Quantum Gravity Constraints and their Stringy Realisation

- Weak Gravity and Swampland Distance Conjecture: 1808.05958, 1810.05169, 1901.08065
 w/ Seung-Joo Lee and Wolfgang Lerche
- Emergent Strings: 1904.06344 w/ S-J Lee and W Lerche
- Swampland Bounds: 1905.13213 w/ S-J Lee

Timo Weigand

CERN and Mainz University

Quantum Gravity Conjectures

Which EFT can be coupled to a fundamental theory of QG?

Swampland of inconsistent EFTs

 \leftrightarrow

Landscape of consistent QGs

Image: www.physics.harvard.edu/node/873

Swampland Conjectures of general scope, but not sharply proven.

String theory as a framework for QG allows to test explicit conjectures

- Quantitative check of swampland conjectures and sharper formulation
- Study manifestations of swampland conjectures in string geometry

Some QG Conjectures

see talks by Reece, Palti; reviews [Palti'19] [Brennan, Carta, Vafa'17]

- 1. No Global Symmetries: [Banks,Dixon'88], [Banks,Seiberg'13], [Harlow,Ooguri'18] $Gauge\ symmetries\ cannot\ become\ global\ in\ presence\ of\ gravity.$ What goes wrong in limit $g_{\rm YM}\to 0$?
- Completeness Conjecture: [Polchinski'03]
 The full charge lattice should be populated.
 Violated in open string sector where do the states come from?
- 3. Weak Gravity Conjecture: [Arkani-Hamed,Motl,Nicolis,Vafa'06] $Tower\ of\ charged\ particles\ with\ q^2g_{\rm YM}^2 \geq \#M^2$ What is the correct numerical bound and which states obey it?
- 4. Swampland Distance Conjecture: [Ooguri,Vafa'06]

 Infinite tower of states becomes massless at infinite distance.

 What's the nature of the theory at infinite distance?

Quantum Gravity Conjectures

Address these questions in situations with N=1 SUSY in 6d and 4d:

F-theory on elliptic CY3 and CY4

 \iff

Heterotic theory on

K3 and CY3

In the geometric infinite distance limit^a

$$g_{\rm YM} \to 0$$
 while $M_{\rm Pl}^4$ fixed

we

- prove the Distance Conjecture
- and the Weak Gravity Conjecture including the effect of scalar fields
- and identify the relevant tower of non-BPS states: $g_{YM}^2 q_k^2 \geq M_k^2$.

^aWith caveats in 4d: Limit of 'Class A' - see [Lee,Lerche,TW'19].

General theme:

[Lee,Lerche,TW'18 '19]

Emergence of a dual weakly coupled, asymptotically tensionless critical string at infinite distance in moduli space

- heterotic string (for most of this talk)
- Type II string (see end of this talk)

Duality and stringy-ness

 \iff

Quantum Gravity Conjectures

cf. [Ooguri, Vafa'06]

F-theory in 6d

F-theory in 6d

 \iff

Type IIB on $\mathbb{R}^{1,5} \times B_2$ with 7-branes

- $B_2 = \text{compact K\"{a}hler surface}$ $\implies \text{dynamical gravity}$
- 7-branes on complex curve $C \subset B_2$ \Longrightarrow gauge symmetry

Couplings: (IIB Einstein frame, $\ell_s = 1$)

$$\mathbf{M_{Pl}^4} = \mathbf{4}\pi \text{vol}_{\mathbf{J}}(\mathbf{B_2}),$$

$$rac{\mathbf{1}}{\mathbf{g}_{\mathrm{YM}}^{\mathbf{2}}} = rac{\mathbf{1}}{\mathbf{2}\pi} \mathrm{vol}_{\mathbf{J}}(\mathbf{C})$$

Mostly focus on gauge group U(1):

C = 'height pairing of rational section on ell fibration over B_2 '

cf reviews [TW'18][Cvetič,Lin'18]

Gravity and U(1)s

What happens if take $g_{\rm YM} \to 0$ at $M_{\rm Pl}$ finite?

Swampland intuition:

In presence of gravity, no global symmetries are possible. [Banks,Dixon'88]

General expectation: [AMNV'06], [Ooguri,Vafa'06], ...

- Offensive limit should be at infinite distance (beyond reach).
- Effective theory must break down (quantum gravity censorship).

```
Substantial corpus of related works see talk by Palti
```

```
[Kläwer, Palti'16] [Heidenreich, Reece, Rudelius'16, '18'19] [Montero, Shiu, Soler'16] [Palti'17]
```

[Grimm, Palti, Valenzuela'18] [Hebecker et al. 16,'19] [Andriolo, Junghans, Noumi, Shiu'18]

[Blumenhagen, Kläwer, Schlechter, Wolf'18], [Lüst, Palti'18], [Grimm, Li, Palti'18]

[Corvilain, Grimm, Valenzuela'18] [Marchesano, Wiesner'19] [Font, Herraez, Ibanez'19]

[Erkinger, Knapp'19] [Grimm, V.d. Heisteeg'19] . . .

Step 1: Recovering a dual heterotic string in limit $g_{\rm YM} \to 0$

Global limit in Kähler geometry

$$\frac{1}{g_{\rm YM}^2} \sim {\rm vol}_J(C) = t \to \infty \quad \text{while} \qquad M_{\rm Pl}^4 \sim {\rm vol}_J(B_2) \equiv 1$$

Theorem: [Lee,Lerche,TW'18]

There exists a rational curve C_0 :

$$C_0 \cdot C \neq 0$$
 and $\operatorname{vol}_J(C_0) \sim \frac{1}{t} \to 0$

General intuition

"On finite volume surface, if one direction gets big, normal direction must get very small". Proof for base B_2 via Mori's cone thm. $\to C_0 = \mathbb{P}^1$, $C_0^2 = 0$

Quantum Gravity Conjectures

1) No global symmetries.

 \Rightarrow The limit $g_{YM} \rightarrow 0$ must be at infinite distance in moduli space.

Indeed this is the case here.

Result: Limit $t \to \infty$ at distance $\Delta \sim \log(t) \to \infty$ (w.r.t. to metric on tensor moduli space).

2) Swampland Distance Conjecture

Infinitely many (charged!) states should become massless at exponential rate.

Tensionless solitonic string

from D3 on C_0

tension $\sim T \sim \text{vol}_J(C_0) \sim \frac{1}{t} \sim e^{-\Delta}$

Tensionless strings

Key fact: [Lee,Lerche,TW'18] asymptotically tensionless string

weakly coupled, critical heterotic string

cf. [Harvey, Strominger'95] [Maldacena, Strominger, Witten'97]

Analysis of worldsheet theory of D3 on $C_0 = \mathbb{P}^1$ with $C_0^2 = 0$

- Twisted reduction of N=4 SYM with varying gauge coupling along C_0 [Martucci'14] [Haghighat, Murthy, Vafa, Vandoren'15] [Lawrie, Schafer-Nameki, TW'16]
 - \Rightarrow 2d N = (0,4) effective theory with
 - (4+4) left-moving scalars(4+4) right-moving scalars + fermionic partners
- At intersection $C_0 \cap C$: isolated 3-7 string modes charged under 7-brane gauge group
 - ⇒ 16 left-moving (charged) fermions

Tensionless 6d strings

F-theory bases B_2 admitting the limit $g_{\rm YM} \to 0$:

Class 1)

 B_2 is Hirzebruch

$$p: \quad \mathbb{P}_f^1 = C_0 \rightarrow \quad \mathbb{F}_a$$

$$\downarrow$$

$$\mathbb{P}_b^1$$

Exists perturbative heterotic dual

on K3 K [Morrison, Vafa'96]

$$r: \quad T^2 \; o \; egin{array}{c} \mathcal{K} \ & \downarrow \ & \mathbb{P} \end{array}$$

$$(g_s^h)^2 = rac{\mathrm{vol}_J(\mathbb{P}_f^1)}{\mathrm{vol}_J(\mathbb{P}_b^1)} o 0$$
 in tensionless limit

Class 2) B_2 is blowup of Hirzebruch

- Dual heterotic string on K with extra NS 5-branes on heterotic side
- Away from defects heterotic string 'quasi-perturbative' (justified ex post!)

Step 2:

Proving the WGC via heterotic string

Previous results in literature:

- Spectral flow implies WGC for pert. het string. [AMNV'06]
- Sublattice WGC; proven for toroidal orbifolds

[Heidenreich, Reece, Rudelius' 15/16]

New results [Lee, Lerche, TW'18]

- Determine index of sublattice satisfying the WGC
- Valid beyond perturbative situations
- Explicit match with black hole solutions

Elliptic genus of 6d het. string \leftrightarrow Subsector of charged non-BPS states

[Schellekens, Warner'86] [Witten'87], ...

$$Z_{\mathcal{K}}(\tau, z) \equiv \operatorname{Tr}_{R}\left[(-1)^{F} F^{2} q^{H_{L}} \bar{q}^{H_{R}} \xi^{J} \right]$$

 $q=e^{2\pi i au}$: au complex structure of worldsheet T^2

 $\xi^J = e^{2\pi i z J}$: fugacity w.r.t. flavour symmetry - e.g. U(1)

$$Z_{\mathcal{K}}(\tau, z) = q^{-1} \sum_{n \ge 0} N(n, r) \, q^n \, \xi^r$$

n: excitation level of string r: U(1) charge

Ell. genus = (Ratio of) modular forms of weight -2 and U(1) fugacity index m

$$\varphi_{\mathbf{w},\mathbf{m}} \left(\frac{a\tau + b}{c\tau + d}, \frac{\zeta}{c\tau + d} \right) = (c\tau + d)^{\mathbf{w}} e^{2\pi i \frac{\mathbf{m} c}{c\tau + d} \frac{\zeta^2}{2}} \varphi_{\mathbf{w},\mathbf{m}}(\tau,\zeta)$$

$$\varphi_{\mathbf{w},\mathbf{m}} \left(\tau, \zeta + \lambda \tau + \mu \right) = e^{-2\pi i \mathbf{m} \left(\frac{\lambda^2}{2} \tau + 2 \frac{\lambda \zeta}{2} \right)} \varphi_{\mathbf{w},\mathbf{m}}(\tau,\zeta)$$

• U(1) index $m \leftrightarrow t'$ Hooft anomaly of worldsheet [Schellekens, Warner'86]

[Benini, Eager, Hori, Tachikawa'13] [Del Zotto, Lockhart'16] [...]

Here:
$$m = \frac{1}{2}C \cdot C_0$$
 C_0 : het string C : gauge 7-brane

 $|\operatorname{Het.5-branes} \Rightarrow \operatorname{\mathbf{quasi-modular}}| ext{(incl. } E_2(au))$ [Lee,Lerche,TW'18]

$$Z_{\mathcal{K}}(\tau, z) = q^{-1} \sum_{n>0} N(n, r) \, q^n \, \xi^r = \frac{\Phi_{10, m}(\tau, z)}{\eta^{24}(\tau)}$$

• $\Phi_{10,m}(au,z)$: (quasi-)modular Jacobi form of weight w=10 [Eichler,Zagier]

Every such form can be expanded

$$\varphi_{w,m}(\tau,z) = \sum_{\ell \in \mathbb{Z} \bmod 2m} h_{\ell}(\tau)\Theta_{m,\ell}(\tau,z)$$

$$\Theta_{m,\ell}(\tau,z) = \sum_{k \in \mathbb{Z}} q^{(\ell+2mk)^2/4m} \xi^{\ell+2mk}$$

Subsector with
$$\ell=0$$
 contains: $n=mk^2$ $r=2mk\equiv \mathsf{U}(1)$ charge \mathfrak{q}_k

 \Longrightarrow sublattice of charge lattice with $\mathfrak{q}_k=2m\,k\,,k\in\mathbb{Z}$

$$\mathfrak{q}_k^2 = 4m \, n(k)$$
 [Lee, Lerche, TW'18]

Index 6d of string non-BPS excitations

Gopakumar-Vafa invariants of 5d BPS states

[Klemm, Mayr, Vafa'96] [Haghighat, (Iqbal, Kozaz), [Klemm], Lockhart, Vafa'(13)[14]],...

6d F-theory \longleftrightarrow ell. genus

5d M-theory
BPS invariants

4d Type IIA prepotential

Example:

[Lee, Lerche, TW'18]

$$m=2$$
, on $B=dP_2$

- Closed expression!
- $\mathfrak{q}_k^2 = 4m \, n(k)$ for $\mathfrak{q}_k = 2m \, k$

⇒ Completeness Hypothesis satisfied ✓

Weak Gravity Conjecture

'Charged black holes must be able to decay.'

[AMNV'06]

 $\Rightarrow \exists!$ 'super-extremal' state w.r.t. charged extremal black hole

$$\frac{\mathfrak{q}^2 g_{\rm YM}^2}{M^2}|_{\rm state} \stackrel{!}{\geq} \frac{Q^2 g_{\rm YM}^2}{M^2}|_{\rm B.H.}$$

Relevant black holes in weak coupling $g_{\rm YM} \to 0$: [Lee, Lerche, TW'18] Dilatonic Reissner-Nordström BH

•
$$S = \int_{\mathbb{R}^{1,5}} \sqrt{-g}R + \frac{1}{2}d\phi \wedge *d\phi + \frac{1}{4g_{YM}^2} e^{\alpha\phi} F_{\mu\nu} F^{\mu\nu}$$

WGC bound for decay of dilatonic RN black hole:

$$q^2 g_{\mathrm{YM}}^2 \stackrel{!}{\geq} \frac{M^2}{M_{\mathrm{Pl}}^{d-2}} \left(\frac{d-3}{d-2} + \frac{\alpha^2}{4} \right) \quad \text{[Heidenreich, Reece, Rudelius'15'19][Palti'17]}$$

• Explicit analysis of 6d SUGRA in weak coupling limit: $\alpha = 1$ [Lee, Lerche, TW'18]

Weak Gravity Conjecture

 \Longrightarrow WGC for sublattice of rank $2m = C \cdot C_0$ [Lee, Lerche, TW'18]

$$2m = C \cdot C_0$$
 [Lee,Lerche,TW'18]

cf. [AMNV'06] [Heidenreich, Reece, Rudelius'15'16] [Montero, Shiu, Soler'16],...

Valid in weak coupling limit!

$$M_n^2 = 8\pi T(n-1), \qquad T = 2\pi \quad \text{vol}(C_0)$$

 $M_{\text{Pl}}^4 = 4\pi \, \text{vol}(B_2) \equiv 4\pi, \qquad \frac{1}{g_{\text{YM}}^2} = \frac{1}{2\pi} \, \text{vol}(C), \qquad \text{vol}(C) \, \text{vol}(C_0) \to 2m.$

Extension to 4d N=1 substantially more involved [Lee,Lerche,TW'19]

Only a shifted sublattice manifest in elliptic genus (w = -1!)

Example: m=4

Super-extremal states:

$$\begin{aligned} \mathfrak{q}_k &= 2mk \pm \ell \,, \\ n_k - 1 &= k(mk \pm \ell) & \ell \ge 1 \\ \Rightarrow \mathfrak{q}_k^2 &= 4m(n_k - 1) + \ell^2 \quad k \in \mathbb{Z} \end{aligned}$$

• blue line: $\mathfrak{q}_k^2 = 4m(n_k - 1)$ (WGC-line)

- WGC still satisfied by tower of states √ cf [Andriolo, Junghans, Noumi, Shiu'18]
- Missing sublattice states present in partition function?
 cf [Heidenreich, Reece, Rudelius'16,'19]

Emergent Strings @ ∞ distance

Example 1: Asymptotic regime $g_{\rm YM} \to 0$ in F-theory

Example 2: Type IIB theory on K3 [Lee,Lerche,TW'19]

In asymptotic weak coupling regime for 2-forms cf. [Aspinwall, Morrison'95],...

Solitonic string (D3 on elliptic curve) $\xrightarrow{infinite}$ Critical fundamental Type IIB string in dual frame tower of light particles \checkmark

Strings and Swampland Bounds

 \exists ? Swampland of anomaly-free supergravities w/out UV completion?

- In 6d N=(1,0) SUGRA, anomaly constraints particularly powerful
- Anomaly-free families of SUGRAs with infinite rank gauge group [Kumar, Morrison, Taylor'10], ...

Extra constraints from consistency of sector of BPS strings [Kim,Shiu,Vafa'19]

$$\sum_{i} c_{i} \stackrel{!}{\leq} c_{L}$$
 c_{i} : WS current due to spacetime gauge group G_{i}

⇒ Puts many of these theories with non-abelian gauge groups in the 'swampland' [Kim,Shiu,Vafa'19]

Particularly mysterious remains the abelian gauge sector

Potential candidate for swampland(?):

6d N=(1,0) SUGRA with infinitely many $U(1)_i$ ($T\geq 9$) [Park,Taylor'11]

Strings and Swampland Bounds

1) Demanding unitarity of 6d supergravity strings: Upper bound on $N_{U(1)}$ in 6d N=(1,0) supergravity

$$N_{U(1)} \leq 22$$
 [Lee,TW'19]

2) In F-theory:

$$U(1)$$
 \longleftrightarrow rational section of elliptic fibration $N_{U(1)}$ \longleftrightarrow rank of Mordell-Weil group

Explicit analysis of solitonic heterotic string:

- All U(1) factors in 6d must be embeddable into $E_8 \times E_8$. a
- New math 'theorem': [Lee,Regalado,TW'18],[Lee,TW'19]

 The maximal rank of the Mordell-Weil group of an elliptically fibered Calabi-Yau 3-fold is 16.

^aProven for $T \geq 1$; for T = 0: $\mathrm{rk}(U(1) \leq 24 \text{ proven, and } \mathrm{rk}(U(1) \leq 16 \text{ argued.})$

^bIf $h^{1,1}(B) = 1$, rk(MW) ≤ 24 proven, and ≤ 16 argued.

Summary

Quantum Gravity Conjectures realized in string theory by conspirational interplay of

- duality/emergence,
- geometry of compactification spaces,
- modularity.

What is the underlying fundamental principle?

Emergent Strings @ ∞ distance

Type IIB theory on K3 \Rightarrow 6d N = (2,0) theory

$$\mathcal{M}_{(\mathbf{5},21)} = O(\Gamma_{\mathbf{5},21}) \setminus O(\mathbf{5},21) / O(\mathbf{5}) \times O(21)$$
 [Aspinwall, Morrison'95],...

• 5 non-compact directions $S_i \to \infty$

weak coupling limits for tensors T_i

$$S = \int_{\mathbb{R}^{1,5}} \left(\frac{1}{2} M_{\text{Pl}}^4 \sqrt{-|g|} R + \frac{2\pi}{4} (S_i^2 d\mathbf{T}_i \wedge *d\mathbf{T}_i + S_i^{-2} d\tilde{\mathbf{T}}_i \wedge *d\tilde{\mathbf{T}}_i) + \ldots \right)$$

• string coupling to T_i

 $S_i \rightarrow \infty$ tensionless weakly coupled critical string in dual frame

For geometric weak coupling limit in Kähler moduli space: [Lee,Lerche,TW'19]

•
$$S_3 \sim t = \operatorname{vol}(C) \to \infty$$

• elliptic curve
$$C^0$$

$$\operatorname{vol}(C^0) \sim \frac{1}{t} \to 0$$

$$r: \quad \mathbf{C^0} \rightarrow \qquad K3$$

$$\downarrow \\ \mathbb{P}_b^1$$

solitonic string from D3 on C^0

fundamental Type IIB string on dual K3