p=1}^\infty M^{(p)}_k(s, t, u)$, where p is degree in $s, t, u \rightarrow \infty$, and $M^{(p)}_k$ fixed in terms of CFT6 data by:
 1. Crossing symmetry.
 2. Superconformal Ward identities [Dolan, Gallot, Sokatchev; Rastelli, Zhou].
 3. Poles in s, t, u correspond to dimensions of operators in $\mathcal{O}_k \times \mathcal{O}_k$, for tree level only allow poles for half-BPS operators.

- Flat space limit of $M^{(p)}_k(s, t, u)$ gives $2p$ derivative contribution to $\mathcal{A}|_{7d}(s, t, u)$ [Penedones], e.g. $M^{(1)}_k \rightarrow \mathcal{A}_R|_{7d}$.
Tree Level Half-BPS Four Point functions: Constraints

- We use Mellin transform $G_k(U, V) \rightarrow M_k(s, t, u)$ [Mack, Penedones], where s, t, u are like Mandelstam variables in Mellin space.

- For N large, let $M_k^{\text{tree}}(s, t, u) \equiv \sum_{p=1}^{\infty} M^{(p)}_k(s, t, u)$, where p is degree in $s, t, u \rightarrow \infty$, and $M^{(p)}_k$ fixed in terms of CFT$_6$ data by:
 1. Crossing symmetry.
 2. Superconformal Ward identities [Dolan, Gallot, Sokatchev; Rastelli, Zhou].
 3. Poles in s, t, u correspond to dimensions of operators in $\mathcal{O}_k \times \mathcal{O}_k$, for tree level only allow poles for half-BPS operators.

- Flat space limit of $M^{(p)}_k(s, t, u)$ gives $2p$ derivative contribution to $\mathcal{A}|_{7d}(s, t, u)$ [Penedones], e.g. $M^{(1)}_k \rightarrow \mathcal{A}_R|_{7d}$.
We use Mellin transform $g_k(U, V) \to M_k(s, t, u)$ [Mack, Penedones], where s, t, u are like Mandelstam variables in Mellin space.

For N large, let $M_{\text{tree}}^k(s, t, u) \equiv \sum_{p=1}^{\infty} M_{k}^{(p)}(s, t, u)$, where p is degree in $s, t, u \to \infty$, and $M_{k}^{(p)}$ fixed in terms of CFT\textsubscript{6} data by:

1. Crossing symmetry.
2. Superconformal Ward identities [Dolan, Gallot, Sokatchev; Rastelli, Zhou].
3. Poles in s, t, u correspond to dimensions of operators in $\mathcal{O}_k \times \mathcal{O}_k$, for tree level only allow poles for half-BPS operators.

Flat space limit of $M_{k}^{(p)}(s, t, u)$ gives $2p$ derivative contribution to $\mathcal{A}|_{7d}(s, t, u)$ [Penedones], e.g. $M_{k}^{(1)} \to \mathcal{A}_R|_{7d}$.
Tree Level Half-BPS Four Point functions: Constraints

- We use Mellin transform $G_k(U, V) \rightarrow M_k(s, t, u)$ [Mack, Penedones], where s, t, u are like Mandelstam variables in Mellin space.

- For N large, let $M_{\text{tree}}^k(s, t, u) \equiv \sum_{p=1}^{\infty} M_k^{(p)}(s, t, u)$, where p is degree in $s, t, u \rightarrow \infty$, and $M_k^{(p)}$ fixed in terms of CFT$_6$ data by:
 1. Crossing symmetry.
 2. Superconformal Ward identities [Dolan, Gallot, Sokatchev; Rastelli, Zhou].
 3. Poles in s, t, u correspond to dimensions of operators in $\mathcal{O}_k \times \mathcal{O}_k$, for tree level only allow poles for half-BPS operators.

- Flat space limit of $M_k^{(p)}(s, t, u)$ gives $2p$ derivative contribution to $A|_{7d}(s, t, u)$ [Penedones], e.g. $M_k^{(1)} \rightarrow A_R|_{7d}$.
Tree Level Half-BPS Four Point functions: Solutions

- \(M^{(1)}_k \) fixed by central charge \(\frac{1}{c_T} \approx N^{-3} \) \cite{Rastelli, Zhou} \(\Rightarrow A_R|_{7d} \) is proportional to gravitational coupling \(\kappa^2 \approx N^{-3} \) as expected.

- No \(M^{(p)}_k \) for \(p = 2, 3 \) \(\Rightarrow \) no \(A_{R^2}|_{7d} \) or \(A_{R^3}|_{7d} \) \cite{SMC, Perlmutter}.

- \(M^{(p)}_k \) for \(4 \leq p < 10 \), which gives \(A_{D^{2p-8}R^4}|_{7d} \) in flat space limit, fixed by small set of CFT\(_6\) OPE coefficients \cite{SMC, Perlmutter}.

 - \(M^{(p)}_k \) for \(p \geq 10 \) has same \(N \) scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.

- \(M^{(4)}_k \) fixed by half-BPS OPE coefficient \(\lambda_{\text{BPS}}^2 \) \cite{SMC, Perlmutter} that can be computed exactly \cite{Beem, Rastelli, van Rees}.

 - Flat space limit of \(M^{(4)}_k \) correctly reproduces the known \(A_{R^4}|_{7d} \)!
Tree Level Half-BPS Four Point functions: Solutions

- $M_k^{(1)}$ fixed by central charge $\frac{1}{c_T} \approx N^{-3}$ [Rastelli, Zhou] $\Rightarrow A_R|_{7d}$ is proportional to gravitational coupling $\kappa^2 \approx N^{-3}$ as expected.

- No $M_k^{(p)}$ for $p = 2, 3 \Rightarrow$ no $A_{R^2}|_{7d}$ or $A_{R^3}|_{7d}$ [SMC, Perlmutter].

- $M_k^{(p)}$ for $4 \leq p < 10$, which gives $A_{D^{2p-8}R^4}|_{7d}$ in flat space limit, fixed by small set of CFT$_6$ OPE coefficients [SMC, Perlmutter].

- $M_k^{(p)}$ for $p \geq 10$ has same N scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.

- $M_k^{(4)}$ fixed by half-BPS OPE coefficient λ_{BPS}^2 [SMC, Perlmutter] that can be computed exactly [Beem, Rastelli, van Rees].

- Flat space limit of $M_k^{(4)}$ correctly reproduces the known $A_{R^4}|_{7d}$.
Tree Level Half-BPS Four Point functions: Solutions

- $M_k^{(1)}$ fixed by central charge $\frac{1}{c_T} \approx N^{-3}$ [Rastelli, Zhou] $\Rightarrow A_R|_{7d}$ is proportional to gravitational coupling $\kappa^2 \approx N^{-3}$ as expected.

- No $M_k^{(p)}$ for $p = 2, 3$ \Rightarrow no $A_{R^2}|_{7d}$ or $A_{R^3}|_{7d}$ [SMC, Perlmutter].

- $M_k^{(p)}$ for $4 \leq p < 10$, which gives $A_{D^{2p-8}R^4}|_{7d}$ in flat space limit, fixed by small set of CFT$_6$ OPE coefficients [SMC, Perlmutter].
 - $M_k^{(p)}$ for $p \geq 10$ has same N scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.

- $M_k^{(4)}$ fixed by half-BPS OPE coefficient λ_{BPS}^2 [SMC, Perlmutter] that can be computed exactly [Beem, Rastelli, van Rees].

- Flat space limit of $M_k^{(4)}$ correctly reproduces the known $A_{R^4}|_{7d}$!
Tree Level Half-BPS Four Point functions: Solutions

- $M_k^{(1)}$ fixed by central charge $\frac{1}{c_T} \approx N^{-3}$ [Rastelli, Zhou] $\Rightarrow A_R|_{7d}$ is proportional to gravitational coupling $\kappa^2 \approx N^{-3}$ as expected.

- No $M_k^{(p)}$ for $p = 2, 3$ \Rightarrow no $A_{R^2}|_{7d}$ or $A_{R^3}|_{7d}$ [SMC, Perlmutter].

- $M_k^{(p)}$ for $4 \leq p < 10$, which gives $A_{D^{2p-8}R^4}|_{7d}$ in flat space limit, fixed by small set of CFT$_6$ OPE coefficients [SMC, Perlmutter].

 - $M_k^{(p)}$ for $p \geq 10$ has same N scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.

- $M_k^{(4)}$ fixed by half-BPS OPE coefficient λ_{BPS}^2 [SMC, Perlmutter] that can be computed exactly [Beem, Rastelli, van Rees].

 - Flat space limit of $M_k^{(4)}$ correctly reproduces the known $A_{R^4}|_{7d}$!
Tree Level Half-BPS Four Point functions: Solutions

- $M_k^{(1)}$ fixed by central charge $\frac{1}{c_T} \approx N^{-3}$ [Rastelli, Zhou] $\Rightarrow A_R|_{7d}$ is proportional to gravitational coupling $\kappa^2 \approx N^{-3}$ as expected.

- No $M_k^{(p)}$ for $p = 2, 3$ \Rightarrow no $A_{R^2}|_{7d}$ or $A_{R^3}|_{7d}$ [SMC, Perlmutter] .

- $M_k^{(p)}$ for $4 \leq p < 10$, which gives $A_{D^{2p-8}R^4}|_{7d}$ in flat space limit, fixed by small set of CFT$_6$ OPE coefficients [SMC, Perlmutter] .

 - $M_k^{(p)}$ for $p \geq 10$ has same N scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.

- $M_k^{(4)}$ fixed by half-BPS OPE coefficient λ_{BPS}^2 [SMC, Perlmutter] that can be computed exactly [Beem, Rastelli, van Rees] .

 - Flat space limit of $M_k^{(4)}$ correctly reproduces the known $A_{R^4}|_{7d}$!
Tree Level Half-BPS Four Point functions: Solutions

1. $M_k^{(1)}$ fixed by central charge $\frac{1}{c_T} \approx N^{-3}$ [Rastelli, Zhou] ⇒ $A_R|_{7d}$ is proportional to gravitational coupling $\kappa^2 \approx N^{-3}$ as expected.

2. No $M_k^{(p)}$ for $p = 2, 3$ ⇒ no $A_{R^2}|_{7d}$ or $A_{R^3}|_{7d}$ [SMC, Perlmutter].

3. $M_k^{(p)}$ for $4 \leq p < 10$, which gives $A_{D^{2p-8}R^4}|_{7d}$ in flat space limit, fixed by small set of CFT$_6$ OPE coefficients [SMC, Perlmutter].

 - $M_k^{(p)}$ for $p \geq 10$ has same N scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.

4. $M_k^{(4)}$ fixed by half-BPS OPE coefficient λ^2_{BPS} [SMC, Perlmutter] that can be computed exactly [Beem, Rastelli, van Rees].

 - Flat space limit of $M_k^{(4)}$ correctly reproduces the known $A_{R^4}|_{7d}$!
Conclusion

Results:

- Tree level $D^{2m}R^4$ contributions to 11d M-theory S-matrix for $m < 6$ in terms of CFT$_6$ data.

- Known half-BPS CFT$_6$ data precisely reproduces R^4 contribution.

Future Directions:

- Derive loop Mellin amplitudes \Rightarrow loop 11d S-matrix terms.

- 6d numerical bootstrap [Beem, Lemos, Rastelli, van Rees] to fix CFT$_6$ data \Rightarrow 11d S-matrix coefficients.

- Apply method to AdS$_{d+1}$/CFT$_d$ for other d.

 - See Silviu Pufu’s talk tomorrow for $d = 3$ case [SCM, Pufu, Yin].

See my poster for more details!