Discrete Gauge Anomalies Revisited

Chang-Tse Hsieh

Kavli IPMU & Institute for Solid States Physics

Gong Show presentation, Strings 2018, OIST

June 25, 2018
Anomalies in chiral gauge theories

- Cancellation of gauge anomalies – in a chiral theory such as the *standard model* – is a fundamental constraint on a consistent quantum field theory.
Anomalies in chiral gauge theories

• Cancellation of gauge anomalies – in a chiral theory such as the standard model – is a fundamental constraint on a consistent quantum field theory.

• A U(1) chiral gauge theory is anomalous if the anomaly cancellation condition

\[
\text{Purely gauge : } \sum_{\text{left}} q_L^3 - \sum_{\text{right}} q_R^3 = 0
\]

\[
\text{Mixed gauge and grav : } \sum_{\text{left}} q_L - \sum_{\text{right}} q_R = 0
\]

is not satisfied. Here \(q_L\) and \(q_R\) are U(1) charges of Weyl fermions.
Q: While anomalies of cont. symm are well understood, how about the case of gauge anomalies associated with discrete symm?
Q: While anomalies of cont. symm are well understood, how about the case of gauge anomalies associated with discrete symm?

In this case, there are only global (non-perturbative) anomalies, and one can not use a “usual method” to calculate them.
Q: While anomalies of cont. symm are well understood, how about the case of gauge anomalies associated with discrete symm?

- In this case, there are only global (non-perturbative) anomalies, and one can not use a “usual method” to calculate them.
- In a paper by Krauss and Wilczek (1989), they also mentioned

PHYSICAL REVIEW LETTERS

Discrete Gauge Symmetry in Continuum Theories

Lawrence M. Krauss\(^{(a)}\) and Frank Wilczek\(^{(b)}\)

mention two caveats. First, there are discrete symmetries—those associated with global anomalies—that cannot be consistently gauged. Identification of such anomalies is a difficult but well developed art,\(^{14}\) into which we shall not enter here. Second, it is not quite true that the identifications we envisage in field space are
Q: While anomalies of cont. symm are well understood, how about the case of gauge anomalies associated with discrete symm?

- In this case, there are only global (non-perturbative) anomalies, and one can not use a “usual method” to calculate them.
- In a paper by Krauss and Wilczek (1989), they also mentioned

Phys. Rev. Lett.

Discrete Gauge Symmetry in Continuum Theories

Lawrence M. Krauss and Frank Wilczek

mention two caveats. First, there are discrete symmetries—those associated with global anomalies—that cannot be consistently gauged. Identification of such anomalies is a difficult but well developed art, into which we shall not enter here. Second, it is not quite true that the identifications we envisage in field space are a difficult but well developed art!
Q: While anomalies of cont. symm are well understood, how about the case of gauge anomalies associated with discrete symm?

- For example, how do we couple Weyl fermions *consistently* to a (topological) \mathbb{Z}_n gauge theory in 4d?
Q: While anomalies of cont. symm are well understood, how about the case of gauge anomalies associated with discrete symm?

- For example, how do we couple Weyl fermions consistently to a (topological) \mathbb{Z}_n gauge theory in 4d?

 ➢ In some cases, we might be able to write down such a theory as

$$\int \sum_i \bar{\psi}_i (i\partial + q_i A) \psi_i + \frac{in}{2\pi} \int B \wedge dA + \frac{ipn}{4\pi} \int B \wedge B$$

[Kapustin-Seiberg 14]
Q: While anomalies of cont. symm are well understood, how about the case of gauge anomalies associated with discrete symm?

- For example, how do we couple Weyl fermions consistently to a (topological) \mathbb{Z}_n gauge theory in 4d?

- In some cases, we might be able to write down such a theory as

$$
\int \sum_i \overline{\psi}_i (i\hat{\phi} + q_i A) \psi_i + \frac{in}{2\pi} \int B \wedge dA + \frac{ipn}{4\pi} \int B \wedge B
$$

[Kapustin-Seiberg 14]

- There are two kinds of \mathbb{Z}_n chiral gauge theories, depending on the symm of ferm, which can be $\text{Spin}(4) \times \mathbb{Z}_n$ or $(\text{Spin}(4) \times \mathbb{Z}_{2m})/\mathbb{Z}_2$

 “untwisted”

 “twisted”
Previous works

• There have been several attempts to tackle this problem, such as the works by Ibanez-Ross (91), Banks-Dine (91), Csaki-Murayama (97), Araki et al. (08), etc.

• Let’s review some of these works
Ibanez-Ross

Their argument (only for untwisted \mathbb{Z}_n symm):

\[Z_n \text{ anomaly cancel. cond.} = U(1) \text{ anomaly cancel. cond.} + \text{charge constraints on massive states through SSB of U(1)} \]
Ibanez-Ross

Their argument (only for untwisted \mathbb{Z}_n symm):

\[U(1) \text{ anomaly cancel. cond.} \]

\[Z_n \text{ anomaly cancel. cond.} = + \]

charge constraints on massive states through SSB of $U(1)$

The result (a necessary cond.):

\[\sum_i q_i^3 = pn + r \frac{n^3}{8}, \quad p, r \in \mathbb{Z}; \ p \in 3\mathbb{Z} \text{ if } n \in 3\mathbb{Z}, \]

\[\sum_i q_i = p'n + r' \frac{n}{2}, \quad p', r' \in \mathbb{Z}. \]

Contribution from Dirac and Majorana masses, respectively
Banks-Dine

Comments on Ibanez-Ross:
Banks-Dine

Comments on Ibanez-Ross:

• Only the **linear** constraint should be **satisfied**

 ➢ It can be argued by considering the violation of the low energy Z_n symm in the presence of a **grav instanton** which is a **spin manifold**
Banks-Dine

Comments on Ibanez-Ross:

- Only the linear constraint should be satisfied

- It can be argued by considering the violation of the low energy Z_n symm in the presence of a grav instanton which is a spin manifold

- The nonlinear (cubic) constraint might be too restrictive and might not be required for consistency of the low energy theory

- It is not solely from the low energy considerations and would depend on assumptions about UV embedding theories
Argument by ’t Hooft anomaly matching. Two types of discrete anomalies are involved:
Csaki-Murayama

Argument by ’t Hooft anomaly matching. Two types of discrete anomalies are involved:

- For Type I anomalies, the matching conditions have to be always satisfied regardless of the details of the massive bound state spectrum.
Csaki-Murayama

Argument by ’t Hooft anomaly matching. Two types of discrete anomalies are involved:

- For **Type I anomalies**, the matching conditions have to be always satisfied *regardless of* the details of the massive bound state spectrum.

- The **Type II anomalies** have to be also matched *except* if there are *fractionally charged* massive bound states in the theory.
Our approach

• Here we revisit this problem from a more modern perspective based on the concept of symmetry protected topological (SPT) phases (from condensed matter physics) and also from a refined definition of global anomalies by Witten (2016)
Our approach

• Here we revisit this problem from a more modern perspective based on the concept of symmetry protected topological (SPT) phases (from condensed matter physics) and also from a refined definition of global anomalies by Witten (2016)

• Our approach is based on geometrical and topological considerations
Our approach

• Here we revisit this problem from a more modern perspective based on the concept of symmetry protected topological (SPT) phases (from condensed matter physics) and also from a refined definition of global anomalies by Witten (2016)

• Our approach is based on geometrical and topological considerations

➢ We compute the ’t Hooft anomaly of \mathbb{Z}_n (global) symm, deduced by the consistency of formulating the theory on a generic manifold w/ a untwisted/twisted spin structure and a background \mathbb{Z}_n field
Main result

- The anomaly cancel. cond. *(necessary & sufficient)* of untwisted/twisted \mathbb{Z}_n symm:
Main result

- The anomaly cancel. cond. \((\text{necessary & sufficient})\) of untwisted/twisted \(\mathbb{Z}_n\) symm:

\[\text{Spin}(4) \times \mathbb{Z}_n \quad s_i \in \mathbb{Z} \]

\[(n^2 + 3n + 2) \sum_i s_i^3 = 0 \mod 6n \]

\[2 \sum_i s_i = 0 \mod n \]
Main result

- The anomaly cancel. cond. (necessary & sufficient) of untwisted/twisted \mathbb{Z}_n symm:

\[
\text{Spin}(4) \times \mathbb{Z}_n \quad s_i \in \mathbb{Z}
\]

\[
(n^2 + 3n + 2) \sum_i s_i^3 = 0 \mod 6n
\]

\[
2 \sum_i s_i = 0 \mod n
\]

\[
\sum_i s_i^3 = pn + r\frac{n^3}{8}
\]

\[
\sum_i s_i = p'n + r'\frac{n}{2}
\]

consistent w/ Ibanez-Ross cond!
Main result

- The anomaly cancel. cond. \((\text{necessary} & \text{sufficient})\) of untwisted/twisted \(\mathbb{Z}_n\) symm:

\[
\text{Spin}(4) \times \mathbb{Z}_n \quad s_i \in \mathbb{Z}
\]

\[
(n^2 + 3n + 2) \sum_i s_i^3 = 0 \mod 6n
\]

\[
2 \sum_i s_i = 0 \mod n
\]

\[
\sum_i s_i^3 = pn + r \frac{n^3}{8}
\]

\[
\sum_i s_i = p'n + r' \frac{n}{2}
\]

consistent w/ Ibanez-Ross cond!

\[
\text{(Spin}(4) \times \mathbb{Z}_{2m})/\mathbb{Z}_2 \quad \tilde{s}_i \in 2\mathbb{Z} + 1
\]

\[
(2m^2 + m + 1) \sum_i \tilde{s}_i^3 - (m + 3) \sum_i \tilde{s}_i = 0 \mod 48m
\]

\[
\sum_i \tilde{s}_i = 0 \mod 2m
\]
Conclusion

• We propose a new formula for evaluating the anomalies (and the corresponding cancel. cond.) of an underlying chiral gauge theory.

• While agreeing with previous works by Ibanez and Ross and by Csaki and Murayama using anomaly matching argument, our result provides, from a purely low-energy perspective, a more complete aspect of discrete symmetry anomalies, respecting the viewpoint in the work of Banks and Dine.
Thank You!