AdS black holes and Cardy limits

Seok Kim

(Seoul National University)

Strings 2019, Brussels
July 09, 2019

Statistical approach to black hole thermodynamics

- 5d BPS BHs from D1-D5-P. Cardy formula of 2d CFT [Strominger, Vafa] (1996)

$$
\begin{align*}
Z(\tau) & \sim \operatorname{Tr}\left[e^{2 \pi i \tau L_{0}}\right] \sim \exp \left[\frac{\pi i c}{12 \tau}\right] \quad \text { at } \tau \rightarrow i 0^{+} \\
e^{S(P, c)} & =\oint d \tau Z(\tau) e^{-2 \pi i \tau P} \sim \exp \left[2 \pi \sqrt{\frac{c P}{6}}\right] \quad \text { at } P \gg c \tag{1}
\end{align*}
$$

- Derives Bekenstein-Hawking entropy of these BH's in the Cardy regime.
- BH's with AdS_{3} near-horizon factors studied this way, using QFTs for particular BH's.
- Some black holes are simple, but some are complicated:
- single-center, multi-center, black rings, ... : some BH's are dominant in non-Cardy regime.
- Today's talk:
- Systematic description of BH's in a given system: AdS ${ }_{D+1}$ black holes from $C^{C F T} T_{D>2}$.
- With QFT for the whole quantum gravity, rather than particular black holes.
- Establish a version of "Cardy formula" for the indices of SCFT $_{D}$ in $D>2$.
- Count known BH's. (Also predict new BH's: mostly skipped today, with limited time)

Black holes in AdS/CFT

- Schwarzschild black holes in global $A d S_{5}$:
- small BH \& large BH branches (ℓ : AdS radius)

$$
\begin{array}{r}
T=\frac{r_{+}}{\pi \ell^{2}}+\frac{1}{2 \pi r_{+}} \quad r_{+}^{2}=-\frac{\ell^{2}}{2}+\ell \sqrt{\frac{\ell^{2}}{4}+\omega M} \\
\omega \equiv \frac{16 \pi G_{N}}{3 \operatorname{vol}\left(S^{3}\right)}
\end{array}
$$

- Hawking-Page transition (1983): at $T=\frac{3}{2 \pi \ell}$

- Low T: gas of gravitons in AdS. Doesn't see $1 / \mathrm{G}_{\mathrm{N}} \sim N^{2}$ so that $F \sim O\left(N^{0}\right)$
- \quad High T : large AdS black holes $\left(F_{B H}=-T \log Z_{B H}<0\right)$. Sees N^{2}.
- CFT dual (on $S^{3} \times R$): confinement-deconfinement transition [Witten] (1998)
- Confined phase: $F \sim O\left(N^{0}\right)$, glue-balls (\& mesons, etc.)
- Deconfined phase: $F \sim O\left(N^{2}\right)$ of gluons (\& quarks)
- Weak coupling study [Aharony, Marsano, Minwalla, Papadodimas, Raamsdonk] (2003)
- Today's goal: quantitative strong coupling study of BPS BH's in $A d S_{5} \times S^{5}$.

Supersymmetric black holes \& QFT

[Gutowski,Reall] [Chong,Cvetic,Lu,Pope] [Kunduri,Lucietti,Reall] (2004-2006)

- Preserves 2 real SUSY (1/16-BPS): $S O(6)$ charges Q_{I} on $S^{5} \& S O$ (4) spins J_{i} on $A d S_{5}$.
- Mass (= energy) determined by these 5 charges: $M \ell=Q_{1}+Q_{2}+Q_{3}+J_{1}+J_{2}$
- Known solutions have a charge relation: Solutions come w/ 4 independent parameters.
- Hairy BH's. No charge relations [Markeviciute,Santos] [Bhattacharyya,Minwalla,Papadodimas]
- The general set of BPS black holes in $A d S_{5} \times S^{5}$ is (probably) unknown.
- BPS states at strong coupling: "index" on $S^{3} \times R$. Coupling independent.
[Romelsberger] [Kinney,Maldacena,Minwalla,Raju] $\equiv[K M M R]$ (2005)

$$
\begin{array}{ll}
Z\left(\Delta_{I}, \omega_{i}\right)=\operatorname{Tr}\left[(-1)^{F} e^{-\sum_{I=1}^{3} \Delta_{I} Q_{I}-\sum_{i=1}^{2} \omega_{i} J_{i}}\right] \longleftrightarrow & \operatorname{Tr}\left[e^{-\sum_{I=1}^{3} \Delta_{I} Q_{I}-\sum_{i=1}^{2} \omega_{i} J_{i}}\right] \\
\Delta_{1}+\Delta_{2}+\Delta_{3}-\omega_{1}-\omega_{2}=0(\bmod 4 \pi i) & \Delta_{1}+\Delta_{2}+\Delta_{3}-\omega_{1}-\omega_{2}=2 \pi i(\bmod 4 \pi i) \\
& \text { Use }(-1)^{\mathrm{F}}=e^{-2 \pi i Q_{1}} \text { and shift } \Delta_{1} \rightarrow \Delta_{1}-2 \pi i
\end{array}
$$

- $\mathrm{U}(\mathrm{N})$ group:

$$
Z=\frac{1}{N!} \int \prod_{a=1}^{N} \frac{d \alpha_{a}}{2 \pi} \prod_{a<b}\left(2 \sin \frac{\alpha_{a b}}{2}\right)^{2} \exp \left[\sum_{n=1}^{\infty} \frac{1}{n}\left(1-\frac{\prod_{I=1}^{3} 2 \sinh \frac{n \Delta_{I}}{2}}{2 \sinh \frac{n \omega_{1}}{2} \cdot 2 \sinh \frac{n \omega_{2}}{2}}\right) \sum_{a, b=1}^{N} e^{i n \alpha_{a b}}\right]
$$

Or the version with $\Delta_{1} \rightarrow \Delta_{1}-2 \pi i$ shift

Large N index

- Questions: Does the low "temperature" index agree w/ that of gravitons in $\operatorname{AdS} S_{5} \times S^{5}$? Does the index undergo deconfinement transition at higher "temperature"? (Low / high "temperature" ~ large/small Δ_{I}, ω_{i} (all positive).)
- Large N matrix integral \rightarrow eigenvalue distribution:

$$
\rho(\theta)=\frac{1}{2 \pi}+\frac{1}{2 \pi} \sum_{n=1}^{\infty}\left[\rho_{n} e^{i n \theta}+\rho_{-n} e^{-i n \theta}\right] \quad, \quad \rho_{-n}=\rho_{n}^{*}
$$

$$
\int_{0}^{2 \pi} d \theta \rho(\theta)=1
$$

$$
\rho(\theta) \geq 0
$$

[Sundborg] [Aharony,Marsano,Minwalla,Papadodimas,Raamsdonk] [KMMR]

$$
Z=\int \prod_{n=1}^{\infty}\left[d \rho_{n} d \rho_{-n}\right] \exp \left[-N^{2} \sum_{n=1}^{\infty} \frac{1}{n} \rho_{n} \rho_{-n} \frac{\prod_{I}\left(1-e^{-n \Delta_{I}}\right)}{\prod_{i}\left(1-e^{-n \omega_{i}}\right)}\right]
$$

- "Low T": Uniform distribution $\rho(\theta)=1 / 2 \pi$. "Confining phase." $f\left(\Delta_{I}, \omega_{i}\right) \equiv \frac{\prod_{I=1}^{3}\left(1-e^{-\Delta_{I}}\right)}{\prod_{i=1}^{2}\left(1-e^{-\omega_{i}}\right)}>0$.
- Agrees w/ BPS gravitons on [KMMR] (2005).

$$
Z_{N \rightarrow \infty}=\prod_{n=1}^{\infty} f\left(n \Delta_{I}, n \omega_{i}\right)^{-1}=Z_{\text {gravitons }}
$$

- Does the index deconfine at high enough T?
- Apparently, no, as $f>0$ always (at real fugacities).
- So the index doesn't seem to deconfine, not seeing a free energy at $\log Z \sim N^{2}$.

Deconfinement \& BH's from index?

- It has been speculated that $(-1)^{F}$ plays certain bad roles in the index.
- To see why, consider unrefined index $Z(x)=\sum_{j} \Omega_{j} x^{j} \quad$ (where $\left.j \equiv 6(Q+J)\right) . \quad e^{-\omega}=x^{3}, e^{-\Delta}=x^{2}$
- E.g. U(5) index ($N^{2}=25 \gg 1 \ldots ?$): $\quad \Delta_{1}=\Delta_{2}=\Delta_{3} \equiv \Delta, \omega_{1}=\omega_{2} \equiv \omega$

$$
\begin{aligned}
Z= & 1+3 x^{2}-2 x^{3}+9 x^{4}-6 x^{5}+21 x^{6}-18 x^{7}+48 x^{8}-42 x^{9}+99 x^{10}-96 x^{11}+172 x^{12}-156 x^{13}+252 x^{14}-160 x^{15} \\
& +195 x^{16}+48 x^{17}-127 x^{18}+612 x^{19}-783 x^{20}+1258 x^{21}-948 x^{22}+450 x^{23}+1921 x^{24}-5430 x^{25}+11793 x^{26} \\
& -18812 x^{27}+26379 x^{28}-27750 x^{29}+17809 x^{30}+15648 x^{31}-78324 x^{32}+175030 x^{33}-285576 x^{34}+366024 x^{35} \\
& -323807 x^{36}+38856 x^{37}+624894 x^{38}-1718016 x^{39}+3094992 x^{40}-4226862 x^{41}+4098270 x^{42}-1210728 x^{43} \\
& -5968935 x^{44}+18061488 x^{45}-33152565 x^{46}+44941584 x^{47}-41448422 x^{48}+6241896 x^{49}+75761478 x^{50} \\
& -205993284 x^{51}+354209109 x^{52}-440168670 x^{53}+328572109 x^{54}+142704804 x^{55}-1079522706 x^{56} \\
& +2385844062 x^{57}-3584202447 x^{58}+3694263972 x^{59}-1331772481 x^{60}-4771857420 x^{61}+14697077445 x^{62} \\
& -25833114276 x^{63}+31549909440 x^{64}-21264664440 x^{65}-16439430686 x^{66}+86286819246 x^{67}-174750537792 x^{68} \\
& +238416590234 x^{69}-201108631665 x^{70}+\mathcal{O}\left(x^{71}\right)
\end{aligned}
$$

- $\quad \Omega_{j}$ grows at large j, but signs alternate.
- $\quad S_{j} \equiv \log \left|\Omega_{j}\right| \sim N^{2}$ at $j \sim N^{2}$.

Line: $S_{B H}(j)$ of known black holes, inserting $N^{2} \rightarrow 25$ dots: $S_{j}=\log \left|\Omega_{j}\right|$ from the index

- Higher ranks, orders in x under investigation [Agarwal, Joonho Kim, SK, Nahmgoong] (in progress)

Idea for analytic approaches

- Large charge $j \sim O\left(N^{2}\right)$ approximation of $\Omega_{j}=\frac{1}{2 \pi i} \oint \frac{d x}{x^{j+1}} Z(x)$
- Saddle pt. calculus: Legendre transform is insensitive to changing j by a quantum
- Can we get macroscopic entropies with wild ± 1 oscillation from phase factor?

Namely, something like $\Omega_{j} \sim e^{S\left(j, x_{*}\right)}=e^{i \operatorname{Im}\left[S\left(j, x_{*}\right)\right]} e^{\operatorname{Re}\left[S\left(j, x_{*}\right)\right]} \ldots$?

- To seek for this possibility, one should turn on complex fugacities.
- In a different perspective, the fugacity phase is to be tuned,
- attempting to tame rapid oscillations between +/- signs at nearby charge,
- or to maximally obstruct cancelations (smearing) of nearby B/F.
- This is a discussion for microcanonical ensemble, but it should also have impacts on the grand canonical ensemble in the "thermodynamic limit"

Evidence: instability of confining saddle pt.

- Reconsider the large N index: Again, unrefined as $\Delta_{1}=\Delta_{2}=\Delta_{3} \equiv \Delta, \omega_{1}=\omega_{2} \equiv \omega$
- The index w/ $x \rightarrow x e^{i \phi}$

$$
e^{-\omega}=x^{3}, e^{-\Delta}=x^{2}
$$

$$
Z=\int \prod_{n=1}^{\infty}\left[d \rho_{n} d \rho_{-n}\right] \exp \left[-N^{2} \sum_{n=1}^{\infty} \frac{f\left(x^{n}\right)}{n} \rho_{n} \rho_{-n}\right] \quad f(x)=\frac{\left(1-x^{2}\right)^{3}}{\left(1-x^{3}\right)^{2}}
$$

- Dial $\phi: \rho_{1}=0$ is locally unstable if $\operatorname{Re}\left[f\left(x e^{i \phi}\right)\right]<0$.
- $\operatorname{Re}\left[f\left(x e^{i \phi}\right)\right]: \frac{\left(1-x^{2}\right)\left(1+x^{2}-2 x \cos \phi\right)^{2}\left(2 x\left(2+5 x^{2}+2 x^{4}\right) \cos \phi+\left(1+x^{2}\right)\left(1+4 x^{2}+x^{4}+3 x^{2} \cos (2 \phi)\right)\right)}{\left(1+x^{6}-2 x^{3} \cos (3 \phi)\right)^{2}}$
- red curve: $\operatorname{Re}\left[f\left(x e^{i \phi}\right)\right]=0$. Lowest fugacity for instability

$$
x_{H}=\sqrt{\frac{\sqrt{3}-1}{2}} \approx 0.605 \quad \cos \phi=-\frac{1}{2 x_{H}}
$$

- It sounds unnatural if the large N saddle point calculus doesn't take advantage of this window of instability.
- So we interpret it as an upper bound for deconfinement.

[Choi, J. Kim, SK, Nahmgoong-2] $\equiv[C K K N-2]$ (2018)

Cardy limit

- "high T limit" : $J_{i} \gg N^{2}(\gg 1),\left|\omega_{i}\right| \ll 1$. Similar to $2 \mathrm{~d}, P \gg c(\gg 1), \tau \rightarrow i 0^{+}$.
- Studied in [Di Pietro, Komargodski] [Ardehali], but only at real fugacities.
- Should also take $\operatorname{Re}\left(\Delta_{I}\right) \rightarrow 0^{+}$, but generically keep finite $\operatorname{Im}\left(\Delta_{I}\right) \sim O(1)$:

$$
\operatorname{Tr}\left[e^{-\sum_{I=1}^{3} \Delta_{I} Q_{I}-\sum_{i=1}^{2} \omega_{i} J_{i}}\right] \quad \Delta_{1}+\Delta_{2}+\Delta_{3}-\omega_{1}-\omega_{2}=2 \pi i(\bmod 4 \pi i)
$$

- The matrix integral becomes:

$$
Z \sim \frac{1}{N!} \oint \prod_{a=1}^{N} \frac{d \alpha_{a}}{2 \pi} \exp \left[-\frac{1}{\omega_{1} \omega_{2}} \sum_{a \neq b} \sum_{s_{1}, s_{2}, s_{3}= \pm 1} s_{1} s_{2} s_{3} \mathrm{Li}_{3}\left(-e^{\frac{s_{I} \Delta_{I}}{2}} e^{i \alpha_{a b}}\right)\right] \quad \mathrm{Li}_{3}(x) \equiv \sum_{n=1}^{\infty} \frac{x^{n}}{n^{3}}
$$

- "Maximally deconfining" saddle point $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{N}$ is most dominant.
[CKKN-1] (2018) [Honda] [Ardehali] [J. Kim,SK,Song] [Cabo Bizet,Cassani,Martelli,Murthy] (2019)
- This is natural, since quarks/gluons are effectively massless at high T limit.
- True for "all" SCFTs w/ N = 1 SUSY (i.e., checked for numerous examples) [J. Kim, SK, Song]
- Final result: [CKKN-1]

Use: $\operatorname{Li}_{3}\left(-e^{x}\right)-\operatorname{Li}_{3}\left(-e^{-x}\right)=-\frac{x^{3}}{6}-\frac{\pi^{2} x}{6}$
$\log Z \sim-\frac{N^{2}}{\omega_{1} \omega_{2}} \sum_{s_{1} s_{2} s_{3}=+1}\left[\operatorname{Li}_{3}\left(-e^{\frac{s^{\frac{s}{2}} \Delta_{I}}{2}}\right)-\operatorname{Li}_{3}\left(-e^{-\frac{s_{1} \Delta_{I}}{2}}\right)\right] \xrightarrow{-\pi<\operatorname{Im}(x)<\pi} \log Z \sim \frac{N^{2} \Delta_{1} \Delta_{2} \Delta_{3}}{2 \omega_{1} \omega_{2}}$

Counting (large) black holes

- Further take large N \& compute entropy: Legendre transform at macroscopic charge

$$
S\left(\Delta_{I}, \omega_{i} ; Q_{I}, J_{i}\right)=\frac{N^{2}}{2} \frac{\Delta_{1} \Delta_{2} \Delta_{3}}{\omega_{1} \omega_{2}}+\sum_{I=1}^{3} Q_{I} \Delta_{I}+\sum_{i=1}^{2} J_{i} \omega_{i} \quad \Delta_{1}+\Delta_{2}+\Delta_{3}-\omega_{1}-\omega_{2}=2 \pi i
$$

- Discussed in the context of BH solutions [Hosseini, Hristov, Zaffaroni] (2017)
- Multiple solutions: $S_{*}\left(Q_{I}, J_{i}\right)$ is in general complex. Take the most "dominant" one.
- $\quad e^{i \operatorname{Im}\left(S_{*}\right)}$: Imitates \pm sign alternations, as macroscopic charges change by basic quanta.
- More precisely, ヨ c.c. saddle point: $\sim e^{R e(S)} \cos [\operatorname{Im}(s)+\cdots]$
- $\operatorname{Re}\left(S_{*}\right)$: Lower bound of entropy. We'll count known BH's by finding $\operatorname{Re}(S)=S_{B H}$.
- Values of Δ_{I} 's: E.g. at $Q_{1}=Q_{2}=Q_{3}$, one finds $\Delta_{1}=\Delta_{2}=\Delta_{3}=2 \pi i / 3$ in the Cardy limit.
- $\quad-1=e^{\Delta_{1}+\Delta_{2}+\Delta_{3}}$ from $(-1)^{F}$ is distributed equally to Δ_{I} 's at the BH saddle point.
- Known BPS BH's satisfy a charge relation: Impose this relation by hand. [CKKN-1]

$$
\begin{aligned}
S\left(Q_{I}, J_{i}\right) & =2 \pi \sqrt{Q_{1} Q_{2}+Q_{2} Q_{3}+Q_{3} Q_{1}-\frac{N^{2}}{2}\left(J_{1}+J_{2}\right)} \\
& =2 \pi \sqrt{\frac{Q_{1} Q_{2} Q_{3}+\frac{N^{2}}{2} J_{1} J_{2}}{\frac{N^{2}}{2}+Q_{1}+Q_{2}+Q_{3}}}
\end{aligned} \quad \begin{aligned}
& \text { known expression for } S_{B H} \text { [SK, K.Lee] (2006) } \\
& \text { charge relation of known BH's }
\end{aligned}
$$

Cardy limits \& BH's for M2 / M5 CFTs

- 3d SCFT on N M2s: [Choi, Hwang, SK] (to appear)
- Holonomy integral \& monopole sum $Z=\sum_{m_{1}, \cdots, m_{N}=-\infty}^{\infty} \oint \prod_{a=1}^{N} \frac{d \alpha_{a}}{2 \pi} Z_{1-\operatorname{loop}}\left(\alpha_{a}, m_{a}, \Delta_{I}, \omega\right)$
- Cardy \& large N: monopole condensation breaks $\mathrm{U}(\mathrm{N})$, spreading over a range $\sim N^{1 / 2} / \omega$
- mechanism of d.o.f. reduction: $N^{2} \rightarrow N^{3 / 2}$
- Counts entropy of BPS BH's in $A d S_{4} \times S^{7}: \log Z \sim-i \frac{4 \sqrt{2} N^{\frac{3}{2}} \sqrt{\Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}}}{3 \omega} \quad \sum_{I=1}^{4} \Delta_{I}-\omega=2 \pi i$
- Also explored a finite N version of $N^{3 / 2}$.
- 6d SCFTs on N M5's: from 't Hooft anomalies
- Cardy limit of $\log Z\left[S^{2 n-1} \times S^{1}\right]$: effective action of background fields on $S^{2 n-1}$
- Leading terms of indices come from Chern-Simons terms on $S^{2 n-1}$ [CKKN-1]
- CS coefficients from anomalies [Jain et.al.] (2013) [Jensen,Loganayagam,Yarom] (2013)
- N M5's index:
[CKKN-1] [Nahmgoong] (to appear)
- Large N: counts BPS BH's in $\operatorname{AdS}_{7} \times S^{4}$ [CKKN-1] [Hosseini, Hristov, Zaffaroni]

Conclusion \& comments

- Index of SCFT $_{D}$ sees BPS AdS S_{D+1} black holes.
- Known large BH's are statistically counted in the Cardy limit.
- Non-Cardy regime studied assuming "Bethe root \leftrightarrow large N saddle pt." relation [Benini,Milan]
- Cardy limit of 5 d SCFT: $\log Z \sim N^{5 / 2}$. Counts BPS BHs in $A d S_{6} \times S^{4} / Z_{2}$ [Choi,SK] [CHKN]
- In certain regimes, dominant saddle points can be yet unknown new BH's.
- Hawking-Page transition \& further conjectures on new black holes [CKKN-2]
- 1/8-BPS sector of $N=4$ SYM ("Macdonald index" [Gadde,Rastelli,Razamat,Yan]): Known BH's don't exist in this sector, while we find new BH-like saddle points from QFT. [CKKN-1]
- More to be done (only a tiny \& partial list)
- Large N saddle point analysis in non-Cardy regime. Hawking-Page transition.
- Construction of new 1/16-BPS operators [Berkooz,Reichmann,Simon] [Chang, Yin]...
- New BPS black holes: either more dominant or subdominant than known ones
- Better intuitions on hairy black holes? Apply more numerical GR techniques...?

