# Generalized Particles \& Strings from Combinatorial Geometry 

## Song He

Institute of Theoretical Physics, Chinese Academy of Sciences<br>with Nima Arkani-Hamed, Yuntao Bai, Gongwang Yan arXiv: 1711.09102 to appear with Nima Arkani-Hamed, Giulio Savlatori, Hugh Thomas with Nima Arkani-Hamed, Thomas Lam with Nima Arkani-Hamed, Thomas Lam, Hugh Thomas

Strings 2019, Brussel
July 12, 2019

## Motivations

Search for "holographic" S-matrix theory: fascinating geometric structures underlying scattering amplitudes, in some auxiliary space

- $\mathcal{M}_{g, n}$ : perturbative string amps $=$ correlators of worldsheet CFT
- (ambi-)twistor strings \& scattering equations, same worldsheet but for particles, without stringy excitations [Witten] [Cachazo, SH, Yuan] [Mason, Skinner; ...]
- Generalized $G_{+}(k, n)$ : amplituhedron for all-loop S-matrix in planar $\mathcal{N}=4$ SYM [Arkani-Hamed, Trnka] [+ Bourjaily, Cachazo, Goncharov, Postnikov; ...]

These geometries have "factorizing" boundary structures: locality and unitarity naturally emerge (without referring to the bulk spacetime)

## Motivations

Search for "holographic" S-matrix theory: fascinating geometric structures underlying scattering amplitudes, in some auxiliary space

- $\mathcal{M}_{g, n}$ : perturbative string amps $=$ correlators of worldsheet CFT
- (ambi-)twistor strings \& scattering equations, same worldsheet but for particles, without stringy excitations [Witten] [Cachazo, SH, Yuan] [Mason, Skinner; ...]
- Generalized $G_{+}(k, n)$ : amplituhedron for all-loop S-matrix in planar $\mathcal{N}=4$ SYM [Arkani-Hamed, Trnka] [+ Bourjaily, Cachazo, Goncharov, Postnikov; ...]

These geometries have "factorizing" boundary structures: locality and unitarity naturally emerge (without referring to the bulk spacetime)

Also w. factorizing structure: cluster polytopes (generalized associahedra)
Quiver + mutations $\rightarrow$ infinite in general, but finite for Dynkin diagrams $\rightarrow$ finite-type cluster algebra [Fomin, Zelevinski], each with a "factorizing" polytope

Scattering amplitudes as differential forms $\rightarrow$ geometries directly in kinematic space
A new picture for amplituhedron in momentum-twistor space: $\mathcal{N}=4$ SYM amps as its "volume" form [Arkani-Hamed, Thomas, Trnka]; also in 4d momentum space [SH, Zhang]

Scattering amplitudes as differential forms $\rightarrow$ geometries directly in kinematic space
A new picture for amplituhedron in momentum-twistor space: $\mathcal{N}=4$ SYM amps as its "volume" form [Arkani-Hamed, Thomas, Trnka]; also in 4d momentum space [SH, Zhang]

Geometry for $\phi^{3}$ : kinematic associahedron in Mandelstam space [Arkani-Hamed, Bai, SH, Yan]

- "volume"/ canonical form $\rightarrow$ (something new for) bi-adjoint $\phi^{3}$ tree amps
- connected to worldsheet by scattering equations $\rightarrow$ CHY formula [Cachazo, SH, Yuan]
- general scattering forms, e.g. for gluons and pions: "geometrizing" colors \& related to color-kinematics duality [Bern, Carrasco, Johansson]

Natural Q: What about loops? Other types of cluster polytopes \& beyond?
What is the origin of (generalized) particles, strings \& CHY (in $\phi^{3}$ toy model)?
Key: combinatorics $\rightarrow$ geometries $\rightarrow$ physics

## Outline

(1) Tree \& loops in $\phi^{3}$ from cluster polytopes

## (2) Stringy canonical forms \& scattering equations

## (3) Binary realization \& generalized string integrals

## Feynman diagrams form polytopes

Associahedron $\mathcal{A}_{n-3}$ : $n$-pt bi-adjoint $\phi^{3}$ trees (dual to triangulations of $n$-gon)


Cyclohedron $\mathcal{B} / \mathcal{C}_{n-1}: n$-pt tadpole diagrams (cent. sym. triangulations of $2 n$-gon)


What about $\mathcal{D}_{n}$ (last family with an $n$ )? too many facets/variables? "cut in half" $\rightarrow$ $\overline{\mathcal{D}}_{n}$ polytope : $n$-pt one-loop $\phi^{3}$ (including tadpoles etc.) [Arkani-Hamed, SH, Salvatori, Thomas]



Encodes "combinatorial factorization": each facet is product of lower-dim polytopes


## Planar basis of (tree) kinematic space

$\mathcal{K}_{n}$ : spanned by Mandelstam variables $s_{i j}:=\left(p_{i}+p_{j}\right)^{2 \text { 's subject to momentum }}$ conservation, $\sum_{j \neq i} s_{i j}=0 \Longrightarrow \operatorname{dim} \mathcal{K}_{n}=\binom{n}{2}-n=\frac{n(n-3)}{2}($ for $D \geq n-1)$

Planar basis: $\frac{n(n-3)}{2} X_{a, b}:=\left(p_{a}+\cdots+p_{b-1}\right)^{2} \leftrightarrow$ facets of $\mathcal{A}_{n-3}$ cubic trees $\leftrightarrow$ vertices of $\mathcal{A}_{n-3}$ (trees with $d$ propagators $\leftrightarrow$ co-dim $d$ faces)

$$
\begin{aligned}
& \text { e.g. } \quad\left\{X_{13}=s, X_{24}=t\right\} \text { for } n=4 \\
& \left\{X_{13}=s_{12}, X_{24}=s_{23}, \cdots, X_{52}=s_{51}\right\} \text { for } n=5 \\
& \left\{X_{13} \cdots, X_{62}, X_{14}, X_{25}, X_{36}\right\} \text { for } n=6
\end{aligned}
$$



## Kinematic (tree) associahedra

Top-dim cone $\Delta_{n}: X_{a, b} \geq 0 \&(n-3)$-dim plane $H_{n}$ : for all non-adjacent $i<j \neq n$ impose $-s_{i, j}=X_{i, j}+X_{i+1, j+1}-X_{i, j+1}-X_{i+1, j}=c_{i, j}>0$ (positive const.)
$\Longrightarrow \Delta_{n} \cap H_{n}=\mathcal{A}_{n-3}$ [Arkani-Hamed, SH, Bai, Yan] $\rightarrow$ a discrete version of wave eq in $1+1$ $\operatorname{dim}$ (factorization from causal diamonds etc.) [Nima's talk at Amplitudes 2019]


$$
\begin{gathered}
\text { e.g. } \mathcal{A}_{1}=\{s>0, t>0\} \cap\{-u=\text { const }>0\} \\
\mathcal{A}_{2}=\left\{X_{13}, \cdots, X_{25}>0\right\} \cap\left\{-s_{13}=c_{13},-s_{14}=c_{14},-s_{24}=c_{24}\right\}
\end{gathered}
$$




## Canonical form \& $\phi^{3} \mathrm{amps}$

Unique form for any polytope (\& beyond) $\mathcal{P}$ : $\Omega^{(d)}(\mathcal{P})$ has only simple pole on $\partial \mathcal{P}$, with Res $=\Omega^{(d-1)}(\partial \mathcal{P})$ (recursive def.); canonical function $\underline{\Omega}_{X}(\mathcal{P}) \equiv \Omega(\mathcal{P}) /\left(d^{d} X\right)$

Key: $\Omega\left(\mathcal{A}_{n-3}\right)=$ pullback of scattering form to $H_{n} \propto$ planar $\phi^{3}$ tree
e.g. $\Omega\left(\mathcal{A}_{1}\right)=\left.\left(\frac{d s}{s}-\frac{d t}{t}\right)\right|_{-u=c>0}=\left(\frac{1}{s}+\frac{1}{t}\right) d s$
$\Omega\left(\mathcal{A}_{2}\right)=\left.\left(d \log X_{13} \wedge d \log X_{14}-\cdots\right)\right|_{H_{5}}=\left(\frac{1}{X_{13} X_{14}}+\cdots+\frac{1}{X_{25} X_{35}}\right) d^{2} X$

## Canonical form \& $\phi^{3} \mathrm{amps}$

Unique form for any polytope (\& beyond) $\mathcal{P}$ : $\Omega^{(d)}(\mathcal{P})$ has only simple pole on $\partial \mathcal{P}$, with Res $=\Omega^{(d-1)}(\partial \mathcal{P})$ (recursive def.); canonical function $\underline{\Omega}_{X}(\mathcal{P}) \equiv \Omega(\mathcal{P}) /\left(d^{d} X\right)$

Key: $\Omega\left(\mathcal{A}_{n-3}\right)=$ pullback of scattering form to $H_{n} \propto$ planar $\phi^{3}$ tree e.g. $\Omega\left(\mathcal{A}_{1}\right)=\left.\left(\frac{d s}{s}-\frac{d t}{t}\right)\right|_{-u=c>0}=\left(\frac{1}{s}+\frac{1}{t}\right) d s$ $\Omega\left(\mathcal{A}_{2}\right)=\left.\left(d \log X_{13} \wedge d \log X_{14}-\cdots\right)\right|_{H_{5}}=\left(\frac{1}{X_{13} X_{14}}+\cdots+\frac{1}{X_{25} X_{35}}\right) d^{2} X$

Geometric picture: FD expansion $=$ a particular triangulation of $\mathcal{A}_{n-3}^{*}$ other triangulations $\rightarrow$ new formulas \& efficient recursions for $m_{n}^{\phi^{3}}$


Hidden symmetry of $\phi^{3} \mathrm{amps}$ (invisible in FD's), analog of dual conformal symmetry of $\mathcal{N}=4$ SYM (but no SUSY/integrability), becomes manifest by geometry!

## B/C \& D: one-loop amps [Arkani-Hamed, SH, Salvatori, Thomas]

All finite-type cluster polytopes have ABHY realizations [Thomas et al]; for rank $d$ with $N$ facets (cluster variables) $X_{\alpha} \geq 0, N-d$ conditions like $X+X-X-X=c \Longrightarrow$ $d$-dim polytope, with boundaries "factorizing" into lower ABHY polytopes!

## B/C \& D: one-loop amps [Arkani-Hamed, SH, Salvatori, Thomas]

All finite-type cluster polytopes have ABHY realizations [Thomas et al]; for rank $d$ with $N$ facets (cluster variables) $X_{\alpha} \geq 0, N-d$ conditions like $X+X-X-X=c \Longrightarrow$ $d$-dim polytope, with boundaries "factorizing" into lower ABHY polytopes!
$\mathcal{B}_{n-1} / \mathcal{C}_{n-1}: N=n(n-1)$ facets $\sim \mathcal{A} \times \mathcal{B} / \mathcal{C} \rightarrow \underline{\Omega}(\mathcal{B} / \mathcal{C})=$ sum of tadpole diagrams
$\mathcal{D}_{n}: N=n^{2}$ facets $\partial \mathcal{D} \sim \mathcal{D} \times \mathcal{A}+\mathcal{A} \times \mathcal{D}+\mathcal{A} \quad$ (fact. + forward limit of $(n+2)$-pt tree) (after slicing along "tadpole plane") $\rightarrow \underline{\Omega}\left(\overline{\mathcal{D}}_{n}\right)=$ 1-loop $\phi^{3}$ integrand


Triangulations $\rightarrow$ new recursion for 1-loop amps $\rightarrow$ expose hidden sym. of loop $\phi^{3}$

## Outline

## (1) Tree \& loops in $\phi^{3}$ from cluster polytopes

2 Stringy canonical forms \& scattering equations

## 3 Binary realization \& generalized string integrals

## Scattering equations \& push-forward

An well-known associahedron: compactification of moduli space of open-string worldsheet $\mathcal{M}_{0, n}^{+}:=\left\{z_{1}<z_{2}<\cdots<z_{n}\right\} / \mathrm{SL}(2, \mathbb{R})$ [Deligne, Mumford] (more later)

Pullback scattering equations on $H_{n}$ : a diffeomorphism from $\overline{\mathcal{M}}_{0, n}^{+}$to $\mathcal{A}_{n-3}$ :


## Scattering equations \& push-forward

An well-known associahedron: compactification of moduli space of open-string worldsheet $\mathcal{M}_{0, n}^{+}:=\left\{z_{1}<z_{2}<\cdots<z_{n}\right\} / \operatorname{SL}(2, \mathbb{R})$ [Deligne, Mumford] (more later)

Pullback scattering equations on $H_{n}$ : a diffeomorphism from $\overline{\mathcal{M}}_{0, n}^{+}$to $\mathcal{A}_{n-3}$ :


Diffeomorphism $A \rightarrow B \Longrightarrow$ pushforward $\Omega(A) \rightarrow \Omega(B)$ [Arkani-Hamed, Bai, Lam]

$$
y=f(x) \quad \Longrightarrow \quad \Omega(B)_{y}=\sum_{x=f^{-1}(y)} \Omega(A)_{x}
$$

$m_{n}^{\phi^{3}}=\underline{\Omega}\left(\mathcal{A}_{n-3}\right)$ as pushforward $\sum_{\text {sol. }} \Omega\left(\overline{\mathcal{M}}_{0, n}^{+}\right) \rightarrow$ geometric origin of CHY ${ }_{\text {[ABHY] }}$
Is this special to strings, or is it general for polytopes \& canonical forms?

## Stringy canonical forms [Arkani-Hamed, SH, Lam]

Any polytope $\mathcal{P} \rightarrow$ integrals as $\alpha^{\prime}$-deformation of canonical form $\Omega(\mathcal{P})$

- New way of computing $\Omega(\mathcal{P})$ in the $\alpha^{\prime} \rightarrow 0$ limit \& finite- $\alpha^{\prime}$ extension of it
- $\Omega(\mathcal{P})$ obtained as a push-forward using the SE map that appear in $\alpha^{\prime} \rightarrow \infty$ !


## Stringy canonical forms [Arkani-Hamed, $S H$, Lam]

Any polytope $\mathcal{P} \rightarrow$ integrals as $\alpha^{\prime}$-deformation of canonical form $\Omega(\mathcal{P})$

- New way of computing $\Omega(\mathcal{P})$ in the $\alpha^{\prime} \rightarrow 0$ limit \& finite- $\alpha^{\prime}$ extension of it
- $\Omega(\mathcal{P})$ obtained as a push-forward using the SE map that appear in $\alpha^{\prime} \rightarrow \infty$ !

Consider integral over $\mathbb{R}_{+}^{d}=\left\{0<x_{i}<\infty \mid i=1, \cdots d\right\}$ with regulators

$$
\mathcal{I}_{P}(\mathbf{X}, c):=\left(\alpha^{\prime}\right)^{d} \int_{0}^{\infty} \frac{d x_{1}}{x_{1}} \cdots \frac{d x_{d}}{x_{d}} x_{1}^{\alpha^{\prime} X_{1}} \cdots x_{d}^{\alpha^{\prime} X_{d}} P(\mathbf{x})^{-\alpha^{\prime} c}
$$

with $X_{i}>0, c>0 \&$ positive polynomial $P(\mathbf{x})$, e.g. $\int_{0}^{\infty} \frac{d x}{x} x^{X}(1+x)^{-c}$
Key: consider Newton polytope of $P$ [Arkani-Hamed, Bai, Lam]:
$P(\mathbf{x}):=\sum_{\alpha} p_{\alpha} \mathbf{x}^{\mathbf{n}_{\alpha}} \rightarrow N(P)$ is the convex hull of (exponent vectors) $\mathbf{n}_{\alpha} \in \mathbb{Z}^{d}$
e.g. $N(1+2 x)=[0,1], N(1+x+3 x y)=\operatorname{conv}[(0,0),(1,0),(1,1)]$,
$N\left(1+2 x y+y^{2}+x z^{3}+\cdots\right)=\boldsymbol{\operatorname { c o n v }}[(0,0,0),(1,1,0),(0,2,0),(1,0,3), \cdots]$

## Newton polytope \& SE map

Theorem [Arkani-Hamed, SH, Lam] (1). $\mathcal{I}_{P}$ converges iff $\mathbf{X}$ is inside top-dim $c N(P)$,

$$
\lim _{\alpha^{\prime} \rightarrow 0} \mathcal{I}_{P}=\underline{\Omega}_{\mathbf{x}}(c N(P))
$$

3 (2). The scattering-eq map is a diffeomorphism from $\mathbb{R}_{+}^{d}$ to (interior of) $c N(P)$

$$
\mathrm{SE}: \quad d \log \left(\prod_{i} x_{i}^{X_{i}} P^{-c}\right)=0 \Longrightarrow \text { map : } \quad X_{i}=x_{i} \frac{c}{P} \frac{\partial P}{\partial x_{i}},
$$

$\Longrightarrow$ Pushforward of $\omega:=\prod_{i=1}^{d} \frac{d x_{i}}{x_{i}}$, by summing over all solutions of SE

$$
\sum_{\text {sol. }} \omega=\Omega(c N(P))=\underline{\Omega}(c N(P)) d^{d} \mathbf{X}
$$

e.g. for $\int_{0}^{\infty} \frac{d x}{x} x^{X}(1+x)^{-c}, c N(P)=[0, c] \rightarrow$ leading order $\frac{1}{X}+\frac{1}{c-X}$

SE map $X=c \frac{x}{1+x} \Longrightarrow$ pushforward $\left.\frac{d x}{x}\right|_{x=\frac{X}{c-X}}=d X\left(\frac{1}{X}+\frac{1}{c-X}\right)$
Prototype of stringy canonical form \& the phenomenon $\alpha^{\prime} \rightarrow 0$ vs. $\alpha^{\prime} \rightarrow \infty$ !

## Minkowski sum

Trivial to generalize to multiple polynomials (first consider rational $c_{I}$ )

$$
\mathcal{I}_{\mathcal{P}}(\mathbf{X}, \mathbf{c}):=\left(\alpha^{\prime}\right)^{d} \int_{0}^{\infty} \prod_{i=1}^{d} \frac{d x_{i}}{x_{i}} x_{i}^{\alpha^{\prime} X_{i}} \prod_{I} P_{I}(x)^{-\alpha^{\prime} c_{I}}
$$

$N\left(\prod_{I} P_{I}(x)^{-\alpha^{\prime} c_{I}}\right)$ is the Minkowski sum $c_{1} N\left(P_{1}\right) \oplus c_{2} N\left(P_{2}\right) \oplus \cdots$ (recall $\left.c_{1} A \oplus c_{2} B:=\left\{c_{1} \mathbf{a}+c_{2} \mathbf{b} \mid \mathbf{a} \in A, \mathbf{b} \in B\right\}\right)$.
$\mathcal{I}_{\mathbf{P}}$ converges when $\mathbf{X}$ is inside $\mathcal{P}:=\oplus_{I} c_{I} N\left(P_{I}\right), \&$ leading order $=\underline{\Omega}_{\mathbf{X}}(\mathcal{P})$.


Scattering equations: $\alpha^{\prime} \rightarrow 0$ vs. $\alpha^{\prime} \rightarrow \infty$

General SE: for any $\mathcal{I}_{\mathcal{P}}$, scattering-eq map is a diffeomorphism to Minkowski-sum $\mathcal{P}$

$$
\text { SE : } \quad d \log \left(\prod_{i} x_{i}^{X_{i}} \prod_{I} P_{I}^{-c_{I}}\right)=0 \Longrightarrow \text { map : } \quad \mathbf{X}=\sum_{I} c_{I} \frac{\partial \log P_{I}}{\partial \log \mathbf{x}},
$$

The $\alpha^{\prime} \rightarrow 0$ limit of $\mathcal{I}_{\mathcal{P}}=\underline{\Omega}(\mathcal{P})=$ pushforward using SE from $\alpha^{\prime} \rightarrow \infty$ :

$$
\lim _{\alpha^{\prime} \rightarrow 0} d^{d} \mathbf{X} \mathcal{I}_{\mathcal{P}}=\sum_{\text {sol. }} \omega \quad \Leftrightarrow \quad \int \omega \prod \delta\left(\mathbf{X}-\sum_{I} c_{I} \frac{\partial \log P_{I}}{\partial \log \mathbf{x}}\right)=\underline{\Omega}(\mathcal{P}) .
$$

For any polytope, low-energy limit of stringy canonical form agrees with pushforward /CHY formula from saddle points in the high-energy limit [Gross, Mende]

This has nothing to do with actual strings per se, rather a general phenomenon.

Applying stringy canonical form to ABHY $\mathcal{A}_{n-3} \rightarrow$ discover open-string integral of $\Omega\left(\overline{\mathcal{M}}_{0, n}^{+}\right) \&$ "Koba-Nielsen" factor as regulator:

$$
\mathcal{I}_{n}^{\text {disk }}(\{X\}):=\left(\alpha^{\prime}\right)^{n-3} \int_{\overline{\mathcal{M}}_{0, n}^{+}} \Omega\left(\overline{\mathcal{M}}_{0, n}^{+}\right) \prod_{a<b}\left|z_{a}-z_{b}\right|^{\alpha^{\prime} s_{a, b}}
$$

The field-theory limit of $\mathcal{I}_{n}^{\text {disk }}=\phi^{3}$ tree amps, $\underline{\Omega}\left(\mathcal{A}_{n-3}\right)$; also computed by pushforward using CHY scattering equations (from Gross-Mende limit $\alpha^{\prime} \rightarrow \infty$ )

$$
\sum_{b \neq a} \frac{s_{a, b}}{z_{a}-z_{b}}=0, \quad a=1,2, \cdots, n,
$$

e.g. SE map for $\mathcal{I}_{\text {pentagon }} \rightarrow$ ABHY

$$
\mathcal{A}_{2} \Longrightarrow \quad \sum_{2 \text { sol. }} \frac{d x}{x} \frac{d y}{y}=\underline{\Omega}\left(\mathcal{A}_{2}\right)
$$



Similarly $\Omega_{\alpha^{\prime}}$ for ABHY $\mathcal{B} / \mathcal{C} \& \mathcal{D} \rightarrow \alpha^{\prime}$-deformation of tadpoles \& 1-loop $\phi^{3}$ amps!

## Outline

## (1) Tree \& loops in $\phi^{3}$ from cluster polytopes

## 2 Stringy canonical forms \& scattering equations

(3) Binary realization \& generalized string integrals

## Binary realization of associahedra

Polytopal realization of"factorizing" combinatorics (highly non-trivial), but not fully rigid $\rightarrow$ binary realization, i.e. with $0 \& 1$ ? $\rightarrow$ generalized string amps
type $\mathcal{A}$ : natural to consider $u$ eqs, 1 for each diagonal $u_{i, j}$ of $n$-gon

$$
1-u_{i, j}=\prod_{(k, l) \operatorname{cross}(i, j)} u_{k, l} \quad \text { or } \quad u_{i, j}+\prod_{\substack{k \in[i+1, j) \\ l \in[j+1, i)}} u_{k, l}=1
$$

e.g. $n=4,1-u_{1,3}=u_{2,4}(1 \mathrm{eq}) ; n=5,1-u_{1,3}=u_{2,4} u_{2,5} \&$ cyclic ( 3 independent)
note $u_{1,3} \rightarrow 0, u_{2,4}, u_{2,5} \rightarrow 1$ (decouple from $u$ eqs) $\rightarrow u_{1,4}+u_{3,5}=1(n=4)$


## $U$ space \& positive part [Arkani-Hamed, SH, Lam, Thomas]

Define $U$ space as solution space of $u$ eqs with $u \neq 0, \infty$ (open set)

- $U_{n}$ space is $n-3 \operatorname{dim}$ (only $\frac{n(n-3)}{2}-(n-3)$ of $u$ eqs are independent)
- $U$ has same boundary structures as $\mathcal{A}_{n-3}$ assoc. (purely algebraically, defined over any $\mathbb{F}$ ): any $u_{i, j} \rightarrow 0$, all incompatible $u_{k, l} \rightarrow 1 \rightarrow U_{L} \times U_{R}$



## $U$ space \& positive part [Arkani-Hamed, SH, Lam, Thomas]

Define $U$ space as solution space of $u$ eqs with $u \neq 0, \infty$ (open set)

- $U_{n}$ space is $n-3 \operatorname{dim}$ (only $\frac{n(n-3)}{2}-(n-3)$ of $u$ eqs are independent)
- $U$ has same boundary structures as $\mathcal{A}_{n-3}$ assoc. (purely algebraically, defined over any $\mathbb{F}$ ): any $u_{i, j} \rightarrow 0$, all incompatible $u_{k, l} \rightarrow 1 \rightarrow U_{L} \times U_{R}$

$u>0 \Longrightarrow 0<u<1$ defines positive part of $U_{n}: U_{n}^{+}$
$U_{n}^{+}$is a (curvy) $\mathcal{A}_{n-3}$, e.g. $U_{5}^{+}$is a curvy pentagon



## Cross-ratios \& moduli space

The $u$ eqs $\Longrightarrow\binom{n}{4}$ eqs $\Pi u+\Pi u=1$ (for ordered $a, b, c, d$ ):

$$
[a, b \mid c, d]+[b, c \mid d, a]=1, \quad[a, b \mid c, d]:=\prod_{i \in[a, b), j \in[c, d)} u_{i, j},
$$

(special case: $u_{i, j}=[i, i+1 \mid j, j+1]$ ) also $[a, b \mid c, e][a, b \mid e, d]=[a, b \mid c, d]$

## Cross-ratios \& moduli space

The $u$ eqs $\Longrightarrow\binom{n}{4}$ eqs $\prod u+\prod u=1$ (for ordered $a, b, c, d$ ):

$$
[a, b \mid c, d]+[b, c \mid d, a]=1, \quad[a, b \mid c, d]:=\prod_{i \in[a, b), j \in[c, d)} u_{i, j},
$$

(special case: $u_{i, j}=[i, i+1 \mid j, j+1]$ ) also $[a, b \mid c, e][a, b \mid e, d]=[a, b \mid c, d]$
$\rightarrow$ exactly constraints satisfied by cross ratios of $n$ points on $\mathbb{P}^{1}$

$$
[a, b \mid c, d]=\frac{(a d)(b c)}{(a c)(b d)}=\frac{\left(z_{a}-z_{d}\right)\left(z_{b}-z_{c}\right)}{\left(z_{a}-z_{c}\right)\left(z_{b}-z_{d}\right)}
$$

$\Longrightarrow U$ space is an invariant way to parametrize $\mathcal{M}_{0, n}$ (dihedral coordinates of [Brwon])

- For $U_{n}^{+} \sim \mathcal{M}_{0, n}^{+}$, we have $0<[a, b \mid c, d]<1 \Longrightarrow n$ points are ordered
- $U(\mathbb{R})$ has $(n-1)!/ 2$ connected components (each one is an $U_{n}^{+}$for that ordering)
- For $U(\mathbb{C})$, monomial transform. $\rightarrow S_{n}$ automorphism (permutations of $n$ points)


## General $U$ space \& (finite-type) cluster algebra [Arkani-Hamed, SH, Lam, Thomas]

Generalizes to all finite-type cluster algebra: needs compatibility degree $\alpha \| \beta=0,1$ for $\mathcal{A}$, now also 2 for $\mathcal{B}, \mathcal{C}, \mathcal{D}$ (\& 3 for exceptional cases)

$$
1-u_{\alpha}=\prod_{\beta} u_{\beta}^{\alpha \| \beta}, \quad \forall \alpha \quad(N \text { eqs for } N \text { variables })
$$

$\Longrightarrow d$-dim $U$ space: "algebraic cluster polytopes" $\rightarrow$ applications in cluster algebra

General $U$ space \& (finite-type) cluster algebra [Arkani-Hamed, SH, Lam, Thomas]

Generalizes to all finite-type cluster algebra: needs compatibility degree $\alpha \| \beta=0,1$ for $\mathcal{A}$, now also 2 for $\mathcal{B}, \mathcal{C}, \mathcal{D}$ ( \& 3 for exceptional cases)

$$
1-u_{\alpha}=\prod_{\beta} u_{\beta}^{\alpha \| \beta}, \quad \forall \alpha \quad(N \text { eqs for } N \text { variables })
$$

$\Longrightarrow d$-dim $U$ space: "algebraic cluster polytopes" $\rightarrow$ applications in cluster algebra

- $u$ are related to special $X$ var. (same num. as $A$ var.) [Fomin, Zelevinski]
- $\left\{u, u^{-1}\right\}$ generate cluster algebra mod torus action
- $\Pi u+\Pi u=1 \leftrightarrow$ exchange relation ( $u$ eqs $\leftrightarrow$ primitive mutations [Yang, Zelevinski])
$u>0$ again cut out a curvy cluster polytope: e.g. $U^{+}(\mathcal{B}), U^{+}(\mathcal{C})$ are cyclohedra $U^{+}\left(\mathcal{D}_{n}\right)$ : curvy polytope with facets $\sim \mathcal{A}_{m} \times \mathcal{D}_{n-1-m}+\mathcal{A}_{n-1}$ etc.

Again $U(\mathbb{R})$ tiled by different "orderings", e.g. $\mathcal{B}_{2} / \mathcal{C}_{2}: 4$ hexagons +12 pentagons

## Generalized string integrals on $U$ space

The most natural integral over $U^{+}$with regulators at all boundaries $u_{I} \rightarrow 0$ :

$$
\mathcal{I}^{U^{+}}(\{X\}):=\left(\alpha^{\prime}\right)^{d} \int_{U^{+}} \Omega^{(d)}\left(U^{+}\right) \prod_{I=1}^{N} u_{I}^{\alpha^{\prime} X_{I}}
$$

For $\mathcal{A}_{n-3} \rightarrow \mathcal{I}_{n}^{\text {disk }} ;$ all generalized open-string integrals reminiscent string amps:

- Stringy canonical form for ABHY: $\lim _{\alpha^{\prime} \rightarrow 0}=$ pushforward $=\underline{\Omega}$ of ABHY
- Meromorphic with poles of the form $X_{I}=0,-1,-2, \cdots$
- Channel-duality \& exponential soft at UV
- Magic factorization at massless poles, $X_{I}=0$, for finite $\alpha^{\prime}$ !

For $\mathcal{I}_{n}^{\text {disk }}$, self-factorization at massless poles: as $X_{i, j} \rightarrow 0, u_{i, j} \rightarrow 0 \Longrightarrow$ by $u$ eqs the Koba-Nielsen factor $\prod_{i, j} u_{i, j}^{\alpha^{\prime} X_{i, j}}$ factorizes into $L$ and $R$ part:

$$
\operatorname{Res}_{X_{i, j}=0} \mathcal{I}_{n}^{\mathrm{disk}}=\int_{\partial_{i j} \mathcal{A}_{n-3}} \partial_{i j}\left(\Omega \prod u^{X}\right)=\mathcal{I}_{L} \times \mathcal{I}_{R}
$$

e.g. at $X_{1,3} \rightarrow 0, \mathcal{I}_{5}^{\text {disk }} \rightarrow \mathcal{I}_{4}^{\text {disk }}=\int_{0}^{1} d \log \frac{u}{1-u} u^{X_{1 m 4}}(1-u)^{X_{3,5}}$ (Veneziano amp)

General integrals " factorize" at $X=0$ for finite $\alpha^{\prime}$ e.g. $\mathcal{I}_{\mathcal{D}_{n}} \rightarrow \mathcal{I}_{\mathcal{A}} \times \mathcal{I}_{\mathcal{D}} \& \mathcal{I}_{\mathcal{A}_{n-1}}$


For $\mathcal{I}_{n}^{\text {disk }}$, self-factorization at massless poles: as $X_{i, j} \rightarrow 0, u_{i, j} \rightarrow 0 \Longrightarrow$ by $u$ eqs the Koba-Nielsen factor $\prod_{i, j} u_{i, j}^{\alpha^{\prime} X_{i, j}}$ factorizes into $L$ and $R$ part:

$$
\operatorname{Res}_{X_{i, j}=0} \mathcal{I}_{n}^{\mathrm{disk}}=\int_{\partial_{i j} \mathcal{A}_{n-3}} \partial_{i j}\left(\Omega \prod u^{X}\right)=\mathcal{I}_{L} \times \mathcal{I}_{R}
$$

e.g. at $X_{1,3} \rightarrow 0, \mathcal{I}_{5}^{\text {disk }} \rightarrow \mathcal{I}_{4}^{\text {disk }}=\int_{0}^{1} d \log \frac{u}{1-u} u^{X_{1 m 4}}(1-u)^{X_{3,5}}$ (Veneziano amp)

General integrals " factorize" at $X=0$ for finite $\alpha^{\prime}$ e.g. $\mathcal{I}_{\mathcal{D}_{n}} \rightarrow \mathcal{I}_{\mathcal{A}} \times \mathcal{I}_{\mathcal{D}} \& \mathcal{I}_{\mathcal{A}_{n-1}}$



Natural to integrate $\Omega\left(U_{\alpha}^{+}\right)$in $U_{\beta}^{+}$(for $\mathcal{A} \rightarrow Z(\alpha \mid \beta)$ [Carrasco, Mafra, Schlotterer]) closed-string integrals for pair of orderings in $U(\mathbb{C})$ (intersection num. [Mizera])

For $\mathcal{A}$, basis integrals for any massless string tree amps (gluons/gravitons,...) [Schlotterer et al.] [SH, Teng, Zhang] Q: physical meaning of gen. string integrals for other finite types?

## Arithemetic geometry for $U$ space

Point count in $U_{F_{p}}$ for a prime $p \Longrightarrow$ topological properties of $U$ [Weil conjectures..]
For $\mathcal{A}_{n-3}$, we know it is hyperplane arr. $\Longrightarrow$ polynomial count $N(p)=(p-2)(p-3) \cdots(p-n+2) \Longrightarrow$ (twisted) cohomology of $\mathcal{M}_{0, n}(\mathbb{C} / \mathbb{R})!$ [Zaslavsky]

- $|N(-1)|=$ num. of connected components/orderings: $\frac{(n-1)!}{2}$
- $|N(0)|=$ num. of independent $d$ log top forms: $(n-2)$ ! [Kleiss, Kuijff (generally $\left|H^{k}\right|$ )
- $|N(1)|=\chi=\left|H_{\text {twisted }}^{n-3}(U)\right|=$ num. of saddle points: $(n-3)$ ! [BCJ/CHY]


## Arithemetic geometry for $U$ space

Point count in $U_{F_{p}}$ for a prime $p \Longrightarrow$ topological properties of $U$ [Weil conjectures...]
For $\mathcal{A}_{n-3}$, we know it is hyperplane arr. $\Longrightarrow$ polynomial count $N(p)=(p-2)(p-3) \cdots(p-n+2) \Longrightarrow$ (twisted) cohomology of $\mathcal{M}_{0, n}(\mathbb{C} / \mathbb{R})$ ! [Zaslavsky]

- $|N(-1)|=$ num. of connected components/orderings: $\frac{(n-1)!}{2}$
- $|N(0)|=$ num. of independent $d$ log top forms: $(n-2)]_{[K l e i s s, ~ K u i j f f] ~}$ (generally $\left|H^{k}\right|$ )
- $|N(1)|=\chi=\left|H_{\text {twisted }}^{n-3}(U)\right|=$ num. of saddle points: $(n-3)![\mathrm{BCJ} / \mathrm{CHY}]$

Also polynomials: $(p-n-1)^{n}$ for $\mathcal{B}_{n} \&(p-n-1)(p-3)(p-5) \cdots(p-2 n+1)$ for $\mathcal{C}_{n} \Longrightarrow$

|  | orderings | KK | $\mathrm{BCJ} /$ solutions |
| :---: | :---: | :---: | :---: |
| $\mathcal{B}_{n}$ | $(n+2)^{n}$ | $(n+1)^{n}$ | $n^{n}$ |
| $\mathcal{C}_{n}$ | $(2 n)!!\frac{n+2}{2}$ | $(2 n-1)!!(n+1)$ | $\frac{(2 n)!!}{2}$ |

Beyond $\mathcal{A B C}$ : quasi-polynomials? e.g. 25 regions for $\mathcal{G}_{2}, 547$ regions for $\mathcal{D}_{4} \ldots$

## Summary \& outlook

- For any polytope, stringy canonical form $\Omega_{\alpha^{\prime}}$ provides $\alpha^{\prime}$-deformation scattering equations for $\alpha^{\prime} \rightarrow \infty$ (Gross-Mende) \& $\alpha^{\prime} \rightarrow 0$ (pushforward/CHY)
- ABHY realization: explains factorizing \& polytopal for $\phi^{3}$ tree \& 1-loop amps
- $\Omega_{\alpha^{\prime}}$ for ABHY $=$ generalized string integrals $\leftrightarrow$ binary realization


## Summary \& outlook

- For any polytope, stringy canonical form $\Omega_{\alpha^{\prime}}$ provides $\alpha^{\prime}$-deformation scattering equations for $\alpha^{\prime} \rightarrow \infty$ (Gross-Mende) \& $\alpha^{\prime} \rightarrow 0$ (pushforward/CHY)
- ABHY realization: explains factorizing \& polytopal for $\phi^{3}$ tree \& 1-loop amps
- $\Omega_{\alpha^{\prime}}$ for $\mathrm{ABHY}=$ generalized string integrals $\leftrightarrow$ binary realization
- All-loop scattering forms \& polytopes for $\phi^{3}$ ? gluons \& gravitons?
- Connections to $\mathcal{N}=4$ amplitudes [Arkani-Hamed, Lam, Spradlin]? Twistor strings?
- A unified geometric picture for amps \& beyond: AdS? cosmology?


## Thank you!

