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Motivation

What is the gravitational explanation for the discreteness of the
energy spectrum of quantum black holes?

Discreteness determines the long time behavior of correlation
functions, and of the spectral form factor. An aspect of the black
hole information problem [Maldacena]. ?
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Ensembles of quantum systems

Simplicity after averaging. Consider an ensemble of unitary finite
entropy quantum systems (e.g., SYK). Aspects of discreteness still
visible.

Compute R2(E ,E ′) = 〈ρ(E )ρ(E ′)〉 in SYK.
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[You-Ludwig-Xu; Garcia-Garcia–Verbaarschot; Cotler-Gur-Ari-Hanada-

Polchinski-Saad-Shenker-Stanford-Streicher-Tezuka (CGHPSSSST)]

Eigenvalue spacing ∼ e−S ∼ e−NSYK .

A smoking gun for discreteness in an averaged quantity.
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Random matrix statistics
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〈ρ(E )ρ(E ′)〉 ∼ e2S − 1

2(π(E − E ′))2
(1− cos(2πeS(E − E ′)))

The “Sine kernel formula” for the eigenvalue correlations in (GUE)
random matrix theory [Dyson; Gaudin; Mehta].

Conjectured to be universal in quantum chaotic systems
[ Wigner; Dyson; Berry; Bohigas-Giannoni-Schmit; . . . ].

What is the gravitational explanation for this pattern in SYK?
(And then, in more general systems with a gauge/gravity dual?)

What is the origin of the doubly exponential e ie
S ∼ e ie

N
behavior?
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The SYK model and JT gravity

We will focus on the observable

〈Z (β)〉 = 〈Tre−βHSYK 〉 =

∫
dE 〈ρ(E )〉e−βE

At low energies, large β, this is gauge/gravity dual to (2D)
Jackiw-Teitelboim (JT) gravity on the disk, (a piece of Euclidean
AdS2), to all orders in GN ∼ 1/N
[Jensen; Maldacena-Stanford-Yang; Engelsoy-Mertens-Verlinde].

Try to understand eigenvalue statistics in the JT gravity limit. Not a
uniform limit – a model of the model.
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Jackiw-Teitelboim (JT) gravity

Jackiw-Teitelboim (JT) gravity (metric gµν and dilaton φ):

I = − S0
2π

[
1

2

∫
M

√
gR +

∫
∂M

√
hK

]
︸ ︷︷ ︸

topological term = S0 χ(M)

−
[

1

2

∫
M

√
gφ(R + 2)︸ ︷︷ ︸

sets R = −2

+ φ0

∫
∂M

√
h(K − 1)︸ ︷︷ ︸

gives action for boundary

]
.

Localizes on R = −2 geometries, with fluctuating boundary.

The ground state entropy S0 is ∼ 1
GN
∼ N. Surfaces M with Euler

character χ(M) are weighted by eS0χ(M) ∼ eNχ(M). For a surface
with g handles and one boundary the weight is eS0(1−2g).
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JT gravity density of states

3.1 Euclidean Jackiw-Teitelboim

First, we are going to move over the Euclidean signature. This is a natural thing to do
when we study holography, as ultimately we are interested in correlation functions of the
boundary theory, which are naturally defined in Euclidean signature. Lorentzian correlators
are then obtained via di↵erent analytic continuations.

In Euclidean signature, AdS2 is just the hyperbolic disk. Two sets of natural coordinates
are obtained by Wick rotating the Poincaré coordinates in (6), or the Rindler coordinates
of (7), by tLorentz = �itEuclidean, ⌧Lorentz = �i⌧Euclidean respectively

ds2 =
dt2 + dz2

z2
Poincaré

= d⇢2 + sinh2 ⇢d⌧ 2 Rindler.
(33)

Both of these coordinates cover the entire hyperbolic disk, as opposed to the Lorentzian
case. The Poincaré time t runs from �1 to 1, while the Rindler time ⌧ is 2⇡ periodic and
is a proper angular coordinate on the hyperbolic disk, see left of Fig. 2.

Figure 2: Left: Coordinates on the hyperbolic disk. Right: A cutout from the hyperbolic
disk.

Let us move on to the Euclidean version of the action (32). This is straightforwardly
obtained by Wick rotation. In addition, we are going to add the Gibbons-Hawking-York
boundary terms, which are needed for the variational principle when we wish to put Dirichlet
boundary conditions at the boundary of the manifold. As we have discussed in sec. 2.3, we
are ultimately interested in cuto↵ versions of AdS2, so we definitely need these. The action

13

Z (β), at leading order in eS0 , is described by a geometry with one
fluctuating boundary of fixed length β/ε. Not a geodesic boundary.
Z (β) is one loop exact (in GN = 1/N)
[Bagrets-Altland-Kamenev; CGHPSSSST; Stanford-Witten].

Gives (by inverse Laplace transform) the density of states

ρtotal0 (E ) = eS0
sinh(2π

√
E )

4π2
.

A disk has Euler character χ = 1 giving the weight eS0 ∼ eN .
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Cylinder

Study topologies beyond the disk.

The leading contribution to 〈Z (β1)Z (β2)〉 = 〈Tre−β1HTre−β2H〉
comes from two disconnected disks, χ = 2, of order e2S0 .

The cylinder (euclidean spacetime wormhole) contribution has χ = 0
and is of order one ∼ e0·S0 .
[Maldacena-Qi; Harlow-Jafferis; Saad-SS-Stanford]

It gives the 1/(E − E ′)2 term in 〈ρ(E )ρ(E ′)〉, corresponding to the
ramp in the spectral form factor [Saad-SS-Stanford].
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Sum over topologies

Here we study contribution of surfaces with any number (g) of
handles to Z (β) (χ = 1− 2g).

++ + . . . 

Z (β) =
∑

g Z
(g)(β)× e(1−2g)S0 = eS0

∑
g Z

(g)(β)× (e−S0)2g

Looks like a perturbative string genus expansion, but here
gs = e−S0 ∼ e−1/GN ∼ e−N .

These are nonperturbative effects in GN . Joining and splitting of baby
JT universes, a “third quantized” description.

(Only hints for higher topologies in SYK, as opposed to JT. )
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Sum over topologies, contd.

All of these geometries have the same asymptotically AdS2 region (the
trumpet) glued along a geodesic boundary of length b to a higher genus
Riemann surface.

β/ε

b
β/ε

b

These are not saddle points of the JT action. The R = −2 constraint
allows us to do the full path integral.
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Doing the higher genus path integral

b
β/ε

b

Z (g)(β) =

∫
bdb ZTrumpet(β, b)× Vg ,1(b) .

ZTrumpet(β, b) is one loop exact, = exp(−b2/4β)/2
√
πβ. (use

techniques of [Stanford-Witten]). (See also Blommaert-Mertens-Verschelde).

Vg ,1(b) is the Weil-Petersson (WP) volume of the moduli space of
Riemann surfaces with a single geodesic boundary.
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Mirzakhani’s recursion and topological recursion

The WP volumes Vg ,1(b) can be computed efficiently
[Witten; Kontsevich; Mirzakhani].
Mirzakhani’s recursion builds up higher genus surfaces from lower
genus ones by sewing geodesic boundaries together and integrating
over the intermediate boundary lengths.
This recursion can be mapped onto matrix model loop equations for
resolvents, in the streamlined form of “topological recursion”
[Eynard-Orantin]. rank H ∼ eN .
Input for topological recursion is the (double scaled) genus 0
eigenvalue density ρtotal0 (E ) (⇐⇒ the spectral curve y(x)), and the
cylinder diagram (universal).
To get Vg ,1(b) use the (disk) JT density ! [Eynard-Orantin]

ρtotal0 (E ) =
eS0

4π2
sinh(2π

√
E )

y(x) =
sin(2π

√
x)

4π
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Putting it together

Vg ,1(b) = integral transform of genus g resolvent R(g)(x).

(Vg ,1(b) = I[b,R(g)(x)].)

Z
(g)
JT (β) =

∫
bdb ZTrumpet(β, b)Vg ,1(b)

=

∫
bdb exp(−b2/4β)/2

√
πβ × I[b,R(g)(x)]

=
1

2πi

∫
C
dxe−βxR(g)(x)

=

∫
dEρ(g)(E )e−βE

≡ Z
(g)
MM(β) .

To all orders in the genus expansion.

JT gravity is a matrix model, with random matrix eigenvalue
statistics. What is the “bulk” interpretation of this? ?
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The genus expansion diverges

Z (β) =
∑

g Z
(g)e(1−2g)S0

Series of nonperturbative baby universe joinings and splittings.

Z (g) ∼ (2g)! . The series diverges.

Such
∑

g (2g)! g2g−1
s behavior is generic in perturbative string theory,

indicating the existence of e−c/gs nonperturbative effects [SS].

These are due to D-branes – described by arbitrary numbers of
disconnected world sheets ending on the brane [Polchinski].

There should be D-branes in the JT String – here we would have an
arbitrary number of disconnected spacetimes.

Third quantization: e−c/gs → exp(−c eS0) = exp(−c eN).
Doubly exponential.
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FZZT branes

The matrix integral gives a (non-unique) nonperturbative definition of
the JT string. (Contour choice.)

Nonperturbative effects in matrix models are due to the dynamics of
discrete eigenvalues, not smooth densities. Dual description by branes.

In the early 2000’s a detailed understanding was developed of the
branes present in the “minimal strings” described by c ≤ 1 minimal
matter coupled to Liouville gravity, and their matrix duals
[Fateev, Klebanov, Kutasov, Maldacena, Martinec, McGreevy, Moore, Seiberg,

Shih, Teschner, Verlinde, Zamolodchikov, Zamolodchikov, . . .].

Related, parallel work on branes in topological strings and their
matrix duals by [Aganagic, Dijkgraaf, Klemm, Marino, Vafa, . . .].

The insertion of an FZZT probe brane is described by
〈ψ(E )〉 = e−LV (E)/2〈det(E − H)〉.
E describes boundary condition at edge of brane. (L = rank H.)

Take this technology over directly.
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Determinants

V(E)

E
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Determinants are sensitive probes of discreteness.
[standard probe in quantum chaos]

Oscillations are a leading effect in 〈det(E − H)〉. They are subleading
in 〈ρ(E )〉.
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From determinants to D-branes

Use topological/minimal string technology. At leading order, the FZZT
brane insertion is determined by exponentiating disks, just as in D-branes
[Polchinski].

det(E − H) = exp (Tr log(E − H))

〈det(E − H)〉 = 〈1 + Tr log(E − H) + (Tr log(E − H))2/2 + . . .〉.

At leading order 〈(Tr log(E − H))k〉 = 〈Tr log(E − H)〉k . So

〈ψ(E )〉 = e−LV (E)/2〈det(E − H)〉 ∼ e−LV (E)/2 exp(〈Tr log(E − H)〉)
= exp(Disk(E ))

Many traces.

Many disconnected spacetimes.

Like many disconnected world sheets.
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From determinants to D-branes, contd.

FZZT brane insertion:

〈ψ(E )〉 = e−LV (E)/2〈det(E − H)〉 ∼ e−LV (E)/2 exp(〈Tr log(E − H)〉)
= exp(Disk(E ))

Tr log(E − H) =
∫ E

dxTr 1
x−H

Disk(E ) =
∫ E

dx(R(0)(x)− LV ′(x)/2)

= ±iπ
∫ E

dxρtotal0 (x)

exp(Disk(E )) ∼ exp(iπ
∫ E

dxρtotal0 (x))

∼ exp(ieS0) ∼ exp(i/gs).

Doubly exponential.

Rapidly oscillating.
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Resolvents and densities

V(E)

E
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We can go from determinants to resolvents and densities using the
basic identity: [standard technique in quantum chaos]

Tr
1

E − H
= ∂E

det(E − H)

det(E ′ − H)

∣∣∣∣
E ′→E

.

A brane - antibrane “dipole.”

Determine nonperturbative contributions to 〈ρ(E )〉 from D-branes.

A similar, more elaborate, analysis involving ratios of four
determinants gives a D-brane calculation of the pair correlation
function 〈ρ(E )ρ(E ′)〉. We recover the Sine kernel result.
(See Phil Saad’s poster).
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Non-averaged systems

This analysis raises lots of questions. ?

One involves the transition from averaged to non-averaged systems,
like SYM. (See also Douglas Stanford’s talk.)
For a non-averaged system the spectral form factor is very erratic
[Prange].

What is the bulk explanation for this erratic behavior? ?
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Semiclassical quantum chaos

An analogy: semiclassical chaos in ordinary quantum mechanical
systems, like quantized billiards.

Use the path integral (Gutzwiller trace formula), summing over
periodic orbits

Tre−iHt/~ ∼
∑
a

e
i
~Sa

The spectral form factor becomes:

Tre iHt/~ Tr−iHt/~ ∼
∑
ab

e
i
~Sae−

i
~Sb
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Semiclassical quantum chaos, contd.

∑
ab

e
i
~Sae−

i
~Sb

Long times t → long orbits → large phases → large fluctuations.

But on averaging (over time, say) in the ramp region the only terms
that survive are the ones where a = b, up to a time translation. This
is Berry’s “diagonal approximation” that gives the ramp. The
spacetime wormhole connection is produced by averaging – (not a
spatial wormhole produced by entanglement) [Maldacena-Maoz].
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Fluctuating couplings

These ideas are reminiscent of Coleman’s ideas about the relation between
Euclidean wormholes and fluctuating couplings [see also, Banks, Fischler,

Giddings-Strominger, Hawking, Klebanov, Rubakov, Susskind ...].
Consider many baby universes, each with Lagrangians with the same
fluctuating couplings (around fixed reference values). Expand and perform
Wick contractions: [figure from Klebanov-Susskind, 1988]

. .- 

-- - 
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Wormholes from fluctuating couplings

. .- 

-- - 

Fig. 1 

=⇒

2/9/2019 figure11.jpeg (457×536)
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“Fatten” tubes by including a number of operators.
The full sum over disconnected spacetimes produces doubly exponential
quantities, reminiscent of those discussed above.
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A parting thought

Perhaps we have a choice about the bulk description of spectral
statistics:

an unaveraged description with simple topology but with exceedingly
detailed and complicated information about microstates, like the
individual orbits in the microscopic phase space and their intricate,
rapidly fluctuating phases (fuzzballs ?!);

or an averaged description made up of more familiar geometrical
objects. But the price for this simplicity seems to be third
quantization, wormholes, and D-branes.
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Thank you

Thank You
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Backup slides

Backup Slides
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Eigenvectors/ETH

What about the random matrix behavior of eigenvectors?

Eigenstate Thermalization Hypothesis (ETH) [Deutsch, Srednicki]

Probe with correlation functions (two sided, β → 2β).

〈O(t)O(0)〉 =
∑
mn

|〈m|O|n〉|2e i(Em−En)te−β(Em+En)

ETH implies |〈m|O|n〉|2 ∼ e−S .

At late times we expect

〈O(t)O(0)〉 → e−S |Z (β + it)|2

e−S times the spectral form factor.
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Eigenvectors/ETH, contd.

The ramp in the spectral form factor, is a two Hilbert space, two
boundary, quantity. It is described in JT by the cylinder, χ = 0, of
order e0.

The correlator is a one Hilbert space, one boundary, quantity. We
expect its ramp to be described by
[Saad-SS-Stanford, Blommaert-Mertens-Verschelde]

The “lid” has χ = −1 so it is of order e−S , as expected from ETH.
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Asymptotic formulas for WP volumes

A mathematical application.

What is the asymptotic behavior of the WP volume Vg ,1(b) for large
genus g and arbitrary values of b/g?

Based on extensive numerical evidence for g = 1 . . . 20, Zograf
conjectured a formula for this asymptotic behavior for the region b
fixed, g →∞.

Vg ,1(b) ≈ 4(4π2)2g−
3
2

(2π)3/2
Γ(2g − 3

2)
sinh(b2 )

b
.

(Mirzakhani, Zograf and Petri later proved most of this directly from
the recursion relation.)
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Asymptotic formulas for WP volumes

For many integrals the large order behavior of a perturbation series is
determined by nontrivial saddle points of the integral. (Borel
resummation, resurgence...)
The matrix integral has a nontrivial saddle point where one eigenvalue
moves away from the large L saddle point distribution. “One
eigenvalue instanton” (ZZ brane).
[Neuberger, David, Ginsparg-Zinn-Justin, Shenker]

This gives an analytic determination of the asymptotic behavior for all
b/g , confirming Zograf’s conjecture in the region for which it applies.
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Comments

Random matrix behavior is universal. Is the D-brane mechanism?

JT → SYK. It seems that the extra effects present in SYK do not
destabilize the mechanism, except for the expected change in ρ0(E ).
(Not true for ZZ brane effects).

Averaged SYM. The key ingredients, the Disk and the Cylinder, can
both be computed in bulk gravity (or string theory). These give the
expected answer. The real question is whether there are large
corrections to these terms.
In general it seems that large corrections would be expected primarily
in integrable systems. Chaotic ones seem to be the simplest. A sharp
argument does not yet exist, though.

How do we calculate all this in a “two boundary” description?
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