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Part I: sketch recent work by Qi, Streicher, Lin, Maldacena, Zhao,
Susskind on a “post-OTOC” perspective on the butterfly effect and
gravity.

Part II: thoughts related to gravity and late-time chaos.



The size of an operator

We will work in the Hilbert space of N Majorana fermions satisfying

{ψa, ψb} = 2δab.

Then we say that e.g. ψ1 is an operator of size one, and ψ3ψ17ψ24 is an
operator of size three. The operator

O =
1√
2
ψ1 +

1√
2
ψ3ψ17ψ24

has probability 1/2 to have either of these sizes. For this example, the
expectation value of the size S(O) is two.

The size is a measure of the influence that an operator has on other
simple degrees of freedom. If the size is of order N, then O has an O(1)
influence on a macroscopic fraction of the degrees of freedom.
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Operator growth

The basic phenomenon underlying the butterfly effect in quantum
mechanics is that the operator ψ(t) = eiHtψe−iHt grows. For example, if

H =
1

2

∑
a<b<c<d

Jabcdψaψbψcψd ,

then

[H, ψ1] = −
∑

a<b<c

J1abc ψaψbψc

So a commutator with H turns a “size one” operator into “size three:”

1 1

Taking another commutator with H, each of these three can themselves
split into “size three” operators, making “size five” operators

1 11 1{ }, ,



1 1 1
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Proceeding further in this way, one
finds that at large N, the evolution
of ψ1(t) is equivalent to a quantum
particle moving on the graph at left,
where vertices correspond to fixed
operators.

The size is roughly the distance to
the root of the graph.

It grows exponentially, due to the lin-
early increasing degree of the graph.



Last fall, Qi and Streicher showed that at finite temperature, it is useful
to define a type of “renormalized size” of an operator

Sβ(O) = S(Oρ1/2)− S(ρ1/2)

where ρ = ρ(β) is the thermal density matrix.

This spring, Lin, Maldacena and Zhao found a nice description of Sβ(O)
in the bulk theory for AdS2, using previous work by Qi and Maldacena.
This resonated with ideas of Brown, Gharibyan, Streicher, Susskind,
Thorlacius, Zhao.

It will be convenient to view the space of operators as the space of states
in two copies of the system, L and R. Roughly,

O = Oij |i〉〈j | ↔ |O〉 = Oij |i〉L|j〉R .

Time evolution acts on the operator O and the state |O〉 as

O(t) = eiHtOe−iHt , |O(t)〉 = ei(HL−HR )t |O〉.



Last fall, Qi and Streicher showed that at finite temperature, it is useful
to define a type of “renormalized size” of an operator

Sβ(O) = S(Oρ1/2)− S(ρ1/2)

where ρ = ρ(β) is the thermal density matrix.

This spring, Lin, Maldacena and Zhao found a nice description of Sβ(O)
in the bulk theory for AdS2, using previous work by Qi and Maldacena.
This resonated with ideas of Brown, Gharibyan, Streicher, Susskind,
Thorlacius, Zhao.

It will be convenient to view the space of operators as the space of states
in two copies of the system, L and R. Roughly,

O = Oij |i〉〈j | ↔ |O〉 = Oij |i〉L|j〉R .

Time evolution acts on the operator O and the state |O〉 as

O(t) = eiHtOe−iHt , |O(t)〉 = ei(HL−HR )t |O〉.



Last fall, Qi and Streicher showed that at finite temperature, it is useful
to define a type of “renormalized size” of an operator

Sβ(O) = S(Oρ1/2)− S(ρ1/2)

where ρ = ρ(β) is the thermal density matrix.

This spring, Lin, Maldacena and Zhao found a nice description of Sβ(O)
in the bulk theory for AdS2, using previous work by Qi and Maldacena.
This resonated with ideas of Brown, Gharibyan, Streicher, Susskind,
Thorlacius, Zhao.

It will be convenient to view the space of operators as the space of states
in two copies of the system, L and R. Roughly,

O = Oij |i〉〈j | ↔ |O〉 = Oij |i〉L|j〉R .

Time evolution acts on the operator O and the state |O〉 as

O(t) = eiHtOe−iHt , |O(t)〉 = ei(HL−HR )t |O〉.



In the holographic description,
is an entangled "thermofield double"
state of two black holes.

|𝜌𝟣/𝟤⟩

|𝜌𝟣/𝟤⟩

In the holographic description,
is an entangled "thermofield double"
state of two black holes.

|𝜌𝟣/𝟤⟩

|𝜌𝟣/𝟤⟩



In the holographic description,
is an entangled "thermofield double"
state of two black holes.

|𝜌𝟣/𝟤⟩

|𝜌𝟣/𝟤⟩

In the holographic description,
is an entangled "thermofield double"
state of two black holes.

|𝜌𝟣/𝟤⟩

|𝜌𝟣/𝟤⟩



In the holographic description,
is an entangled "thermofield double"
state of two black holes.

|𝜌𝟣/𝟤⟩In the holographic description,
is an entangled "thermofield double"
state of two black holes.

|𝜌𝟣/𝟤⟩

|𝒪𝜌𝟣/𝟤⟩

is a state with some matter|𝒪𝜌𝟣/𝟤⟩

|𝜌𝟣/𝟤⟩|𝜌𝟣/𝟤⟩



In the holographic description,
is an entangled "thermofield double"
state of two black holes.

|𝜌𝟣/𝟤⟩In the holographic description,
is an entangled "thermofield double"
state of two black holes.

|𝜌𝟣/𝟤⟩ is a state with some|𝒪(𝑡)𝜌𝟣/𝟤⟩
boosted matter

|𝒪(𝑡)𝜌𝟣/𝟤⟩

𝑡

|𝜌𝟣/𝟤⟩|𝜌𝟣/𝟤⟩



In the holographic description,
is an entangled "thermofield double"
state of two black holes.

|𝜌𝟣/𝟤⟩

|𝜌𝟣/𝟤⟩

In the holographic description,
is an entangled "thermofield double"
state of two black holes.

|𝜌𝟣/𝟤⟩

|𝜌𝟣/𝟤⟩

is a state with some|𝒪(𝑡)𝜌𝟣/𝟤⟩
boosted matter

|𝒪(𝑡)𝜌𝟣/𝟤⟩

𝑡



What is the bulk formula for the size of the operator?
The definition of size we gave before becomes an operator acting on |O〉:

Ŝ =
1

2

N∑
i=1

(
iψ(L)

a ψ(R)
a − 1

)
.

Using this, in AdS2 gravity, Lin, Maldacena, Zhao showed that

Ŝ
∣∣
growing

= P+

where P+ is an integral of the stress tensor T−− along the other horizon:

ANE operator along here

This roughly confirms earlier discussion by Brown, Gharibyan, Streicher,
Susskind, Thorlacius, Zhao.
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Part II: comments related to gravity and
randomness



A uniquely quantum aspect of chaos:

𝐸

This irregular discrete set leads to erratic long-time behavior of
correlation functions. For example Z (β + it) =

∑
i e

−(β+it)Ei looks like
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In a holographic dual, it’s hard to imagine how smooth geometry can
lead to such a chaotic signal [Maldacena, Barbón, Rabinovici, . . . , Polchinski].



A simpler target for gravity

Even though any given Hamiltonian has erratic correlation functions, a
suitable average can be a smooth function that one can imagine
computing in gravity. For example

〈|Z (β + it)|2〉.

Averaged over 1, 10, 100, and 1000 samples, it looks like this

approaching a smooth function. So “averaged chaos” is simple enough
that one could imagine it arising from easy gravity calculations.



The double trumpet

In fact, as described in Steve Shenker’s talk, in JT gravity,

〈Z (β1)Z (β2)〉RMT =

This can be analytically continued in β1, β2 to give 〈|Z (β + it)|2〉RMT.

(1) This is not a classical solution, but JT gravity is simple enough
that we can take off-shell configurations seriously.

(2) It is a Euclidean (space-time) wormhole

ds2 = dσ2 + cosh2(σ)dτ 2

not an Einstein-Rosen (space only) kind of wormhole. It describes
correlation between partition functions, not entanglement of states.
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Puzzle and some questions

There can be no correlation between partition functions in a fixed
boundary theory, because then Z (β) is just a number. [Maldacena, Maoz,

Arkani-Hamed, Orgera, Polchinski]

The results discussed by Shenker and Witten earlier this week are only
consistent with JT gravity being interpreted as dual to an ensemble of
boundary theories. [Coleman]

1. Why don’t the wormholes contribute for a fixed boundary theory?
[Maldacena, Maoz, Arkani-Hamed, Orgera, Polchinski]

a. they don’t have to be solutions
b. they sometimes do give meaningful answers

2. Where does the erratic chaos come from for a fixed boundary theory?
[some ideas in Shenker’s talk]

3. Are there more quantum gravity theories like JT gravity that are
dual to ensemble averages of quantum systems, rather than specific
quantum systems? Is there something wrong with this?
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3d gravity

Maldacena and Maoz pointed out that in AdS3 gravity you can have very
simple Euclidean wormholes

ds2 = dσ2 + cosh2(σ)dΣ2

where Σ is a closed hyperbolic surface.

This is a quotient of hyperbolic 3-space, so it solves Einstein’s equations.



An analog of the double trumpet

A closer analog to the situation in JT gravity could be

Could pure 3d gravity be dual to some analog of random matrix theory
for 1+1 dimensional CFTs? (“Random CFT,” whatever that means?)
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What’s different about bulk theories that are dual to
specific boundary theories?

Possible necessary condition: need microstates that allow us to “break”
the double trumpet, see [Harlow, Jafferis] and earlier talk by Shenker.

One possible clue that UV properties of the bulk theory could be
important: the integral over the size of the neck of the double trumpet
includes a region where it is long and thin, so high energy bulk states
propagating around the thin tube will be relevant
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Thank you!


