Color Memory

Monica Pate

Harvard University

Based on:

1707.08016/hep-th with Raclariu and Strominger 1805.12224/hep-ph with Ball, Raclariu, Strominger and Venugopalan

1/6

Background

Gravitational Memory

Zel'dovich & Polnarev, 1974

The Infrared Triangle

Strominger & Zhiboedov, 1411.5745 Strominger, 1703.05448

2/6

The Color Memory Effect

A permanent relative color rotation of a pair of "test" quarks induced by the transit of color flux across null infinity.

$u < u_i$:

- color singlet
- flat connection on CS^2

$$A = iUdU^{-1} = 0,$$

$$(U = 1).$$

 $u_i < u < u_f$:

▶ color radiation flux through T⁺

3/6

▶ gauge choice $A_u = 0$ ⇒ no color evolution $(\partial_u q = iA_u q = 0)$

The Color Memory Effect (continued)

A permanent relative color rotation of a pair of "test" quarks induced by the transit of color flux across null infinity.

$u > u_f$:

- ► no radiation \Rightarrow flat connection $A = iUdU^{-1}$
- ► classical constraint $-\partial_u D^a A_a = J_u + \partial_u F_{ru}$ $\Rightarrow A \neq 0 \ (U \neq 1)$
- quarks acquire relative color rotation

$$U(z_1)U^{-1}(z_2) = \mathcal{P}\exp\left(i\int_{z_2}^{z_1} A\Big|_{u_f}\right)$$

 \Rightarrow "memory" of color flux

4/6

Monica Pate Color Memory Strings 2018

Measuring Color Memory

- ▶ DIS of electrons off heavy ions
- ▶ Regge limit → classical YM sourced by hard partons (McLerran, Venugopalan, and many more)
- "test" quarks \rightarrow quark dipole $(q\bar{q})$
- ightharpoonup color flux \rightarrow hard partons in ion
- ▶ dipole cross-section
 ∼ color singlet survival probability

$$\sigma_{\text{dipole}} \sim 1 - \left\langle \text{Tr} \left(U(z_1) U(z_2)^{-1} \right) \right\rangle_{\substack{\text{color} \\ \text{source} \\ \text{ave.}}}$$

5/6

▶ inclusive DIS virtual photon-heavy ion cross-section

$$\sigma_{\gamma^* \text{ion}} \sim \int_{z_1, z_2} |\psi_{\gamma^* \to q\bar{q}}|^2 \sigma_{\text{dipole}}$$

Summary

► The memory effect in classical Yang-Mills theory is the permanent relative color rotation of a pair of "test" quarks induced by the transit of color flux across null infinity.

► Measurement of a color memory effect may be experimentally accessible in the Regge limit of deeply inelastic scattering processes at electron-ion colliders.

6/6