Equivalence of amplitudes involving massive string states in pure spinor and RNS formalisms

Sitender Pratap Kashyap
HRI, Allahabad India

Strings 2018
OIST, Okinawa

Based on arXiv:1706.01196, 1802.04486, 1806/7.*****
in collaboration with
S. Chakrabarty, M. Verma

- Thank you organisers for this opportunity.
- We present the results of study of massive vertex operators in the pure spinor formulation
I. Theta expansion of unintegrated vertex operator at $(\text { mass })^{2}=\frac{1}{\alpha^{\prime}}$
II. Integrated vertex operator at $(\text { mass })^{2}=\frac{1}{\alpha^{\prime}}$
III. Computation of some tree level three point amplitudes using I
- For consistency III must agree with the RNS results. We find they do. We will work with open strings.

Unintegrated vertex operator at first excited level of open string

- In 10 dimensions, states at first excited level of open string form a massive $\mathcal{N}=1$ spin 2 supermultiplet comprising

- In the unintegrated vertex operator these appear as [Berkovits, Chandia (2002)]

$$
\begin{aligned}
& H_{s \alpha}=-72 \Psi_{s \alpha}=\frac{3}{7}\left(\gamma^{m n}\right)_{\alpha}{ }_{\alpha} D_{\beta} B_{m n s}, \quad C_{m n p q}=\frac{1}{2} \partial_{[m} B_{n p q]}, \\
& F_{\alpha m n}=\frac{1}{8}\left(7 \partial_{[m} H_{n] \alpha}+\partial^{q}\left(\gamma_{q[m}\right)_{\alpha}{ }^{\beta} H_{n] \beta}\right)
\end{aligned}
$$

Theta expansion of unintegrated vertex operator

- Theta expansion is performed by making use of [Chakrabarti, SPK,Verma (2017)]

$$
\begin{aligned}
& \begin{array}{c}
D_{\alpha} G_{s m}=16 i k^{p}\left(\gamma_{p(s} \Psi_{m)}\right)_{\alpha} \\
D_{\alpha} B_{m n p}=12\left(\gamma_{[m n} \Psi_{p]}\right)_{\alpha}+24 \alpha^{\prime} k^{t} k_{[m}\left(\gamma_{|t| n} \Psi_{p]}\right)_{\alpha} \\
D_{\alpha} \Psi_{s \beta}=\frac{1}{16} G_{s m} \gamma_{\alpha \beta}^{m}+\frac{i}{24} k_{m} B_{n p s}\left(\gamma^{m n p}\right)_{\alpha \beta}-\frac{i}{144} k^{m} B^{n p q}\left(\gamma_{s m n p q}\right)_{\alpha \beta}
\end{array} \\
& \Psi_{s \beta}=\psi_{s \beta}+\frac{1}{16}\left(\gamma^{m} \theta\right)_{\beta} g_{s m}-\frac{i}{24}\left(\gamma^{m n p} \theta\right)_{\beta} k_{m} b_{n p s}-\frac{i}{144}\left(\gamma_{s}{ }^{n p q r} \theta\right)_{\beta} k_{n} b_{p q r}-\frac{i}{2} k^{p}\left(\gamma^{m} \theta\right)_{\beta}\left(\psi_{(m} \gamma_{s) p} \theta\right) \\
& -\frac{i}{4} k_{m}\left(\gamma^{m n p} \theta\right)_{\beta}\left(\psi_{[s} \gamma_{n p]} \theta\right)-\frac{i}{24}\left(\gamma_{s}{ }^{m n p q} \theta\right)_{\beta} k_{m}\left(\psi_{q} \gamma_{n p} \theta\right)-\frac{i}{6} \alpha^{\prime} k_{m} k^{r} k_{s}\left(\gamma^{m n p} \theta\right)_{\beta}\left(\psi_{p} \gamma_{r n} \theta\right) \\
& +\frac{i}{288} \alpha^{\prime}\left(\gamma^{m n p} \theta\right)_{\beta} k_{m} k^{r} k_{s}\left(\theta \gamma^{q}{ }_{n r} \theta\right) g_{p q}-\frac{i}{192}\left(\gamma^{m n p} \theta\right)_{\beta} k_{m}\left(\theta \gamma^{q}{ }_{[n p} \theta\right) g_{s] q}-\frac{i}{96} k^{p}\left(\gamma^{m} \theta\right)_{\beta}\left(\theta \gamma_{p q(s} \theta\right) g_{m) q} \\
& -\frac{i}{1152}\left(\gamma_{s m n p q} \theta\right)_{\beta} k^{m}\left(\theta \gamma_{n p t} \theta\right) g^{q t}-\frac{1}{1728}\left(\gamma^{m n p} \theta\right)_{\beta} k_{m}\left(\theta \gamma^{t u v w}{ }_{n p s} \theta\right) k_{t} b_{u v w}-\frac{1}{864 \alpha^{\prime}}\left(\gamma_{s} \theta\right)_{\beta}\left(\theta \gamma^{n p q} \theta\right) b_{n p q} \\
& -\frac{1}{10368}\left(\gamma_{s}{ }^{m n p q} \theta\right)_{\beta} k_{m}\left(\theta \gamma_{t u v w n p q} \theta\right) k^{t} b^{u v w}-\frac{1}{864}\left(\gamma^{m} \theta\right)_{\beta}\left(\theta \gamma^{n p q} \theta\right) b_{n p q} k_{m} k_{s} \\
& -\frac{1}{576}\left(\gamma_{s m n p q} \theta\right)_{\beta} k^{m}\left(\theta \gamma^{t u n} \theta\right) b_{u}{ }^{p q} k_{t}-\frac{1}{96 \alpha^{\prime}}\left(\gamma^{m} \theta\right)_{\beta}\left(\theta \gamma^{q r}{ }_{(s} \theta\right) b_{m) r q}+\frac{1}{96}\left(\gamma^{m} \theta\right)_{\beta}\left(\theta \gamma^{n q r} \theta\right) k_{n} k_{(s} b_{m) q r} \\
& +\frac{1}{96}\left(\gamma^{m n p} \theta\right)_{\beta} k_{m}\left(\theta \gamma_{q[n}^{r} \theta\right) b_{p s] r} k^{q}+O\left(\theta^{4}\right)
\end{aligned}
$$

Integrated Vertex Operator

- For computation of a general amplitude integrated vertex operators is a must.
- The integrated vertex for first massive open string is given by [Chakrabarti, SPK,Verma (2017)]

$$
\begin{aligned}
& U=\quad: \Pi^{m} \Pi^{n} F_{m n}:+: \Pi^{m} d_{\alpha} F_{m}{ }^{\alpha}:+: \Pi^{m} \partial \theta^{\alpha} G_{m \alpha}:+: \Pi^{m} N^{p q} F_{m p q}: \\
& +: d_{\alpha} d_{\beta} K^{\alpha \beta}:+: d_{\alpha} \partial \theta^{\beta} F_{\beta}^{\alpha}:+: d_{\alpha} N^{m n} G^{\alpha}{ }_{m n}:+: \partial \theta^{\alpha} \partial \theta^{\beta} H_{\alpha \beta}: \\
& +: \partial \theta^{\alpha} N^{m n} H_{m n \alpha}:+: N^{m n} N^{p q} G_{m n p q}: \\
& F_{m n}=-\frac{18}{\alpha^{\prime}} G_{m n}, \quad F_{m}^{\alpha}=\frac{288}{\alpha^{\prime}}\left(\gamma^{r}\right)^{\alpha \beta} \partial_{r} \Psi_{m \beta}, \quad G_{m \alpha}=-\frac{432}{\alpha^{\prime}} \Psi_{m \alpha} \\
& F_{m p q}=\frac{12}{\left(\alpha^{\prime}\right)^{2}} B_{m p q}-\frac{36}{\alpha^{\prime}} \partial_{[p} G_{q] m}, \quad K^{\alpha \beta}=-\frac{1}{\left(\alpha^{\prime}\right)^{2}} \gamma_{m n p}^{\alpha \beta} B^{m n p} \\
& F^{\alpha}{ }_{\beta}=-\frac{4}{\alpha^{\prime}}\left(\gamma^{m n p q}\right)^{\alpha}{ }_{\beta} \partial_{m} B_{n p q} \quad, \quad G_{m n}^{\alpha}=\frac{48}{\left(\alpha^{\prime}\right)^{2}} \gamma_{[m}^{\alpha \sigma} \Psi_{n] \sigma}+\frac{192}{\alpha^{\prime}} \gamma_{r}^{\alpha \sigma} \partial^{r} \partial_{[m} \Psi_{n] \sigma} \\
& H_{\alpha \beta}=\frac{2}{\alpha^{\prime}} \gamma_{\alpha \beta}^{m n p} B_{m n p} \quad, \quad H_{m n \alpha}=-\frac{576}{\alpha^{\prime}} \partial_{[m} \Psi_{n] \alpha}-\frac{144}{\alpha^{\prime}} \partial^{q}\left(\gamma_{q[m}\right)_{\alpha}{ }^{\sigma} \Psi_{n] \sigma} \\
& G_{m n p q}=\frac{4}{\left(\alpha^{\prime}\right)^{2}} \partial_{[m} B_{n] p q}+\frac{4}{\left(\alpha^{\prime}\right)^{2}} \partial_{[p} B_{q] m n}-\frac{12}{\alpha^{\prime}} \partial_{[p} \partial_{[m} G_{n] q]}
\end{aligned}
$$

- We essentially make use of the relation

$$
Q U=\partial V
$$

and solve for U given V

- The lessons learned while solving for U and theta expansion can be generalised to all mass levels for computing both unintegrated and integrated vertex operators in pure spinor formalism
- For details have a look at poster by Mritunjay Verma -"Integrated Massive Vertex Operator in Pure Spinor Formalism"

Some Amplitude Computations

- The tree level amplitudes are given by

$$
\mathcal{A}_{N}=\left\langle V^{1} V^{2} V^{3} \int U^{4} \cdots \int U^{N}\right\rangle
$$

- All the non-zero amplitudes have three λ and five θ zero modes.
- $\left\langle\lambda^{3} \theta^{5}\right\rangle$ are normalized via

$$
\left\langle\left(\lambda \gamma^{m} \theta\right)\left(\lambda \gamma^{n} \theta\right)\left(\lambda \gamma^{p} \theta\right)\left(\theta \gamma_{m n p} \theta\right)\right\rangle=1
$$

- We compute some amplitudes involving the massive states and find them to be consistent with RNS results [Chakrabarti, SPK,Verma (To appear)].

Amplitudes - Result

- We find

$$
\begin{gathered}
\langle a a b\rangle=\frac{i}{10} e^{m n p} e_{m}^{(1)} e_{n}^{(2)}\left(k_{1}\right)_{p} \\
\langle\chi \chi b\rangle=\frac{1}{240}\left(\chi^{1} \gamma^{m n p} \chi^{2}\right) e_{m n p} \\
\langle\chi \chi g\rangle=\frac{i}{40}\left(\chi^{1} \gamma^{m} \chi^{2}\right) e_{m n} k_{1}^{n} \\
\langle a \chi \psi\rangle=\frac{1}{5}\left[e_{1}^{m}\left(\chi^{2} \psi_{m}\right)-2 \alpha^{\prime}\left(\chi^{2} \psi_{n}\right)\left(e^{1} \cdot k^{2}\right) k_{2}^{n}-\alpha^{\prime}\left(\chi^{2} \gamma_{m n} \psi_{p}\right) e_{1}^{m} k_{1}^{n} k_{2}^{p}\right] \\
+\frac{1}{5}\left[e_{2}^{m}\left(\chi^{1} \psi_{m}\right)-2 \alpha^{\prime}\left(\chi^{1} \psi_{n}\right)\left(e^{2} \cdot k^{1}\right) k_{1}^{n}-\alpha^{\prime}\left(\chi^{1} \gamma_{m n} \psi_{p}\right) e_{2}^{m} k_{2}^{n} k_{1}^{p}\right] \\
\langle a a g\rangle=-\frac{1}{40}\left[2 \alpha^{\prime}\left(e^{1} \cdot k^{2}\right)\left(e^{2} \cdot g \cdot k^{1}\right)+2 \alpha^{\prime}\left(e^{2} \cdot k^{1}\right)\left(e^{1} \cdot g \cdot k^{2}\right)-2 \alpha^{\prime}\left(e^{1} \cdot e^{2}\right)\left(k^{1} \cdot g \cdot k^{2}\right)+\left(e^{1} \cdot g \cdot e^{2}\right)\right]
\end{gathered}
$$

MOTIVATION

- The tree level scattering amplitude for N external states is given by

$$
\mathcal{A}_{N}=\left\langle V^{1} V^{2} V^{3} \int U^{4} \cdots \int U^{N}\right\rangle
$$

where, V and U are the unintegrated and integrated vertex operators

- The g-loop scattering amplitude for N external states is given by

$$
\mathcal{A}=\int d^{3 g-3} \tau\left\langle\mathcal{N}(y) \prod_{i=1}^{3 g-3}\left(\int d w_{i} \mu_{i}\left(w_{j}\right) b\left(w_{j}\right)\right) \prod_{j=1}^{N} \int d z_{j} U\left(z_{j}\right)\right\rangle
$$

- INTEGRATED VERTEX OPERATOR IS A MUST FOR SUFFICIENTLY HIGHER POINT TREE LEVEL AND ALL LOOP LEVEL AMPLITUDES
© VERTEX OPERATOR FOR MASSLESS OPEN STRING STATES IN UNINTEGRATED AND INTEGRATED FORM ARE KNOWN

- THE ONLY KNOWN MASSIVE VERTEX OPERATOR IN PURE SPINOR FORMALISM IS AT FIRST EXCITED LEVEL OF OPEN STRING $(M a s s)^{2}=\frac{1}{\alpha^{\prime}}$
© WE SHALL PRESENT THE INTEGRATED VERTEX FORM OF THE ABOVE VERTEX
(1) WE SHALL SEE THAT OUR CONSTRUCTION SEEMS TO BE GENERALISABLE TO HIGHER MASS LEVELS

NOTATIONS

$\alpha, \beta \ldots$
SPINOR INDICES
$a, b \ldots$
SPACETIME (VECTOR) INDICES

SIMPLE EXAMPLE

- CONSIDER

$$
\sum_{i}^{N} \hat{B}_{i} c_{i}=0
$$

ALONG WITH

$$
I_{i}\left(\hat{B}_{1}, \hat{B}_{2}, \cdots, \hat{B}_{N}\right)=0 \quad ; \quad i=0,1,2, \cdots, p
$$

where, $\left\{\hat{B}_{i}\right\} \in V$
CONSTRAINTS

■ Question: what values of $\left\{c_{i}\right\}$ solves $\sum_{i}^{N} \hat{B}_{i} c_{i}=0$?
\square ANSWER: DEPENDS ON NUMBERS OF CONSTRAINTS.
$*$ IF $\quad p=0$ THEN $\quad c_{i}=0 \quad \forall \quad i$

* IF $p \neq 0$ THEN WE HAVE $2+1$ OPTIONS FOR SOLVING FOR $\left\{c_{i}\right\}$
\downarrow OPTION 1: ELIMINATE SOME $\left\{\hat{B}_{a}\right\}$ IN FAVOUR OF OTHERS USING

$$
I_{i}\left(\hat{B}_{1}, \hat{B}_{2}, \cdots, \hat{B}_{N}\right)=0 \quad ; \quad i=0,1,2, \cdots, p
$$

collect all the coefficients of leftover $\quad\left\{\hat{B}_{j} \mid j \neq a\right\}$
AND SET THEIR COEFFICIENTS TO OAND SOLVE FOR $\left\{c_{i}\right\}$
+OPTION 2: INTRODUCE LAGRANGE MULTIPLIERS $\left\{K_{i} \mid i=1,2, \cdots, p\right\}$

$$
\sum_{i}^{N} \hat{B}_{i} c_{i}+\sum_{j=1}^{p} I_{j} K_{j}=0
$$

COLLECT COEFFICIENTS OF ALL THE $\left\{\hat{B}_{i}\right\}$
AND SET THEIR COEFFICIENTS TO 0 AND SOLVE FOR $\left\{c_{i}\right\}$

↔ OPTION 3 USE OPTION 1 AND OPTION 2 IN A MIXED WAY.

OUR CASE

FEATURES

\square there are constraints.
\square CONSTRAINTS NOT KNOWN IN LITERATURE

SUPERFIELDS

PURE SPINOR WORLDSHEET OPERATORS

BRIEF REVIEW

Field	Conformal Weiaht	Spacetime Nature	Grassman Nature	Ghost Number
X^{m}, Π^{m}	0,1	Vector	Even	0
θ^{α}	0	Left Weyl Spinor	Odd	0
p_{α}, d_{α}	1	Right Weyl Spinor	Odd	0
λ^{α}	0	Left Weyl Spinor	Even	1
w_{α}	1	Right Weyl Spinor	Even	-1
$N^{m n}, J$	1	Rank 2 Tensor, Scalar	Even	0

Worldsheet and Spacetime nature of all variables

- BRST operator $\longrightarrow \quad Q=\oint d z \lambda^{\alpha}(z) d_{\alpha}(z) \quad Q^{2}=0 \leftrightarrow \lambda \gamma^{m} \lambda=0$

UNINTEGRATED VERTEX

FIRST EXCITED STATE OF OPEN STRING FORMS A SPIN 2 MULTIPLET COMPRISING

44 + 84 bosonic d.o.f
© IN THE UNINTEGRATED VERTEX THESE APPEAR AS

$$
\begin{aligned}
B_{\alpha \beta}=\left(\gamma^{m n p}\right) B_{m n p} \quad C^{\alpha}{ }_{\beta}=\left(\gamma^{m n p q}\right)^{\alpha}{ }_{\beta} C_{m n p q} \quad H_{m \alpha}=-72 \Psi_{m \alpha} \\
V=: \partial \theta^{\beta} \lambda^{\alpha} B_{\alpha \beta}:+: d_{\beta} \lambda^{\alpha} C_{\alpha}^{\beta}:+: \Pi^{m} \lambda^{\alpha} H_{m \alpha}:+: N^{m n} \lambda^{\alpha} F_{\alpha m n}:
\end{aligned}
$$

$$
\begin{aligned}
& H_{s \alpha}=-72 \Psi_{s \alpha}=\frac{3}{7}\left(\gamma^{m n}\right)_{\alpha}{ }^{\beta} D_{\beta} B_{m n s}, \quad C_{m n p q}=\frac{1}{2} \partial_{[m} B_{n p q]}, \\
& F_{\alpha m n}=\frac{1}{8}\left(7 \partial_{[m} H_{n] \alpha}+\partial^{q}\left(\gamma_{q[m}\right)_{\alpha}{ }^{\beta} H_{n] \beta}\right)
\end{aligned}
$$

RESULT

$$
\begin{aligned}
U= & : \Pi^{m} \Pi^{n} F_{m n}:+: \Pi^{m} d_{\alpha} F_{m}{ }^{\alpha}:+: \Pi^{m} \partial \theta^{\alpha} G_{m \alpha}:+: \Pi^{m} N^{p q} F_{m p q}: \\
& +: d_{\alpha} d_{\beta} K^{\alpha \beta}:+: d_{\alpha} \partial \theta^{\beta} F_{\beta}^{\alpha}:+: d_{\alpha} N^{m n} G^{\alpha}{ }_{m n}:+: \partial \theta^{\alpha} \partial \theta^{\beta} H_{\alpha \beta}: \\
& +: \partial \theta^{\alpha} N^{m n} H_{m n \alpha}:+: N^{m n} N^{p q} G_{m n p q}:
\end{aligned}
$$

WHERE

$$
\begin{aligned}
& F_{m n}=-\frac{18}{\alpha^{\prime}} G_{m n}, \quad F_{m}^{\alpha}=\frac{288}{\alpha^{\prime}}\left(\gamma^{r}\right)^{\alpha \beta} \partial_{r} \Psi_{m \beta}, \quad G_{m \alpha}=-\frac{432}{\alpha^{\prime}} \Psi_{m \alpha} \\
& F_{m p q}=\frac{12}{\left(\alpha^{\prime}\right)^{2}} B_{m p q}-\frac{36}{\alpha^{\prime}} \partial_{[p} G_{q] m}, \quad K^{\alpha \beta}=-\frac{1}{\left(\alpha^{\prime}\right)^{2}} \gamma_{m n p}^{\alpha \beta} B^{m n p} \\
& F_{\beta}^{\alpha}=-\frac{4}{\alpha^{\prime}}\left(\gamma^{m n p q}\right)^{\alpha}{ }_{\beta} \partial_{m} B_{n p q}, \quad, \quad G_{m n}^{\alpha}=\frac{48}{\left(\alpha^{\prime}\right)^{2}} \gamma_{[m}^{\alpha \sigma} \Psi_{n] \sigma}+\frac{192}{\alpha^{\prime}} \gamma_{r}^{\alpha \sigma} \partial^{r} \partial_{[m} \Psi_{n] \sigma} \\
& H_{\alpha \beta}=\frac{2}{\alpha^{\prime}} \gamma_{\alpha \beta}^{m n p} B_{m n p} \quad, \quad H_{m n \alpha}=-\frac{576}{\alpha^{\prime}} \partial_{[m} \Psi_{n] \alpha}-\frac{144}{\alpha^{\prime}} \partial^{q}\left(\gamma_{q[m}\right)_{\alpha}{ }^{\sigma} \Psi_{n] \sigma} \\
& G_{m n p q}=\frac{4}{\left(\alpha^{\prime}\right)^{2}} \partial_{[m} B_{n] p q}+\frac{4}{\left(\alpha^{\prime}\right)^{2}} \partial_{[p} B_{q] m n}-\frac{12}{\alpha^{\prime}} \partial_{[p} \partial_{[m} G_{n] q]}
\end{aligned}
$$

CONSTRUCTION

STEP 1

WRITE DOWN THE MOST GENERAL OPERATOR CONSTRUCTED OUT OF BASIS WITH CONFORMAL WEIGHT 2 AND GHOST NUMBER 0.

PRODUCTS AND WORLDSHEET DERIVATIVE OF CONFORMAL WEIGHT 1 BASIS

NO λ^{α}

$$
\left\{\Pi^{m}, d_{\alpha}, \partial \theta^{\alpha}, N^{m n}, J\right\}
$$

$$
\begin{aligned}
U= & : \partial^{2} \theta^{\alpha} C_{\alpha}:+: \partial \Pi^{m} C_{m}:+: \partial d_{\alpha} E^{\alpha}:+:(\partial J) C:+: \partial N^{m n} C_{m n}: \\
& +: \Pi^{m} \Pi^{n} F_{m n}:+: \Pi^{m} d_{\alpha} F_{m}{ }^{\alpha}:+: \Pi^{m} N^{p q} F_{m p q}:+: \Pi^{m} J F_{m}:+: \Pi^{m} \partial \theta^{\alpha} G_{m \alpha}: \\
& +: d_{\alpha} d_{\beta} K^{\alpha \beta}:+: d_{\alpha} N^{m n} G^{\alpha}{ }_{m n}:+: d_{\alpha} J F^{\alpha}:+: d_{\alpha} \partial \theta^{\beta} F^{\alpha}{ }_{\beta}: \\
& +: N^{m n} N^{p q} G_{m n p q}:+: N^{m n} J P_{m n}:+: N^{m n} \partial \theta^{\alpha} H_{m n \alpha}: \\
& +: J J H:+: J \partial \theta^{\alpha} H_{\alpha}:+: \partial \theta^{\alpha} \partial \theta^{\beta} H_{\alpha \beta}:
\end{aligned}
$$

STEP 2

RULE OUT SUPERFIELDS THAT CANNOT HAVE THE PHYSICAL DEGREE OF FREEDOM BY DOING REST FRAME ANALYSIS

$$
C_{\alpha}=C_{m}=E^{\alpha}=C=C_{m n}=F_{m}=F^{\alpha}=P_{m n}=H=H_{\alpha}=0
$$

EXAMPLE

936
\downarrow A SUPERFIELD WITH ONE INDEX VANISHES.
\downarrow A SUPERFIELD WITH TWO ANTI-SYMMETRIC VECTOR INDICES VANISHES.

A FEW TERMS OF THE ABOVE COMPUTATION ARE

1. $\underline{\Pi^{m} \Pi^{n} F_{m n}}$

$$
Q\left(: \Pi^{m} \Pi^{n} F_{m n}:\right)=\frac{\alpha^{\prime}}{2}\left[: \Pi^{m} \Pi^{n} \lambda^{\alpha} D_{\alpha} F_{m n}:+: \Pi^{m}\left(\gamma_{\alpha \beta}^{n}\right) \partial \theta^{\beta} \lambda^{\alpha}\left(F_{m n}+F_{n m}\right):\right]
$$

2. $\underline{\Pi}^{m} d_{\alpha} F_{m}{ }^{\alpha}$

$$
\begin{aligned}
Q\left(: \Pi^{m} d_{\beta} F_{m}^{\beta}:\right)= & -\frac{\alpha^{\prime}}{2}\left[: \Pi^{m} d_{\beta} \lambda^{\alpha} D_{\alpha} F_{m}^{\beta}:+: d_{\beta}\left(\gamma_{\alpha \sigma}^{m}\right) \partial \theta^{\sigma} \lambda^{\alpha} F_{m}^{\beta}:\right. \\
& \left.+: \Pi^{m}\left(\gamma_{\alpha \beta}^{n}\right) \Pi_{n} \lambda^{\alpha} F_{m}^{\beta}:\right]-\frac{1}{2}\left(\frac{\alpha^{\prime}}{2}\right)^{2} \partial^{2} \lambda^{\alpha} \gamma_{\alpha \sigma}^{m} F_{m}^{\sigma} \\
& +\frac{\left(\alpha^{\prime}\right)^{2}}{2}: \Pi^{m}\left(\gamma_{\alpha \beta}^{n}\right) \partial \lambda^{\alpha} \partial_{n} F_{m}^{\beta}:
\end{aligned}
$$

3. $\Pi^{m} N^{p q} F_{m p q}$

$$
\begin{aligned}
Q\left(: \Pi^{m} N^{p q} F_{m p q}:\right)= & \frac{\alpha^{\prime}}{2}\left[: \Pi^{m} N^{p q} \lambda^{\alpha} D_{\alpha} F_{m p q}:+: \partial \theta^{\sigma} N^{p q}\left(\gamma_{\alpha \sigma}^{m}\right) \lambda^{\alpha} F_{m p q}:\right] \\
& -\frac{\alpha^{\prime}}{4}: \Pi^{m} d_{\alpha}\left(\gamma^{p q}\right)^{\alpha}{ }_{\beta} \lambda^{\beta} F_{m p q}:-\frac{1}{2}\left(\frac{\alpha^{\prime}}{2}\right)^{2}: \Pi^{m} \partial \lambda^{\beta}\left(\gamma^{p q}\right)^{\alpha}{ }_{\beta} D_{\alpha} F_{m p q}: \\
& -\frac{1}{2}\left(\frac{\alpha^{\prime}}{2}\right)^{2}\left[\partial^{2} \theta^{\sigma} \lambda^{\beta} \gamma_{\alpha \sigma}^{m}\left(\gamma^{p q}\right)^{\alpha}{ }_{\beta} F_{m p q}+\partial \theta^{\sigma} \partial \lambda^{\beta} \gamma_{\alpha \sigma}^{m}\left(\gamma^{p q}\right)^{\alpha}{ }_{\beta} F_{m p q}\right]
\end{aligned}
$$

4. $\Pi^{m} \partial \theta^{\beta} G_{m \beta}$

$$
\begin{aligned}
& Q\left(: \Pi^{m} \partial \theta^{\beta} G_{m \beta}:\right) \\
& \quad=-\frac{\alpha^{\prime}}{2}: \Pi^{m} \partial \theta^{\beta} \lambda^{\alpha} D_{\alpha} G_{m \beta}:+\frac{\alpha^{\prime}}{2}: \partial \theta^{\sigma} \partial \theta^{\beta} \lambda^{\alpha} \gamma_{\alpha \sigma}^{m} G_{m \beta}:+\frac{\alpha^{\prime}}{2}: \Pi^{m} \partial \lambda^{\beta} G_{m \beta}:
\end{aligned}
$$

5. $\underline{d_{\alpha} d_{\beta} K^{\alpha \beta}}$

$$
\begin{aligned}
Q\left(: d_{\alpha} d_{\beta} K^{\alpha \beta}:\right)= & \frac{\alpha^{\prime}}{2}: d_{\sigma} d_{\beta} \lambda^{\alpha} D_{\alpha} K^{\sigma \beta}:-\frac{\alpha^{\prime}}{2}: \Pi_{m} d_{\beta}(x) \lambda^{\alpha} \gamma_{\alpha \sigma}^{m}\left[K^{\sigma \beta}(z)-K^{\beta \sigma}\right]: \\
& +\frac{\alpha^{\prime 2}}{2}: d_{\beta} \partial \lambda^{\alpha} \gamma_{\alpha \sigma}^{m} \partial_{m}\left[K^{\sigma \beta}-K^{\beta \sigma}\right]:+\left(\frac{\alpha^{\prime}}{2}\right)^{2} \partial \theta^{\delta} \partial \lambda^{\alpha} \gamma_{m \beta \delta} \gamma_{\alpha \sigma}^{m} K^{\sigma \beta} \\
& +\left(\frac{\alpha^{\prime}}{2}\right)^{2}: \gamma_{n \sigma \rho} \partial^{2} \theta^{\rho}(x) \lambda^{\alpha}(z) \gamma_{\alpha \beta}^{n} K^{\sigma \beta}
\end{aligned}
$$

FIVE MORE SUCH TERMS

STEP 4 COMPUTE ∂V USING

$$
\begin{aligned}
\partial V= & : \partial \theta^{\beta} \partial \lambda^{\alpha} B_{\alpha \beta}:+: \Pi^{m} \partial \lambda^{\alpha} H_{m \alpha}:+: \partial^{2} \theta^{\alpha} \lambda^{\beta}\left(B_{\beta \alpha}+\alpha^{\prime} \gamma_{\sigma \alpha}^{m} \partial_{m} C_{\beta}^{\sigma}\right): \\
& +: \partial \theta^{\beta} \partial \theta^{\delta} \lambda^{\alpha} D_{\delta} B_{\alpha \beta}:+: \Pi^{m} \partial \theta^{\beta} \lambda^{\alpha}\left(2 \partial_{m} B_{\alpha \beta}+D_{\beta} H_{m \alpha}\right):+: \partial d_{\beta} \lambda^{\alpha} C_{\alpha}^{\beta}: \\
& +: d_{\beta} \partial \lambda^{\alpha} C^{\beta}{ }_{\alpha}:+: d_{\beta} \partial \theta^{\sigma} \lambda^{\alpha} D_{\sigma} C_{\alpha}^{\beta}:+: 2 \Pi^{m} d_{\beta} \lambda^{\alpha} \partial_{m} C_{\alpha}^{\beta}:+: \partial \Pi^{m} \lambda^{\alpha} H_{m \alpha}: \\
& +: 2 \Pi^{m} \Pi^{n} \lambda^{\alpha} \partial_{n} H_{m \alpha}:+: \partial N^{m n} \lambda^{\alpha} F_{\alpha m n}:+: N^{m n} \partial \lambda^{\alpha} F_{\alpha m n}: \\
& +: \partial \theta^{\beta} N^{m n} \lambda^{\alpha} D_{\beta} F_{\alpha m n}:+: 2 \Pi^{p} N^{m n} \lambda^{\alpha} \partial_{p} F_{\alpha m n}:
\end{aligned}
$$

(1) NOTE THAT OPERATION WITH BRST CHARGE AND WORLDSHEET DERIVATIVE GIVES RISE TO 26 BASIS ELEMENTS

$$
\begin{gathered}
\Pi^{m} \Pi^{n} \lambda^{\alpha}, \Pi^{m} d_{\alpha} \lambda^{\beta}, \Pi^{m} \partial \theta^{\beta} \lambda^{\gamma}, \Pi^{m} J \lambda^{\alpha}, \Pi^{m} N^{n p} \lambda^{\alpha}, \partial \Pi^{m} \lambda^{\alpha}, \Pi^{m} \partial \lambda^{\alpha} \\
d_{\alpha} d_{\beta} \lambda^{\gamma}, d_{\alpha} \partial \theta^{\beta} \lambda^{\gamma}, d_{\alpha} J \lambda^{\alpha}, d_{\alpha} N^{m n} \lambda^{\alpha}, \partial d_{\alpha} \lambda^{\beta}, d_{\alpha} \partial \lambda^{\beta} \\
\partial \theta^{\alpha} \partial \theta^{\beta} \lambda^{\gamma}, \partial \theta^{\alpha} J \lambda^{\beta}, \partial \theta^{\alpha} N^{m n} \lambda^{\alpha}, \partial^{2} \theta^{\alpha} \lambda^{\beta}, \partial \theta^{\alpha} \partial \lambda^{\beta} \\
N^{m n} N^{p q} \lambda^{\alpha}, N^{m n} J \lambda^{\alpha}, \partial N^{m n} \lambda^{\alpha}, N^{m n} \partial \lambda^{\alpha} \\
J J \lambda^{\alpha}, \partial J \lambda^{\alpha}, J \partial \lambda^{\alpha} \\
\partial^{2} \lambda^{\alpha}
\end{gathered}
$$

CONFORMAL WEIGHT 2, GHOST NUMBER 1

STEP 5 ADD SPECIAL ZEROS OF THE FORM

WHERE,

$$
\begin{aligned}
\left(I_{1}\right)_{\beta}^{n} \equiv & : N^{m n} J \lambda^{\alpha}:\left(\gamma_{m}\right)_{\alpha \beta}-\frac{1}{2}: J J \lambda^{\alpha}:\left(\gamma^{n}\right)_{\alpha \beta}-\alpha^{\prime}: J \partial \lambda^{\alpha}: \gamma_{\alpha \beta}^{n}=0 \\
\left(I_{2}\right)_{\beta}^{m n q} \equiv & : N^{m n} N^{p q} \lambda^{\alpha}:\left(\gamma_{p}\right)_{\alpha \beta}-\frac{1}{2}: N^{m n} J \lambda^{\alpha}:\left(\gamma^{q}\right)_{\alpha \beta}-\alpha^{\prime}: N^{m n} \partial \lambda^{\alpha}: \gamma_{\alpha \beta}^{q}=0 \\
\left(I_{3}\right)_{\sigma \beta}^{n} \equiv & : d_{\sigma} N^{m n} \lambda^{\alpha}:\left(\gamma_{m}\right)_{\alpha \beta}-\frac{1}{2}: d_{\sigma} J \lambda^{\alpha}:\left(\gamma^{n}\right)_{\alpha \beta}-\alpha^{\prime}: d_{\sigma} \partial \lambda^{\alpha}: \gamma_{\alpha \beta}^{n}=0 \\
\left(I_{4}\right)_{\beta}^{p n} \equiv & : \Pi^{p} N^{m n} \lambda^{\alpha}:\left(\gamma_{m}\right)_{\alpha \beta}-\frac{1}{2}: \Pi^{p} J \lambda^{\alpha}:\left(\gamma^{n}\right)_{\alpha \beta}-\alpha^{\prime}: \Pi^{p} \partial \lambda^{\alpha}: \gamma_{\alpha \beta}^{n}=0 \\
\left(I_{5}\right)_{\beta}^{\sigma n} \equiv & : \partial \theta^{\sigma} N^{m n} \lambda^{\alpha}:\left(\gamma_{m}\right)_{\alpha \beta}-\frac{1}{2}: \partial \theta^{\sigma} J \lambda^{\alpha}:\left(\gamma^{n}\right)_{\alpha \beta}-\alpha^{\prime}: \partial \theta^{\sigma} \partial \lambda^{\alpha}: \gamma_{\alpha \beta}^{n}=0 \\
\left(I_{6}\right)_{\beta}^{n} \equiv & : \partial N^{m n} \lambda^{\alpha}:\left(\gamma_{m}\right)_{\alpha \beta}+: N^{m n} \partial \lambda^{\alpha}:\left(\gamma_{m}\right)_{\alpha \beta}-\frac{1}{2}: \partial J \lambda^{\alpha}:\left(\gamma^{n}\right)_{\alpha \beta}-\frac{1}{2}: J \partial \lambda^{\alpha}:\left(\gamma^{n}\right)_{\alpha \beta} \\
& -\alpha^{\prime} \gamma_{\alpha \beta}^{n} \partial^{2} \lambda^{\alpha}=0 \\
& Q U=\partial V+\sum_{a=1}^{6} I_{a} K_{a}
\end{aligned}
$$

STEP 6 COLLECT ALL THE TERMS WITH SAME BASIS

1. $\underline{\Pi}^{m} \Pi^{n} \lambda^{\alpha}$

$$
\frac{\alpha^{\prime}}{2}\left[D_{\alpha} F_{m n}-\gamma_{n \alpha \beta} F_{m}^{\beta}\right]=2 \partial_{n} H_{m \alpha} \quad Q U=\partial V+\sum_{a=1}^{0} I_{a} K_{a}
$$

2. $\Pi^{m} \partial \theta^{\beta} \lambda^{\alpha}$

$$
\frac{\alpha^{\prime}}{2}\left[\gamma_{\alpha \beta}^{n}\left(F_{m n}+F_{n m}\right)-D_{\alpha} G_{m \beta}-\gamma_{\alpha \delta}^{m} F_{\beta}^{\delta}\right]=2 \partial_{m} B_{\alpha \beta}+D_{\beta} H_{m \alpha}
$$

3. $d_{\alpha} \partial \theta^{\beta} \lambda^{\sigma}$

$$
\frac{\alpha^{\prime}}{2}\left[-\gamma_{\sigma \beta}^{m} F_{m}^{\alpha}+D_{\sigma} F_{\beta}^{\alpha}-\frac{1}{2}\left(\gamma^{m n}\right)_{\sigma}^{\alpha} H_{m n \beta}\right]=D_{\beta} C_{\sigma}^{\alpha}
$$

4. $\underline{\Pi^{m} d_{\beta} \lambda^{\alpha}}$

$$
\frac{\alpha^{\prime}}{2}\left[-D_{\alpha} F_{m}{ }^{\beta}-\frac{1}{2}\left(\gamma^{p q}\right)_{\alpha}^{\beta} F_{m p q}-\gamma_{\alpha \sigma}^{m}\left(K^{\sigma \beta}-K^{\beta \sigma}\right)\right]=2 \partial_{m} C_{\alpha}^{\beta}
$$

5. $\underline{\partial \theta^{\alpha} \partial \theta^{\beta} \lambda^{\sigma}}$

$$
\frac{\alpha^{\prime}}{2}\left[\gamma_{\sigma[\alpha}^{m} G_{m \beta]}+D_{\sigma} H_{\alpha \beta}\right]=D_{[\beta} B_{|\sigma| \alpha]}
$$

6. $\partial \Pi_{m} \lambda^{\alpha}$

$$
\frac{\left(\alpha^{\prime}\right)^{2}}{8}\left(\gamma_{m} \gamma^{p q}\right)_{\beta \alpha} G_{p q}^{\beta}=H_{m \alpha}
$$

7. $\underline{d_{\alpha} d_{\beta} \lambda^{\sigma}}$

$$
\frac{\alpha^{\prime}}{2}\left[D_{\sigma} K^{\alpha \beta}+\frac{1}{2}\left(\gamma^{m n}\right)_{\sigma}^{\beta} G_{m n}^{\alpha}\right]=0
$$

8. $\underline{\partial^{2} \theta^{\beta} \lambda^{\alpha}}$

$$
\frac{\alpha^{\prime}}{2}\left[-\frac{\alpha^{\prime}}{4} \gamma_{\beta \sigma}^{m}\left(\gamma^{p q}\right)^{\sigma}{ }_{\alpha} F_{m p q}+\frac{\alpha^{\prime}}{2} \gamma_{\delta \beta}^{m} \gamma_{m \alpha \sigma} K^{\delta \sigma}\right]=B_{\alpha \beta}+\alpha^{\prime} \gamma_{\sigma \beta}^{m} \partial_{m} C^{\sigma}{ }_{\alpha}
$$

9. $\underline{\Pi}^{m} N^{p q} \lambda^{\alpha}$

$$
\frac{\alpha^{\prime}}{2}\left[D_{\alpha} F_{m p q}-\gamma_{m \alpha \beta} G^{\beta}{ }_{p q}\right]=2 \partial_{m} F_{\alpha p q}+\left(\gamma_{[p}\right)_{\alpha \beta}\left(K_{4}\right)^{\beta}{ }_{|m| q]}
$$

10. $\underline{\Pi}^{m} J \lambda^{\alpha}$

$$
0=-\frac{1}{2} \gamma^{q}{ }_{\alpha \beta}\left(K_{4}\right)^{\beta}{ }_{m q}
$$

11. $\Pi^{m} \partial \lambda^{\alpha}$

$$
\begin{aligned}
\frac{\alpha^{\prime}}{2}\left[\alpha^{\prime} \gamma_{\alpha \beta}^{n} \partial_{n} F_{m}{ }^{\beta}-\frac{\alpha^{\prime}}{4}\left(\gamma^{p q}\right)^{\beta}{ }_{\alpha} D_{\beta} F_{m p q}\right. & \left.+G_{m \alpha}+\frac{\alpha^{\prime}}{4}\left(\gamma_{m} \gamma^{p q}\right)_{\beta \alpha} G_{p q}^{\beta}\right] \\
= & H_{m \alpha}-\alpha^{\prime} \gamma_{\alpha \beta}^{q}\left(K_{4}\right)^{\beta}{ }_{m q}
\end{aligned}
$$

12. $\partial \theta^{\alpha} N^{m n} \lambda^{\beta}$

$$
\frac{\alpha^{\prime}}{2}\left[\gamma_{\alpha \beta}^{p} F_{p m n}-D_{\beta} H_{m n \alpha}\right]=D_{\alpha} F_{\beta m n}+\left(\gamma_{[m}\right)_{\beta \sigma}\left(K_{5}\right)^{\sigma}{ }_{\alpha n]}
$$

14 MORE SUCH TERMS

STEP 7

WRITE DOWN THE ANSATZ FOR SUPERFIELDS OF INTEGRATED VERTEX AND THE LAGRANGE MULTIPLIERS
\% SUPERFIELDS APPEARING IN INTEGRATED VERTEX

$$
\begin{array}{rlrl}
F_{m n} & =f_{1} G_{m n} & & G_{m \alpha}=g_{1} \Psi_{m \alpha} \\
K^{\alpha \beta} & =a \gamma_{m n p}^{\alpha \beta} B^{m n p} & , & H_{\alpha \beta}=h_{1} \gamma_{\alpha \beta}^{m n p} B_{m n p} \\
F_{\beta}^{\alpha} & =f_{5}\left(\gamma^{m n p q}\right)^{\alpha}{ }_{\beta} k_{m} B_{n p q}, & F_{m}^{\alpha}=f_{2} k^{r}\left(\gamma_{r}\right)^{\alpha \beta} \Psi_{m \beta} \\
F_{m p q} & =f_{3} G_{m[p} k_{q]}+f_{4} B_{m p q}, & G_{p q}^{\beta}=g_{2} \gamma_{[p}^{\beta \sigma} \Psi_{q] \sigma}+g_{3} k^{r} \gamma_{r}^{\beta \sigma} k_{[p} \Psi_{q] \sigma} \\
H_{m n \alpha} & =h_{2} k_{[m} \Psi_{n] \alpha}+h_{3} k^{q}\left(\gamma_{q[m}\right)_{\alpha}^{\sigma} \Psi_{n] \sigma} \\
G_{m n p q} & =g_{4} k_{[m} B_{n] p q}+g_{5} k_{[p} B_{q] m n}+g_{6} k_{[m} G_{n][p} k_{q]}+g_{7} \eta_{[m[p} G_{q] n]}
\end{array}
$$

\% LAGRANGE MULTIPLIER SUPERFIELDS

$$
\begin{aligned}
\left(K_{1}\right)_{m}^{\alpha}= & c_{1} k^{r}\left(\gamma_{r}\right)^{\alpha \beta} \Psi_{m \beta} \\
\left(K_{2}\right)_{m n q}^{\alpha}= & c_{2} k_{[m} \gamma_{n]}^{\alpha \beta} \Psi_{q \beta}+c_{3} k_{q} \gamma_{[m}^{\alpha \beta} \Psi_{n] \beta}+c_{4} \gamma_{q}^{\alpha \beta} k_{[m} \Psi_{n] \beta}+c_{5} k^{r} \gamma_{r m n}^{\alpha \beta} \Psi_{q \beta}+c_{6} k^{r} \gamma_{r q[m}^{\alpha \beta} \Psi_{n] \beta} \\
& +c_{7} k^{r} k_{q} \gamma_{r}^{\alpha \beta} k_{[m} \Psi_{n] \beta}+c_{8} k^{r} \gamma_{r}^{\alpha \beta} \eta_{q[m} \Psi_{n] \beta} \\
\left(K_{3}\right)_{m}^{\alpha \beta}= & c_{9} G_{m n}\left(\gamma^{n}\right)^{\alpha \beta}+c_{10} k_{m} B_{s t u}\left(\gamma^{s t u}\right)^{\alpha \beta}+c_{11} k_{s} B_{t u m}\left(\gamma^{s t u}\right)^{\alpha \beta}+c_{12} k_{s} B_{t u v}\left(\gamma_{m}{ }^{s t u v}\right)^{\alpha \beta} \\
\left(K_{4}\right)_{m n}^{\alpha}= & c_{13}\left(\gamma_{n}\right)^{\alpha \beta} \Psi_{m \beta}+c_{14}\left(\gamma_{m}\right)^{\alpha \beta} \Psi_{n \beta}+c_{15} k^{r} k_{m}\left(\gamma_{r}\right)^{\alpha \beta} \Psi_{n \beta}+c_{16} k^{r} k_{n}\left(\gamma_{r}\right)^{\alpha \beta} \Psi_{m \beta} \\
\left(K_{5}\right)_{\beta m}^{\alpha}= & c_{17} k_{p} G_{q m}\left(\gamma^{p q}\right)_{\beta}^{\alpha}+c_{18} B_{m p q}\left(\gamma^{p q}\right)^{\alpha}{ }_{\beta}+c_{19} B_{p q r}\left(\gamma_{m}^{p q r}\right)^{\alpha}{ }_{\beta}+c_{20} k_{m} k_{p} B_{q r s}\left(\gamma^{p q r s}\right)^{\alpha}{ }_{\beta} \\
\left(K_{6}\right)_{m}^{\alpha}= & c_{21} k^{r}\left(\gamma_{r}\right)^{\alpha \beta} \Psi_{m \beta}
\end{aligned}
$$

ELIMINATE THE BASES FOR THE CONSTRAINTS FOR WHICH THE LAGRANGE MULTIPLIERS ARE NOT INTRODUCED.

EXAMPLE

\because CONSIDER THE CONSTRAINT $: d_{\alpha} d_{\beta}:+: d_{\beta} d_{\alpha}:+\frac{\alpha^{\prime}}{2} \partial \Pi^{t}\left(\gamma_{t}\right)_{\alpha \beta}=0$
6. $\partial \Pi_{m} \lambda^{\alpha}$

$$
\frac{\left(\alpha^{\prime}\right)^{2}}{8}\left(\gamma_{m} \gamma^{p q}\right)_{\beta \alpha} G_{p q}^{\beta}=H_{m \alpha}
$$

7. $\underline{d_{\alpha} d_{\beta} \lambda^{\sigma}}$

$$
\frac{\alpha^{\prime}}{2}\left[D_{\sigma} K^{\alpha \beta}+\frac{1}{2}\left(\gamma^{m n}\right)^{\beta}{ }_{\sigma} G_{m n}^{\alpha}\right]=0
$$

SUBSTITUTE THE ANSATZ AND SET COEFFICIENTS OF ALL THE BASIS TO ZERO.

EQUATIONS RELATING
$a,\left\{f_{1}, f_{2}, \cdots, f_{5},\right\},\left\{g_{1}, g_{2}, \cdots, g_{7}\right\}, h_{1}, h_{2}, h_{3},\left\{c_{1}, c_{2}, \cdots, c_{21}\right\}$

STEP 10 SOLVE FOR THE ABOVE EQUATIONS

$$
\begin{aligned}
& a=-\frac{1}{\alpha^{\prime 2}} \quad, \quad f_{1}=-\frac{18}{\alpha} \quad, \quad f_{2}=\frac{288 i}{\alpha} \quad, \quad f_{3}=\frac{36 i}{\alpha^{\prime}} \\
& f_{4}=\frac{12}{\alpha^{\prime 2}} \quad, \quad f_{5}=-\frac{4 i}{\alpha^{\prime}} \quad, \quad g_{1}=-\frac{432}{\alpha^{\prime}} \quad, \quad g_{2}=\frac{48}{\alpha^{\prime 2}} \\
& g_{3}=-\frac{192}{\alpha^{\prime}} \quad, \quad g_{4}=\frac{4 i}{\alpha^{\prime 2}} \quad, \quad g_{5}=\frac{4 i}{\alpha^{\prime 2}} \quad, \quad g_{6}=-\frac{12}{\alpha^{\prime}} \\
& h_{1}=\frac{2}{\alpha^{\prime}} \quad, \quad h_{2}=-\frac{576 i}{\alpha^{\prime}} \quad, \quad h_{3}=-\frac{144 i}{\alpha^{\prime}}
\end{aligned}
$$

THERE DOES NOT SEEM TO BE YET OTHER WAYS IN WHICH ANY CONSTRAINT CAN APPEAR
\square this can be a reflection going from massless states to massive states

LETS RECALL THE ACTION

* IN ORDER TO WORK IN GAUGE INVARIANT FASHION

$$
\left(w_{\alpha}, \lambda^{\beta}\right)>\underbrace{(J,}_{\left(w_{\alpha} \lambda^{\alpha}\right)} \underbrace{N^{m n}}_{\frac{1}{2}\left(w_{\alpha} \gamma^{m n} \lambda^{\alpha}\right)}, \lambda^{\beta}) \text { + CONSTRAINTS }
$$

- The OPE among the various fields are given by

$$
\begin{gathered}
d_{\alpha}(z) d_{\beta}(w)=-\frac{\alpha^{\prime} \gamma_{\alpha \beta}^{m}}{2(z-w)} \Pi_{m}(w)+\cdots \quad, \quad d_{\alpha}(z) \Pi^{m}(w)=\frac{\alpha^{\prime} \gamma_{\alpha \beta}^{m}}{2(z-w)} \partial \theta^{\beta}(w)+\cdots \\
d_{\alpha}(z) V(w)=\frac{\alpha^{\prime}}{2(z-w)} D_{\alpha} V(w)+\cdots, \quad \Pi^{m}(z) V(w)=-\frac{\alpha^{\prime}}{(z-w)} \partial^{m} V(w)+\cdots \\
\Pi^{m}(z) \Pi^{n}(w)=-\frac{\alpha^{\prime} \eta^{m n}}{2(z-w)^{2}}+\cdots, \quad N^{m n}(z) \lambda^{\alpha}(w)=\frac{\alpha^{\prime}\left(\gamma^{m n}\right)^{\alpha}{ }_{\beta}}{4(z-w)} \lambda^{\beta}(w)+\cdots \\
N^{m n}(z) N^{p q}(w)=-\frac{3\left(\alpha^{\prime}\right)^{2}}{2(z-w)^{2}} \eta^{m[q} \eta^{p] n}+\frac{\alpha^{\prime}}{(z-w)}\left(\eta^{p[n} N^{m] q}-\eta^{q[n} N^{m] p}\right)+\cdots \\
J(z) J(w)=-\frac{\left(\alpha^{\prime}\right)^{2}}{(z-w)^{2}}+\cdots \quad, \quad J(z) \lambda^{\alpha}(w)=\frac{\alpha^{\prime}}{2(z-w)} \lambda^{\alpha}(w)+\cdots
\end{gathered}
$$

where,
non-singular terms any Superfield spacetime derivative

CONSTRAINTS IMPLIED TRANSPARENTLY FROM $\left(\lambda \gamma^{m} \lambda\right)=0$

$: N^{m n} \lambda^{\alpha}:(z)\left(\gamma_{m}\right)_{\alpha \beta}-\frac{1}{2}: J \lambda^{\alpha}:(z)\left(\gamma^{n}\right)_{\alpha \beta}-\alpha^{\prime} \gamma_{\alpha \beta}^{n} \partial \lambda^{\alpha}(z)=0 \quad$ QUANTUM

CONFORMAL WEIGHT 1, GHOST NUMBER 1

GO TO HIGHER CONFORMAL AND GHOST NUMBER BY TAKING OPE

$$
\begin{aligned}
\left(I_{1}\right)_{\beta}^{n} \equiv & : N^{m n} J \lambda^{\alpha}:\left(\gamma_{m}\right)_{\alpha \beta}-\frac{1}{2}: J J \lambda^{\alpha}:\left(\gamma^{n}\right)_{\alpha \beta}-\alpha^{\prime}: J \partial \lambda^{\alpha}: \gamma_{\alpha \beta}^{n}=0 \\
\left(I_{2}\right)_{\beta}^{m n q} \equiv & : N^{m n} N^{p q} \lambda^{\alpha}:\left(\gamma_{p}\right)_{\alpha \beta}-\frac{1}{2}: N^{m n} J \lambda^{\alpha}:\left(\gamma^{q}\right)_{\alpha \beta}-\alpha^{\prime}: N^{m n} \partial \lambda^{\alpha}: \gamma_{\alpha \beta}^{q}=0 \\
\left(I_{3}\right)_{\sigma \beta}^{n} \equiv & : d_{\sigma} N^{m n} \lambda^{\alpha}:\left(\gamma_{m}\right)_{\alpha \beta}-\frac{1}{2}: d_{\sigma} J \lambda^{\alpha}:\left(\gamma^{n}\right)_{\alpha \beta}-\alpha^{\prime}: d_{\sigma} \partial \lambda^{\alpha}: \gamma_{\alpha \beta}^{n}=0 \\
\left(I_{4}\right)_{\beta}^{p n} \equiv & : \Pi^{p} N^{m n} \lambda^{\alpha}:\left(\gamma_{m}\right)_{\alpha \beta}-\frac{1}{2}: \Pi^{p} J \lambda^{\alpha}:\left(\gamma^{n}\right)_{\alpha \beta}-\alpha^{\prime}: \Pi^{p} \partial \lambda^{\alpha}: \gamma_{\alpha \beta}^{n}=0 \\
\left(I_{5}\right)_{\beta}^{\sigma n} \equiv & : \partial \theta^{\sigma} N^{m n} \lambda^{\alpha}:\left(\gamma_{m}\right)_{\alpha \beta}-\frac{1}{2}: \partial \theta^{\sigma} J \lambda^{\alpha}:\left(\gamma^{n}\right)_{\alpha \beta}-\alpha^{\prime}: \partial \theta^{\sigma} \partial \lambda^{\alpha}: \gamma_{\alpha \beta}^{n}=0 \\
\left(I_{6}\right)_{\beta}^{n} \equiv & : \partial N^{m n} \lambda^{\alpha}:\left(\gamma_{m}\right)_{\alpha \beta}+: N^{m n} \partial \lambda^{\alpha}:\left(\gamma_{m}\right)_{\alpha \beta}-\frac{1}{2}: \partial J \lambda^{\alpha}:\left(\gamma^{n}\right)_{\alpha \beta}-\frac{1}{2}: J \partial \lambda^{\alpha}:\left(\gamma^{n}\right)_{\alpha \beta} \\
& -\alpha^{\prime} \gamma_{\alpha \beta}^{n} \partial^{2} \lambda^{\alpha}=0
\end{aligned}
$$

(II)

IMPLIED BY OPE

$$
\begin{gathered}
: d_{\alpha} d_{\beta}:+: d_{\beta} d_{\alpha}:+\frac{\alpha^{\prime}}{2} \partial \Pi^{t}\left(\gamma_{t}\right)_{\alpha \beta}=0 \\
: N^{m n} N^{p q}:-: N^{p q} N^{m n}:=-\frac{\alpha^{\prime}}{2}\left[\eta^{n p} \partial N^{m q}-\eta^{n q} \partial N^{m p}-\eta^{m p} \partial N^{n q}+\eta^{m q} \partial N^{n p}\right] \\
(\|\|) \\
\text { CONSTRAINTS IMPLIED SUBTLY FROM }\left(\lambda \gamma^{m} \lambda\right)=0 \\
\text { EX. } \quad N^{m p} N^{p n} G_{m n}=0
\end{gathered}
$$

WHEN PRESENT THEY LEAD TO SOME COEFFICIENTS UNDETERMINED

$$
\left(\gamma^{m}\right)^{\alpha \beta} \Psi_{m \beta}=0 \quad ; \quad k^{m} \Psi_{m \beta}=0 \quad ; \quad k^{m} B_{m n p}=0 \quad ; \quad k^{m} G_{m n}=0 \quad \& \quad \eta^{m n} G_{m n}=0
$$

Outline

- Review
- Unintegrated Vertex
- θ expansion
- Resullt
- Sample Computation

Review

- The world-sheet pure spinor superstring action is given by [N. Berkovits]

$$
S=\frac{2}{\alpha^{\prime}} \int d^{2} z\left(\frac{1}{2} \partial X^{m} \bar{\partial} X_{m}+p_{\alpha} \bar{\partial} \theta^{\alpha}-w_{\alpha} \bar{\partial} \lambda^{\alpha}\right)
$$

where, $\quad\left(X^{m}, \theta^{\alpha}\right)$ forms a 10 dim . superspace $m=0,1, \cdots, 9$ and $\quad \alpha=1,2, \cdots, 16$

- λ^{α} is a bosonic spacetime spinor (has 11 ind. component) as it satisfies

$$
\lambda \gamma^{m} \lambda=0 \quad \forall \quad m \quad \text { This is pure spinor constraint }
$$

$\left(\gamma^{m}\right)_{\alpha \beta}$ are the components of the $16 \times 16 \quad$ Gamma matrices

- p_{α} and w_{α} are the conjugate momentum fields of θ^{α} and λ^{α} respectively
- Pure spinor constraint imparts the following gauge transformation property

$$
\mid w_{\alpha} \rightarrow w_{\alpha}+\Lambda_{m}\left(\gamma^{m} \lambda\right)_{\alpha} \quad \square \quad 11 \text { independent } w_{\alpha}
$$

- To work with gauge invariant objects we introduce

$$
N^{m n}=\frac{1}{2} w_{\alpha}\left(\gamma^{m n}\right)^{\alpha}{ }_{\beta} \lambda^{\beta} \quad, \quad J=w_{\alpha} \lambda^{\alpha}
$$

$$
\text { along with the constraint } \mid: N^{m n} \lambda^{\alpha}: \gamma_{m \alpha \beta}-\frac{1}{2}: J \lambda^{\alpha}: \gamma_{\alpha \beta}^{n}=\alpha^{\prime} \gamma_{\alpha \beta}^{n} \partial \lambda^{\alpha}(z)
$$

- To keep SUSY manifest we work with

$$
\begin{gathered}
d_{\alpha}=p_{\alpha}-\frac{1}{2} \gamma_{\alpha \beta}^{m} \theta^{\beta} \partial X_{m}-\frac{1}{8} \gamma_{\alpha \beta}^{m} \gamma_{m \sigma \delta} \theta^{\beta} \theta^{\sigma} \partial \theta^{\delta} \\
\Pi^{m}=\partial X^{m}+\frac{1}{2} \gamma_{\alpha \beta}^{m} \theta^{\alpha} \partial \theta^{\beta}
\end{gathered}
$$

- Given this we never have to invoke w_{α}, p_{α} and ∂X^{m}

Field	Conformal Weiaht	Spacetime Nature	Grassman Nature	Ghost Number
X^{m}, Π^{m}	0,1	Vector	Even	0
θ^{α}	0	Left Weyl Spinor	Odd	0
p_{α}, d_{α}	1	Right Weyl Spinor	Odd	0
λ^{α}	0	Left Weyl Spinor	Even	1
w_{α}	1	Right Weyl Spinor	Even	-1
$N^{m n}, J$	1	Rank 2 Tensor, Scalar	Even	0

Worldsheet and Spacetime nature of all variables

SPECTRUM

- BRST operator $\longrightarrow Q=\oint d z \lambda^{\alpha}(z) d_{\alpha}(z)$

$$
Q^{2}=0 \leftrightarrow \lambda \gamma^{m} \lambda=0
$$Physical states in spectrum $V \longrightarrow$

$$
\begin{array}{|c|}
\hline Q V=0 \\
44
\end{array} \text { and }
$$

$$
V(z) \rightarrow V(z)+Q \Omega(z)
$$

- The OPE among the various fields are given by

$$
\begin{gathered}
d_{\alpha}(z) d_{\beta}(w)=-\frac{\alpha^{\prime} \gamma_{\alpha \beta}^{m}}{2(z-w)} \Pi_{m}(w)+\cdots \quad, \quad d_{\alpha}(z) \Pi^{m}(w)=\frac{\alpha^{\prime} \gamma_{\alpha \beta}^{m}}{2(z-w)} \partial \theta^{\beta}(w)+\cdots \\
d_{\alpha}(z) V(w)=\frac{\alpha^{\prime}}{2(z-w)} D_{\alpha} V(w)+\cdots, \quad \Pi^{m}(z) V(w)=-\frac{\alpha^{\prime}}{(z-w)} \partial^{m} V(w)+\cdots \\
\Pi^{m}(z) \Pi^{n}(w)=-\frac{\alpha^{\prime} \eta^{m n}}{2(z-w)^{2}}+\cdots, \quad N^{m n}(z) \lambda^{\alpha}(w)=\frac{\alpha^{\prime}\left(\gamma^{m n}\right)^{\alpha}{ }_{\beta}}{4(z-w)} \lambda^{\beta}(w)+\cdots \\
N^{m n}(z) N^{p q}(w)=-\frac{3\left(\alpha^{\prime}\right)^{2}}{2(z-w)^{2}} \eta^{m[q} \eta^{p] n}+\frac{\alpha^{\prime}}{(z-w)}\left(\eta^{p[n} N^{m] q}-\eta^{q[n} N^{m] p}\right)+\cdots \\
J(z) J(w)=-\frac{\left(\alpha^{\prime}\right)^{2}}{(z-w)^{2}}+\cdots \quad, \quad J(z) \lambda^{\alpha}(w)=\frac{\alpha^{\prime}}{2(z-w)} \lambda^{\alpha}(w)+\cdots
\end{gathered}
$$

where,
non-singular terms any Superfield spacetime derivative

AMPLITUDE PRESCRIPTION

- The tree level scattering amplitude for N external states is given by

$$
\mathcal{A}_{N}=\left\langle V^{1} V^{2} V^{3} \int U^{4} \cdots \int U^{N}\right\rangle
$$

where, V and U are the unintegrated and integrated vertex operators

- The above correlation function is normalised as

$$
\left\langle\left(\lambda \gamma^{m} \theta\right)\left(\lambda \gamma^{n} \theta\right)\left(\lambda \gamma^{p} \theta\right)\left(\theta \gamma_{m n p} \theta\right)\right\rangle=1
$$

Schematically

$$
\left\langle\lambda^{3} \theta^{5}\right\rangle \sim 1
$$

(Keep this form in mind)

Technical Details

- The normal ordering is a nested contour integral
: $A_{1} A_{2} \cdots A_{n}:(z)$
$\equiv \oint \frac{d y_{1}}{y_{1}-z} A_{1}\left(y_{1}\right) \oint \frac{d y_{2}}{y_{2}-z} A_{2}\left(y_{2}\right) \cdots \oint \frac{d y_{n}}{y_{n}-z} A_{n}\left(y_{n}\right)$
- Anti-Symmetrization

$$
T^{\left[m_{1} \ldots m_{n}\right]} \equiv \frac{1}{n!}\left(T^{m_{1} \ldots m_{n}} \pm \text { all permutations }\right)
$$

- Symmetrization

$$
T^{\left(m_{1} \ldots m_{n}\right)} \equiv \frac{1}{n!}\left(T^{m_{1} \ldots m_{n}}+\text { all permutations }\right)
$$

- Gamma p-form

$$
\gamma^{m_{1} \ldots m_{p}} \equiv \gamma^{\left[m_{1} \ldots\right.} \gamma^{\left.m_{p}\right]}
$$

- Super-covariant Derivative property

$$
\left\{D_{\alpha}, D_{\beta}\right\}=2\left(\gamma^{m}\right)_{\alpha \beta} \partial_{m} \quad \Longrightarrow \quad\left(\gamma_{m}\right)^{\alpha \beta} D_{\alpha} D_{\beta}=\frac{1}{16} \partial_{m}
$$

- Gamma Matrix Convention $\left\{\Gamma^{m}, \Gamma^{n}\right\}=2 \eta^{m n} \mathbb{I}_{32 \times 32} \quad$ where $\quad \Gamma^{m}=\left(\begin{array}{cc}0 & \left(\gamma^{m}\right)_{\alpha \beta} \\ \left(\gamma^{m}\right)^{\alpha \beta} & 0\end{array}\right)$
- Gamma Matrix Symmetry property

$$
\begin{aligned}
\gamma^{a_{1} \ldots a_{2 k} \alpha}{ }_{\beta} & \equiv \gamma^{\left[a_{1} \mid \alpha \gamma_{1}\right.} \gamma_{\gamma_{1} \gamma_{2}}^{\left|a_{2}\right|} \cdots \gamma_{\gamma_{2 k-1} \beta}^{\left.\mid a_{2 k}\right]}=(-)^{k} \gamma^{a_{1} \ldots a_{2 k}} \beta^{\alpha} \\
\gamma_{\alpha \beta}^{a_{1} \ldots a_{2 k+1}} & =(-)^{k} \gamma_{\beta \alpha}^{a_{1} \ldots a_{2 k+1}}, \quad \gamma^{a_{1} \ldots a_{2 k+1} \alpha \beta}=(-)^{k} \gamma_{1}^{a_{1} \ldots a_{2 k+1} \beta \alpha}
\end{aligned}
$$

- Bipinor Decomposition

$$
\begin{aligned}
& A_{\alpha \beta}=A_{a} \gamma_{\alpha \beta}^{a}+A_{a_{1} a_{2} a_{3}} \gamma_{\alpha \beta}^{a_{1} a_{2} a_{3}}+A_{a_{1} \ldots a_{5}} \gamma_{\alpha \beta}^{a_{1} \ldots a_{5}}, \quad A_{a_{1} \ldots a_{p}}=\frac{1}{16 p!} \gamma_{a_{p} \ldots a_{1}}^{\beta \alpha} A_{\alpha \beta} \\
& B^{\alpha}{ }_{\beta}=B_{[0]} \delta_{\beta}^{\alpha}+B_{a_{1} a_{2}} \gamma^{a_{1} a_{2} \alpha}{ }_{\beta}+B_{a_{1} a_{2} a_{3} a_{4}} \gamma^{a_{1} a_{2} a_{3} a_{4} \alpha}{ }_{\beta}, \quad B_{a_{1} \ldots a_{p}}=\frac{1}{16 p!} \gamma_{a_{p} \ldots a_{1}}{ }^{\beta}{ }_{\alpha} B^{\alpha}{ }_{\beta}
\end{aligned}
$$

- Useful tensor contracted Gamma Identities

$$
\left(\gamma_{m n p}\right)^{\alpha \beta}\left(\gamma^{m n p}\right)_{\rho \lambda}=48\left(\delta_{\rho}^{\alpha} \delta_{\lambda}^{\beta}-\delta_{\lambda}^{\alpha} \delta_{\rho}^{\beta}\right)
$$

$$
\begin{gathered}
\left(\gamma^{m n}\right)^{\alpha}{ }_{\beta}\left(\gamma_{m n}\right)_{\lambda}^{\rho}=4\left(\gamma^{m}\right)_{\beta \lambda}\left(\gamma_{m}\right)^{\alpha \rho}-2 \delta_{\beta}^{\alpha} \delta_{\lambda}^{\rho}-8 \delta_{\lambda}^{\alpha} \delta_{\beta}^{\rho} \\
\left(\gamma^{m n}\right)^{\alpha}{ }_{\beta}\left(\gamma_{m n p}\right)^{\rho \lambda}=2\left(\gamma^{m}\right)^{\alpha \rho}\left(\gamma_{p m}\right)_{\beta}^{\lambda}+6\left(\gamma_{p}\right)^{\alpha \rho} \delta_{\beta}^{\lambda}-(\rho \leftrightarrow \lambda)
\end{gathered}
$$

$$
\begin{gathered}
\left(\gamma_{m n}\right)^{\alpha}{ }_{\beta}\left(\gamma^{m n p}\right)_{\rho \lambda}=-2\left(\gamma_{m}\right)_{\beta \lambda}\left(\gamma^{p m}\right)_{\rho}^{\alpha}+6\left(\gamma^{p}\right)_{\beta \lambda} \delta_{\rho}^{\alpha}-(\rho \leftrightarrow \lambda) \\
\left(\gamma_{m n p}\right)^{\alpha \beta}\left(\gamma^{m n p}\right)^{\rho \lambda}=12\left[\left(\gamma_{m}\right)^{\alpha \lambda}\left(\gamma^{m}\right)^{\beta \rho}-\left(\gamma_{m}\right)^{\alpha \rho}\left(\gamma^{m}\right)^{\beta \lambda}\right]
\end{gathered}
$$

Pure Spinor Superspace Identities

$$
\begin{align*}
& \left\langle\left(\lambda \gamma^{m} \theta\right)\left(\lambda \gamma^{n} \theta\right)\left(\lambda \gamma^{p} \theta\right)\left(\theta \gamma_{s t u} \theta\right)\right\rangle=\frac{1}{120} \delta_{s t u}^{m n p} \tag{C.1}\\
& \left\langle\left(\lambda \gamma^{p q r} \theta\right)\left(\lambda \gamma_{m} \theta\right)\left(\lambda \gamma_{n} \theta\right)\left(\theta \gamma_{s t u} \theta\right)\right\rangle=\frac{1}{70} \delta_{[m}^{[p} \eta_{n][s} \delta_{t}^{q} \delta_{u]}^{r r]} \tag{C.2}\\
& \left\langle\left(\lambda \gamma^{m n p q r} \theta\right)\left(\lambda \gamma_{s} \theta\right)\left(\lambda \gamma_{t} \theta\right)\left(\theta \gamma_{u v w} \theta\right)\right\rangle=-\frac{1}{42} \delta_{\text {stuve }}^{m n q r}-\frac{1}{5040} \epsilon^{\text {mnpqr }}{ }_{\text {stuvw }} \tag{C.3}\\
& \left\langle\left(\lambda \gamma_{q} \theta\right)\left(\lambda \gamma^{m n p} \theta\right)\left(\lambda \gamma^{r s t} \theta\right)\left(\theta \gamma_{u v w} \theta\right)\right\rangle=-\frac{1}{280}\left[\eta_{q[u} \eta^{z[r} \delta_{v}^{s} \eta^{t][m} \delta_{w]}^{n} \delta_{z}^{p]}-\eta_{q[u} \eta^{z[m} \delta_{v}^{n} \eta^{p][r} \delta_{w]}^{s} \delta_{z}^{t t}\right] \\
& \left.+\frac{1}{140}\left[\delta_{q}^{[m} \delta_{[u}^{n} \eta^{p][r} \delta_{v}^{s} \delta_{w]}^{t]}-\delta_{q}^{[r} \delta_{[u}^{s}{ }^{t}\right]^{t[m} \delta_{v}^{n} \delta_{w]}^{p]}\right] \\
& -\frac{1}{8400} \epsilon^{q m n p r s t u v w} \tag{C.4}\\
& \left\langle\left(\lambda \gamma^{m n p q r} \theta\right)\left(\lambda \gamma_{s t u} \theta\right)\left(\lambda \gamma^{v} \theta\right)\left(\theta \gamma_{w x y} \theta\right)\right\rangle \\
& =\frac{1}{120} \epsilon^{m n p q r}{ }_{g h i j k}\left(\frac{1}{35} \eta^{v[g} \delta_{[s}^{h} \delta_{t}^{i} \eta_{u][} \delta_{x}^{j} \delta_{y]}^{k]}-\frac{2}{35} \delta_{[s}^{[g} \delta_{t}^{h} \delta_{u]}^{i} \delta_{[w}^{j} \delta_{x}^{k]} \delta_{y]}^{v}\right) \\
& +\frac{1}{35} \eta^{v[m} \delta_{[s}^{n} \delta_{t}^{p} \eta_{u][w} \delta_{x}^{q} \delta_{y]}^{r]}-\frac{2}{35} \delta_{[s}^{[m} \delta_{t}^{n} \delta_{u]}^{p} \delta_{[w}^{q}{ }_{x}^{r]} \delta_{y]}^{v} \tag{C.5}
\end{align*}
$$

Unintegrated Vertex

- We shall be considering the open strings states at $(\text { mass })^{2}=\frac{1}{\alpha^{\prime}} \quad$ [Berkovits, Chandia]
- For the purpose of this talk, basis is any operator constructed out of the set

$$
\left\{\Pi_{m}, d_{\alpha}, \partial \theta^{\alpha}, N^{m n}, J, \lambda^{\alpha}\right\}
$$

- All composite operators must follow the above order.
- The general form of the unintegrated vertex operator is

$$
V=B_{\beta_{1} \cdots \beta_{j}}^{m_{1} \cdots m_{k} \alpha_{1} \cdots \alpha_{i}} S_{m \alpha_{1} \cdots \alpha_{i}}^{\beta_{1} \cdots \beta_{j}}
$$

- An unintegrated vertex at mass ${ }^{2}=\frac{n}{\alpha^{\prime}}$ is constructed out of linear combination of basis with conformal weight n and ghost number 1 .
- For example at massless level $n=0 \quad V=\lambda^{\alpha} A_{\alpha}$
- Here $A_{\alpha} \equiv A_{\alpha}(X, \theta)$ is a spinorial superfield that contains all the degrees of SYM
- At first massive level the open string states form a massive spin-2 multiplet comprising of 128 bosonic and 128 fermionic degrees of freedom.
- The bosonic degrees of freedom are contained in a symmetric traceless field $g_{m n}(44)$ and three form field $b_{m n p}$ (84)
- The fermionic degrees of freedom are contained in a tensor-spinor field $\psi_{s \alpha}(128)$
- These satisfy the equations

$$
\eta^{m n} g_{m n}=0 \quad ; \quad \partial^{m} g_{m n}=0 \quad ; \quad \partial^{m} b_{m n p}=0 \quad ; \quad \partial^{m} \psi_{m \alpha}=0 \quad ; \quad \gamma^{m \alpha \beta} \psi_{m \beta}=0
$$

- The pure spinor superstring at mass $^{2}=\frac{1}{\alpha^{\prime}}$ contains precisely this spin-2 supermultiplet
- We briefly summarise the construction of this vertex.

Step 1 Construct the most general scalar out basis of conformal weight 1 and ghost \# 1

$$
\begin{aligned}
V= & \partial \lambda^{\alpha} A_{\alpha}(X, \theta)+: \partial \theta^{\beta} \lambda^{\alpha} B_{\alpha \beta}(X, \theta):+: d_{\beta} \lambda^{\alpha} C_{\alpha}^{\beta}(X, \theta):+: \Pi^{m} \lambda^{\alpha} H_{m \alpha}(X, \theta): \\
& +: J \lambda^{\alpha} E_{\alpha}(X, \theta):+: N^{m n} \lambda^{\alpha} F_{\alpha m n}(X, \theta):
\end{aligned}
$$

Step 2 Solve $Q V=0$ respecting the constraint : $N^{m n} \lambda^{\alpha}: \gamma_{m \alpha \beta}-\frac{1}{2}: J \lambda^{\alpha}: \gamma_{\alpha \beta}^{n}=\alpha^{\prime} \gamma_{\alpha \beta}^{n} \partial \lambda^{\alpha}(z)$

$$
\begin{gathered}
\left(\gamma_{m n p q r}\right)^{\alpha \beta}\left[D_{\alpha} B_{\beta \gamma}-\gamma_{\alpha \gamma}^{s} H_{s \beta}\right]=0, \\
\left(\gamma_{m n p q r}\right)^{\alpha \beta}\left[D_{\alpha} H_{s \beta}-\gamma_{s \alpha \gamma} C^{\gamma}{ }_{\beta}\right]=0, \\
\left(\gamma_{m n p q r}\right)^{\alpha \beta}\left[D_{\alpha} C^{\gamma}{ }_{\beta}+\delta_{\alpha}^{\gamma} E_{\beta}+\frac{1}{2}\left(\gamma^{s t}\right)^{\gamma}{ }_{\alpha} F_{\beta s t}\right]=0, \\
\left(\gamma_{m n p q r}\right)^{\alpha \beta}\left[D_{\alpha} A_{\beta}+B_{\alpha \beta}+\alpha^{\prime} \gamma_{\beta \gamma}^{s} \partial_{s} C^{\gamma}{ }_{\alpha}-\frac{\alpha^{\prime}}{2} D_{\beta} E_{\alpha}+\frac{\alpha^{\prime}}{4}\left(\gamma^{s t} D\right)_{\beta} F_{\alpha s t}\right] \\
=2 \alpha^{\prime} \gamma_{m n p q r}^{\alpha \beta} \gamma_{\alpha \beta}^{v w x y s} \eta_{s t} K_{v w x y}^{t}, \\
\left(\gamma_{m n p}\right)^{\alpha \beta}\left[D_{\alpha} A_{\beta}+B_{\alpha \beta}+\alpha^{\prime} \gamma_{\beta \gamma}^{s} \partial_{s} C^{\gamma}{ }_{\alpha}-\frac{\alpha^{\prime}}{2} D_{\beta} E_{\alpha}+\frac{\alpha^{\prime}}{4}\left(\gamma^{s t} D\right)_{\beta} F_{\alpha s t}\right] \\
=16 \alpha^{\prime} \gamma_{m n p}^{\alpha \beta} \gamma_{\alpha \beta}^{w x y} K_{w x y s}^{s}, \\
\gamma_{m n p q r}^{\alpha \beta} D_{\alpha} E_{\beta}=\gamma_{m n p q r}^{\alpha \beta}\left(\gamma^{v w x y} \gamma_{s}\right)_{\alpha \beta} K_{v w x y}^{s}, \\
\gamma_{m n p q r}^{\alpha \beta} D_{\alpha} F_{\beta}^{s t}=-\gamma_{m n p q r}^{\alpha \beta}\left(\gamma^{v w x y} \gamma^{s s}\right)_{\alpha \beta} K_{v w x y}^{t]},
\end{gathered}
$$

Step 3 Take care of redundancy arising because of nilpotency of BRST operator $V \simeq V+Q \Omega$ gauge fix

$$
C^{\alpha}{ }_{\beta}=\left(\gamma^{m n p q}\right)^{\alpha}{ }_{\beta} C_{m n p q} \quad \text { and } \quad \gamma^{m \alpha \beta} F_{\beta m n}=0
$$

Result

- One finds the following result [Berkovits, Chandia]

$$
\begin{gathered}
H_{\alpha}^{p}=\frac{3}{7}\left(\gamma_{m n} D\right)_{\alpha} B^{m n p}, \quad C_{m n p q}=\frac{1}{48} \partial_{[m} B_{n p q]}, \quad E_{\alpha}=0, \quad A_{\alpha}=0 \\
F_{\alpha m n}=\frac{7}{16} \partial_{[m} H_{n] \alpha}-\frac{1}{16} \partial^{q}\left(\gamma_{q[m}\right)^{\beta}{ }_{\alpha} H_{n] \beta} \\
K_{m n p q}^{s}=\frac{1}{1920}\left(\gamma_{m n p q u}^{\alpha \beta} D_{\alpha} F_{\beta}^{s u}-\frac{1}{72} \gamma_{r u[m n p}^{\alpha \beta} \delta_{q]}^{s} D_{\alpha} F_{\beta}^{r u}\right)
\end{gathered}
$$

- Substitution of these in fifth equation of Step 2 result gives

$$
\left(\partial_{m} \partial^{m}-\frac{1}{\alpha^{\prime}}\right) B_{n p q}=0 \quad \longrightarrow \quad(\text { mass })^{2}=\frac{1}{\alpha^{\prime}}
$$

- $B_{m n p}$ describes massive supermultiplet.
- What about the degrees of freedom?
- Berkovits-Chandia's rest frame analysis \longrightarrow a spin 2 supermultiplet
- Our covariant description of this statement follows from the constraints we found [Mritunjay, Subhroneel, S K]

$$
\left(\gamma^{m}\right)^{\alpha \beta} \Psi_{m \beta}=0 \quad ; \quad k^{m} \Psi_{m \beta}=0 \quad ; \quad k^{m} B_{m n p}=0 \quad ; \quad k^{m} G_{m n}=0 \& \eta^{m n} G_{m n}=0
$$

- The lowest component of the upper superfields satisfy the constraints given earlier.
- We next proceed to theta expansion.

Theta Expansion

- In order to determine the theta expansion we require [Mritunjay, Subhroneel, S K]

$$
\begin{gathered}
D_{\alpha} G_{s m}=16 i k^{p}\left(\gamma_{p(s} \Psi_{m)}\right)_{\alpha} \\
D_{\alpha} B_{m n p}=12\left(\gamma_{[m n} \Psi_{p]}\right)_{\alpha}+24 \alpha^{\prime} k^{t} k_{[m}\left(\gamma_{|t| n} \Psi_{p]}\right)_{\alpha} \\
D_{\alpha} \Psi_{s \beta}=\frac{1}{16} G_{s m} \gamma_{\alpha \beta}^{m}+\frac{i}{24} k_{m} B_{n p s}\left(\gamma^{m n p}\right)_{\alpha \beta}-\frac{i}{144} k^{m} B^{n p q}\left(\gamma_{s m n p q}\right)_{\alpha \beta}
\end{gathered}
$$

along with

$$
\left(\gamma^{m}\right)^{\alpha \beta} \Psi_{m \beta}=0 \quad ; \quad k^{m} \Psi_{m \beta}=0 \quad ; \quad k^{m} B_{m n p}=0 \quad ; \quad k^{m} G_{m n}=0 \quad \& \quad \eta^{m n} G_{m n}=0
$$

- A superfield S has the superfield expansion (we denote its components by small letters)

$$
S=s+s_{\alpha} \theta^{\alpha}+s_{\alpha_{1} \alpha_{2}} \theta^{\alpha_{1}} \theta^{\alpha_{2}}+\cdots
$$

- We denote superfield components by small letters
- The lowest component of $B_{m n p}, G_{m n}$ and $\Psi_{m \alpha}$ are given by $b_{m n p}, g_{m n}$ and $\psi_{m \alpha}$
- Recall $D_{\alpha}=\partial_{\alpha}+\left(\gamma^{m}\right)_{\alpha \beta} \theta^{\beta} \partial_{m}$
- The action of super-Covariant derivative is given by

$$
\left.D_{\alpha} S\right|_{\theta^{l}} \propto\left(\gamma^{m}\right)_{\alpha \beta} \partial_{m} s_{\alpha_{1} \alpha_{2} \cdots \alpha_{l-1}} \theta^{\beta} \theta^{\alpha_{1}} \cdots \theta^{\alpha_{l-1}}+(l+1) s_{\alpha \alpha_{2} \cdots \alpha_{l+1}} \theta^{\alpha_{2}} \cdots \theta^{\alpha_{l+1}}
$$

- In particular $\left.\quad D_{\alpha} S\right|_{\theta=0}=s$
- Repeating this process we see that we can determine complete theta expansion.

Result

- The theta expansion for fermionic superfield is

$$
\begin{align*}
\Psi_{s \beta}= & \psi_{s \beta}+\frac{1}{16}\left(\gamma^{m} \theta\right)_{\beta} g_{s m}-\frac{i}{24}\left(\gamma^{m n p} \theta\right)_{\beta} k_{m} b_{n p s}-\frac{i}{144}\left(\gamma_{s}{ }^{n p q r} \theta\right)_{\beta} k_{n} b_{p q r} \\
& -\frac{i}{2} k^{p}\left(\gamma^{m} \theta\right)_{\beta}\left(\psi_{(m} \gamma_{s) p} \theta\right)-\frac{i}{4} k_{m}\left(\gamma^{m n p} \theta\right)_{\beta}\left(\psi_{[s} \gamma_{n p]} \theta\right)-\frac{i}{24}\left(\gamma_{s}{ }^{m n p q} \theta\right)_{\beta} k_{m}\left(\psi_{q} \gamma_{n p} \theta\right) \\
& -\frac{i}{6} \alpha^{\prime} k_{m} k^{r} k_{s}\left(\gamma^{m n p} \theta\right)_{\beta}\left(\psi_{p} \gamma_{r n} \theta\right)+\frac{i}{288} \alpha^{\prime}\left(\gamma^{m n p} \theta\right)_{\beta} k_{m} k^{r} k_{s}\left(\theta \gamma^{q}{ }_{n r} \theta\right) g_{p q} \\
& -\frac{i}{192}\left(\gamma^{m n p} \theta\right)_{\beta} k_{m}\left(\theta \gamma_{[n p}^{q} \theta\right) g_{s] q}-\frac{i}{1152}\left(\gamma_{s m n p q} \theta\right)_{\beta} k^{m}\left(\theta \gamma_{n p t} \theta\right) g^{q t} \\
& -\frac{i}{96} k^{p}\left(\gamma^{m} \theta\right)_{\beta}\left(\theta \gamma_{p q(s} \theta\right) g_{m) q}-\frac{1}{1728}\left(\gamma^{m n p} \theta\right)_{\beta} k_{m}\left(\theta \gamma^{t u v w}{ }_{n p s} \theta\right) k_{t} b_{u v w} \\
& -\frac{1}{864 \alpha^{\prime}}\left(\gamma_{s} \theta\right)_{\beta}\left(\theta \gamma^{n p q} \theta\right) b_{n p q}-\frac{1}{10368}\left(\gamma_{s}^{m n p q} \theta\right)_{\beta} k_{m}\left(\theta \gamma_{t u v w n p q} \theta\right) k^{t} b^{u v w} \\
& -\frac{1}{864}\left(\gamma^{m} \theta\right)_{\beta}\left(\theta \gamma^{n p q} \theta\right) b_{n p q} k_{m} k_{s}-\frac{1}{576}\left(\gamma_{s m n p q} \theta\right)_{\beta} k^{m}\left(\theta \gamma^{t u n} \theta\right) b_{u}{ }^{p q} k_{t} \\
& -\frac{1}{96 \alpha^{\prime}}\left(\gamma^{m} \theta\right)_{\beta}\left(\theta \gamma^{q r}{ }_{(s} \theta\right) b_{m) r q}+\frac{1}{96}\left(\gamma^{m} \theta\right)_{\beta}\left(\theta \gamma^{n q r} \theta\right) k_{n} k_{(s} b_{m) q r} \\
& +\frac{1}{96}\left(\gamma^{m n p} \theta\right)_{\beta} k_{m}\left(\theta \gamma_{q[n}^{r} \theta\right) b_{p s] r} k^{q}+O\left(\theta^{4}\right) \tag{4.13}
\end{align*}
$$

- The theta expansion for bosonic superfields are

$$
\begin{align*}
B_{\alpha \beta}=\gamma_{\alpha \beta}^{m n p} & {\left[b_{m n p}+12\left(\psi_{p} \gamma_{m n} \theta\right)+24 \alpha^{\prime} k^{r} k_{m}\left(\psi_{p} \gamma_{r n} \theta\right)+\frac{3}{8}\left(\theta \gamma_{m n}{ }^{q} \theta\right) g_{p q}-\frac{3 i}{4}\left(\theta \gamma^{t u}{ }_{m} \theta\right) k_{t} b_{u n p}\right.} \\
& +\frac{3}{4} \alpha^{\prime} k^{r} k_{m}\left(\theta \gamma_{r n}{ }^{q} \theta\right) g_{p q}-\frac{i}{24}\left(\theta \gamma_{t u v w m n p} \theta\right) k^{t} b^{u v w}-\frac{1}{6} i k_{s}\left(\psi_{v} \gamma_{t u} \theta\right)\left(\theta \gamma_{s t u v m n p} \theta\right) \\
& -4 i \alpha k_{s} k_{t} k_{m}\left(\theta \gamma_{t u n} \theta\right)\left(\psi_{p} \gamma_{s u} \theta\right)+i k_{s}\left(\theta \gamma_{t m n} \theta\right)\left(\psi_{p} \gamma_{s t} \theta\right)+i k_{s}\left(\theta \gamma_{t m n} \theta\right)\left(\psi_{t} \gamma_{s p} \theta\right) \\
& \left.+2 i k_{s}\left(\theta \gamma_{s t m} \theta\right)\left(\psi_{n} \gamma_{t p} \theta\right)-i k_{s}\left(\theta \gamma_{s t m} \theta\right)\left(\psi_{t} \gamma_{n p} \theta\right)+O\left(\theta^{4}\right)\right] \tag{4.14}
\end{align*}
$$

$$
\begin{aligned}
G_{s m}= & g_{s m}-16 i k^{p}\left(\psi_{(m} \gamma_{s) p} \theta\right)+\frac{i}{2} k^{p}\left(\theta \gamma_{p(m} \gamma^{n} \theta\right) g_{s) n}+\frac{1}{3} k^{p}\left(\theta \gamma_{p(m} \gamma^{t q r} \theta\right) k_{\mid t} b_{q r \mid s)} \\
& +\frac{1}{18} k^{p}\left(\theta \gamma_{p(m} \gamma_{s)}^{n t q r} \theta\right) k_{n} b_{t q r}+\frac{8}{9} \alpha^{\prime} k_{t} k^{p} k^{r} k_{(s}\left(\theta \gamma_{m) p} \gamma^{t n q} \theta\right)\left(\psi_{q} \gamma_{r n} \theta\right) \\
& -\frac{8}{3} k^{t} k^{p}\left(\theta \gamma_{p(m} \gamma^{n} \theta\right)\left(\psi_{(n} \gamma_{s) t} \theta\right)-\frac{4}{3} k_{t} k^{p}\left(\theta \gamma_{p(m} \gamma^{t n q} \theta\right)\left(\psi_{[s)} \gamma_{n q]} \theta\right) \\
& -\frac{2}{9} k_{t} k^{p}\left(\theta \gamma_{p(m} \gamma_{s)}^{t n r q} \theta\right)\left(\psi_{q} \gamma_{n r} \theta\right)+O\left(\theta^{4}\right)
\end{aligned}
$$

Sample Computation

- We illustrate the steps in computation by computing (partially) three point amplitude for a three form field $b_{m n p}$ and 2 gluons.
- Recall that the amplitude will not involve any integrated vertex

$$
\mathcal{A}_{3}=\left\langle V^{1} V^{2} V^{3}\right\rangle
$$

- The SYM vertex is given by $V^{1,2}=\lambda^{\alpha} A_{\alpha}^{1,2}$

- We take the third vertex to be the massive
- Recall that $\left\langle\lambda^{3} \theta^{5}\right\rangle \neq 0$
- Since 3λ are present we need to find the sources of θ

$V_{a}^{(1)}$	$V_{a}^{(2)}$	V_{b}
1	1	3
1	3	1
3	1	1

Distribution of θ for non vanishing amplitude

- Taking the plane polarized gluons and 3 form field

$$
a_{m}^{(1)}(X)=e_{m}^{(1)} e^{i p_{1} \cdot X} \quad, \quad a_{m}^{(2)}(X)=e_{m}^{(2)} e^{i p_{2} \cdot X} \quad, \quad b_{m n p}=e_{m n p} e^{i k \cdot X}
$$

$$
e_{m}^{(1)} p_{1}^{m}=0 \quad, \quad e_{m}^{(2)} p_{2}^{m}=0 \quad, \quad e_{m n p} k^{m}=0 \quad \text { Transversality condition }
$$

- After using the OPE and using normalisation stated earlier and adding all the contributions

$$
\mathcal{A}_{3} \leadsto-\frac{i}{8192} e^{m n p} e_{p}^{(1)} e_{n}^{(2)}\left(p_{2}\right)_{m}
$$

- We had done theta expansion by hand upto cubic order in theta.
- The above amplitude however also receives contribution from quartic order.
- We developed a Mathematica code that reproduces our result and can compute to all order.
- This however is part of a future publication.
- Use of integrated form of the vertex is required for computing loop amplitudes and a lot of tree amplitude for the massive states. We are currently working on finding this vertex and are very close to completion.
- After finding the integrated vertex we plan to compute various kinds of tree and one loop amplitudes.
- Final goal is to compute two loop renormalisation in heterotic strings which was the motivation for starting this project.

COMMENTS

- There are huge number of terms and gamma matrix algebra involved in these computations. These however are no hurdle for computers. The amplitude computation is highly algorithmic and can be coded in very user friendly CAS like CADABRA and Mathematica.
- Pure spinor superstring was formulated in year 2000 and the indispensable use of computers and its adaptability to computers make Pure spinor truly a 21 st century formulation.
- We thank Kasper Peters for developing CADABRA and U. Gran for developing GAMMA

Thank You

Advertisement

- Pure spinor does not make easy computation easier, but, makes difficult computations possible in practise.

Q The only 3 loop string amplitude is computed in pure spinors [Mafra, H. Gomez]

p-loop 4 graviton amplitude vanishes above one loop. [N. Berkovíts]

The massless N-point multiloop $(g \geq 2)$ function vanishes whenever $N<4$ 22] (minimal). This result is the main ingredient of the proof of perturbative finiteness of string theory. As explained in [22] the only other possible Gobstruction to proving perturbative finiteness is the existence of unphysical divergences in the interior of moduli space. Such divergences are not expected in the pure spinor formalism. Within the RNS formalism there are no results beyond two loops.

In [35] (non-minimal) two more conjectures based on string dualities are presented and subsequently proved. The first theorem states that when $0<n<$ $12, \partial^{n} R^{4}$ terms do not receive perturbative corrections above $n / 2$ loops. The second theorem states that when $n \leq 8$, perturbative corrections to $\partial^{n} R^{4}$ terms in the IIA and IIB effective actions coincide.

(p, theta) is bc cft with lambda=1 so that for each pair $c=1$.

 (w,lambda) is beta-gamma system each pair gives $c=1$.
Multiloop Amplitude prescription

$$
\mathcal{A}=\int d^{3 g-3} \tau\left\langle\mathcal{N}(y) \prod_{i=1}^{3 g-3}\left(\int d w_{i} \mu_{i}\left(w_{j}\right) b\left(w_{j}\right)\right) \prod_{j=1}^{N} \int d z_{j} U\left(z_{j}\right)\right\rangle
$$

Why lambda^3 theta^5?

- BRST closedness follows from the pure spinor constraint $\left(\lambda \gamma^{m} \lambda\right)=0$ and its particular form $\left(\lambda \gamma^{m}\right)_{\alpha}\left(\lambda \gamma_{m}\right)_{\beta}=0$.
- Expressions of the form $\lambda^{3} \theta^{5}$ cannot be BRST exact $\sim Q\left(\lambda^{2} \theta^{6}\right)$ because one cannot build a Lorentz scalar from two λ^{α} and six θ^{β} : The bispinor $\lambda^{\alpha} \lambda^{\beta}=\frac{1}{3840}\left(\lambda \gamma^{m n p q r} \lambda\right) \gamma_{m n p q r}^{\alpha \beta}$ only has a five-form component and it can be checked using the LiE program [309] that its tensor product with an antisymmetric six-spinor $\theta^{\left[\alpha_{1}\right.} \ldots \theta^{\left.\alpha_{6}\right]}$ does not contain any Lorentz scalar ${ }^{2}$.
- Uniqueness follows from the fact that the tensor product of three λ^{α} and five θ^{β} contains one scalar.

[^0]The decomposition of a Weyl spinor under the $S U(5)$ subgroup, $\mathbf{1 6} \rightarrow \mathbf{1} \oplus \overline{\mathbf{0}} \oplus \mathbf{5}$,

Supercharge

$$
\begin{gathered}
q_{\alpha}=\oint d z\left(p_{\alpha}+\frac{1}{2} \gamma_{\alpha \beta}^{m} \theta^{\beta} \partial x_{m}+\frac{1}{24} \gamma_{\alpha \beta}^{m}\left(\gamma_{m}\right)_{\gamma \delta} \theta^{\beta} \theta^{\gamma} \theta^{\delta}\right) \\
\delta_{\eta} X^{m}=\frac{1}{2}\left(\eta \gamma^{m} \theta\right), \quad \delta_{\eta} \theta^{\alpha}=\eta^{\alpha} \\
\delta_{\eta} p_{\alpha}=-\frac{1}{2} \partial X_{m}\left(\eta \gamma^{m}\right)_{\alpha}+\frac{1}{8}\left(\eta \gamma_{m} \theta\right)\left(\partial \theta \gamma^{m}\right)_{\alpha}
\end{gathered}
$$

[^0]: ${ }^{2}$ It is essential that the five form is the only $S O(1,9)$ irreducible in a pure bispinor: The vector $\left(\lambda \gamma^{m} \lambda\right) \gamma_{m}^{\alpha \beta}$ is absent due to the pure spinor constraint, and the three form vanishes because of the antisymmetry $\gamma_{\alpha \beta}^{m n p}=\gamma_{[\alpha \beta]}^{m n p}$.

