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This morning Steve Shenker reported on random matrices and JT
gravity (Saad, Shenker, and Stanford, “JT Gravity as a Matrix
Integral” arXiv:1903.11115 ).

I will describe an extension of this work (Stanford and EW, “JT
Gravity And The Ensembles of Random Matrix Theory,”
arXiv:1907:xxxxx).
We generalized the story to include

* time-reversal symmetry

* fermions

* N = 1 supersymmetry
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In holographic duality, one describes a “boundary” theory on a
manifold X via a “bulk” theory on a manifold Y whose boundary
is X :

For given X , we sum over all of the Y ’s, compatible with general
principles.
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In the situation studied by Saad-Shenker-Stanford (S3), no
symmetry is assumed, and in particular there is no time-reversal
symmetry.

Hence X is oriented and also Y is oriented. The theory
on X is assumed to be a random hermitian matrix theory, and the
theory on Y is arguably the simplest possible theory of 2d gravity,
namely JT gravity:

I =

∫
Y
d2x
√
gφ(R + 2) + topological.

Apparently a true quantum mechanical system is dual to something
complicated, while a simple bulk system is dual to an average of
quantum systems, not to a specific, bona fide quantum system.
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A simple correspondence of JT gravity with a random matrix is
possible in part because JT gravity is so simple.

JT gravity is
one-loop exact because∫

Dφ exp(i

∫
Y
d2x
√
g φ(R + 2)) ∼ δ(R + 2).

In the work of S3, it is important that JT gravity on an orientable
manifold is not just 1-loop exact but tree-level exact, in the sense
that the 1-loop correction is trivial. That is why everything reduces
to computing volumes of moduli spaces, where the volumes are
defined by classical formulas with no 1-loop correction.
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In traditional random matrix theory of Wigner, Dyson, Mehta, ...,
unitary symmetries are not very important but time-reversal
symmetry is important.

Suppose for example that one has a
unitary symmetry g , say obeying g2 = 1. Then one diagonalizes g

as

(
I 0
0 −I

)
. The Hamiltonian H is then block diagonal in the

same basis, and in random matrix theory, the two blocks are
treated as independent random matrices.
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Time-reversal symmetry T is important in random matrix theory
because it cannot be treated that way.

There are two T-invariant
Dyson ensembles, according to whether T2 = 1 or T2 = −1. In the
former case, the symmetry is reduced from U(L) to SO(L) and the
Hamiltonian is a real symmetric matrix; in the latter case; it is
reduced to Sp(L) and the Hamiltonian is an antisymmetric tensor
of that group. So in all there are three traditional (Dyson)
ensembles in random matrix theory:

(1) H is an L× L hermitian matrix, symmetry U(L);

(2) H is an L× L real symmetric matrix, symmetry O(L);

(3) H is an antisymmetric tensor of Sp(L).
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In each case, we consider H as a random matrix with a distribution
given by ∫

DH exp (−LTr f (H))

for a suitable function f .

Each ensemble can be related to 2d
geometry by expanding in perturbation theory and using ’t Hooft’s
“ribbon graph” construction. The difference is that for a hermitian
matrix, one gets orientable 2-manifolds only, but in the other
cases, perturbation theory generates unorientable two-manifolds.
That is because for the T-invariant ensembles, the propagator has
a “twisted” term: 〈

HijH
kl
〉

= δki δ
l
j ± δkj δli .
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The hermitian matrix model would have only one 1-loop diagram
but the T-invariant models have two of them:

Following ’t Hooft, we make a two-manifold by gluing in an a disc
to each “index loop.” On the left, we glue in two discs, making an
orientable surface of Euler characteristic χ = 2 – a two-sphere. On
the right, we glue in one disc and make an unorientable surface of
χ = 1. It is a copy of RP2 or a “cross-cap.” Because RP2 has
smaller Euler characteristic, the diagram on the right is subleading
in the 1/L expansion (of order L instead of L2).
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The “twisted” diagram gets a + or − sign from the sign of the
“twisted” part of the propagator.

Thus in this example, the two
T-invariant ensembles differ by whether, in the corresponding sum
over two-geometries, one includes a factor (−1)nc where nc is the
number of “cross-caps.” This is true to all orders (Mulase and
Waldron, 2002). (The T-invariant ensembles were related to
unorientable two-geometries much earlier - Brezin and Neuberger
1990, Harris and Martinec 1990). The fact that the orthogonal
and symplectic ensembles are related to two-geometries without or
with the (−1)nc is analogous to what happens in open-string
theory with orthogonal or symplectic Chan-Paton factors.
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So we would like to compare the T-invariant Dyson ensembles to
JT gravity on possibly unorientable surfaces, without or with the
(−1)nc .

Here we run into something I mentioned before: on an
unorientable two-manifold, JT gravity is still 1-loop exact, but it is
no longer tree-level exact. We have to calculate a 1-loop
correction, but unfortunately there will not be time to explain this
calculation and instead I will just state what the answer turns out
to be.
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Let us first describe what happens in the orientable case.

Solutions
of JT gravity are “hyperbolic surfaces,” that is two-manifolds with
constant negative curvature R = −2. Such a surface can be built
by gluing together three-holed spheres:

For each circle on which one glues, there are two moduli, namely a
“length” parameter a and a “twist” parameter %.
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In the orientable case, the measure on moduli space that comes
from JT gravity is the classical expression

µ =
∏
i

daid%i

that one can read off from the classical action at tree-level.



In the unorientable case, one can still make a hyperbolic
two-manifold by gluing of simple building blocks, but one needs to
allow a new kind of building block with one or two boundaries
closed off by a cross-cap:

Such a boundary still has a length parameter a, but it has no
gluing parameter %.
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Including the 1-loop correction, the measure on moduli space that
comes from JT gravity is
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coth
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4
daα,

where aα are the length parameters of the cross-caps.

The factor∏
α

1
2 coth aα

4 is the 1-loop correction. (This measure was first
obtained in another way by P. Norbury.) Note that there is a
divergence in the volume (obtained by integrating the measure µ
over moduli space) because of a daα/aα singularity for aα → 0.
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To compare to the matrix model, following Saad-Shenker-Stanford,
it is most straightforward to consider not a closed two-manifold
but a two-manifold that has “trumpets” glued on:

Near the outer boundary of each “trumpet” there propagates a
Schwarzian mode, familiar from the SYK model. One chooses the
matrix potential to match the density of states

ρ(E ) = eS0 sinh
√
E

that comes from the Schwarzian path integral. The JT path
integral on such a manifold is supposed to compute a contribution
to a correlator of matrix partition functions Tr e−βH or
(equivalently) matrix resolvents Tr 1

x−H .
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To check whether this still works with T-invariance, we want to
compare the 1/L or e−S0 expansion of a matrix integral for a
T-invariant Dyson ensemble to the JT path integral on an
unorientable two-manifold.

The leading order contribution simply
comes from a trumpet with a cross-cap glued in:
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By expanding the “loop equations” of the matrix model to the first
nontrivial order, i.e. the first order beyond the leading saddle
point), one formally recovers precisely the same formula. This is a
formal comparison because the integral diverges. (In the matrix
model, one can regularize the divergence by cutting off the density
of states eS0 sinh

√
E at large E . A nice cutoff in JT gravity is not

so obvious.)



The JT path integral on this manifold is (with β the regularized
diameter of the exterior boundary)∫ ∞

0
dbZT

JT(b, β)
1

2
coth

b

4
.

By expanding the “loop equations” of the matrix model to the first
nontrivial order, i.e. the first order beyond the leading saddle
point), one formally recovers precisely the same formula.

This is a
formal comparison because the integral diverges. (In the matrix
model, one can regularize the divergence by cutting off the density
of states eS0 sinh

√
E at large E . A nice cutoff in JT gravity is not

so obvious.)



The JT path integral on this manifold is (with β the regularized
diameter of the exterior boundary)∫ ∞

0
dbZT

JT(b, β)
1

2
coth

b

4
.

By expanding the “loop equations” of the matrix model to the first
nontrivial order, i.e. the first order beyond the leading saddle
point), one formally recovers precisely the same formula. This is a
formal comparison because the integral diverges.

(In the matrix
model, one can regularize the divergence by cutting off the density
of states eS0 sinh

√
E at large E . A nice cutoff in JT gravity is not

so obvious.)



The JT path integral on this manifold is (with β the regularized
diameter of the exterior boundary)∫ ∞

0
dbZT

JT(b, β)
1

2
coth

b

4
.

By expanding the “loop equations” of the matrix model to the first
nontrivial order, i.e. the first order beyond the leading saddle
point), one formally recovers precisely the same formula. This is a
formal comparison because the integral diverges. (In the matrix
model, one can regularize the divergence by cutting off the density
of states eS0 sinh

√
E at large E . A nice cutoff in JT gravity is not

so obvious.)



A next step is to include fermions, with or without time-reversal,
but without supersymmetry.

Including fermions means including a
symmetry (−1)F which distinguishes fermions from bosons. Since
this is a unitary symmetry, it can be treated as I said before: one
diagonalizes it and treats the Hamiltonian as a random matrix in
each block. So including (−1)F symmetry does not force us to
consider new random matrix ensembles. In the random matrix
description, (−1)F symmetry just means we have two random
matrices, one for bosonic states and one for fermionic ones.
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Holographic duality means that if the boundary theory has
fermions, the bulk theory has a spin structure.

So including (−1)F

symmetry in the boundary theory means that in the bulk JT
gravity, one has to sum over spin structures. Comparing random
matrix theory to JT gravity means in this case matching some
factors of 2 that arise because in the matrix theory there are two
blocks with some factors of 2 that arise in summing over spin
structures. The most interesting part of the story is that in the
sum over spin structures, it is possible to include a topological field
theory; this can be matched with an anomaly in the boundary
theory. This part of the story is especially rich if one has T as well
as (−1)F, but we will not really have much time for that today.
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Instead of just including fermions (with or without T) it is more
interesting to consider a supersymmetric version of the model.

Thus now we hope to match super JT gravity to a supersymmetric
version of random matrix theory. One preliminary question here is
“what is JT supergravity?” A quick answer is this: JT gravity can
be defined as BF theory of the group SL(2,R), and analogously JT
supergravity is BF theory of the supergroup OSp(1|2).
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To apply random matrix theory to a supersymmetric model, new
random matrix ensembles are needed.

For the most basic case, let
us consider a supersymmetric model without T symmetry. After
putting (−1)F in block-diagonal form, the supercharge is

Q =

(
0 C
C † 0

)
,

where C is a complex matrix not subject to any constraint. If there
are L′ bosonic states and L′′ fermionic ones, then the symmetry
group is U(L′)× U(L′′), with one factor for bosons and one for
fermions. The matrix C is a bifundamental of U(L′)×U(L′′). This
symmetry group and representation corresponds to one of the 7
Altland-Zwirnbauer ensembles (1997). (We only understand the
correspondence to JT supergravity if L′ = L′′.) There are 10
standard ensembles in random matrix theory: 3 of Dyson and 7 of
Altland-Zwirnbauer.
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The canonical form of a bifundamental of U(L′)× U(L′) is
C = diag(λ1, λ2, · · · ) where the λi can be assumed to be all
positive, in contrast to Dyson ensembles where the random matrix
has positive or negative eigenvalues.

After “gauge-fixing” to put C
in canonical form, the measure for integration over the λi is

µ =
∏
i

λi
∏
j<k

|λ2
j − λ2

k |
L′∏

m=1

dλm.

To completely specify the model, we need to know the matrix
potential exp(−LTr f (C †C )) or (more usefully) the corresponding
saddle point which describes the limiting distribution of eigenvalues
for large L′.
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For a generic model in which the eigenvalue distribution goes all
the way down to λ = 0, one has

ρ(λ) ∼ 1√
λ

(λ small).

In the case of JT supergravity, by evaluating the
“super-Schwarzian” path integral, one finds that one wants

ρ(λ) = eS0
cosh

√
λ√

λ
.

So this completes the specification of the model. (The same
spectral curve, i.e. a model with the same density of states, has
been studied by P. Norbury, with a different starting point than
ours.)
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After finding the matrix model, one can go on to solve for the loop
equations.

They are similar to the loop equations of a hermitian
matrix model (and thus simpler than those of the other Dyson
ensembles). One of the more striking differences is that connected
correlators of n ≥ 3 resolvents〈

Tr
1

x1 − H
Tr

1

x2 − H
· · ·Tr 1

xn − H

〉
vanish in genus 0 (but not in higher orders). It turns out that this
has a nice explanation in JT supergravity.
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Like JT supergravity, JT supergravity is 1-loop exact on any
2-manifold, but it is tree-level exact on an orientable two-manifold.

If we consider JT supergravity without T symmetry, we are on
orientable two-manifolds only. The tree-level exactness means that
JT supergravity computes the volumes of supermoduli spaces, just
like JT gravity computes volumes of moduli spaces. It turns out
that it is possible to independently compute the volumes of
supermoduli spaces, by adapting to the supersymmetric context
the work of Maryam Mirzakhani on volumes of ordinary moduli
spaces. In this way, one can prove the equivalence of JT
supergravity to the matrix model.
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Mirzakhani’s basic idea was to build a surface with boundary Y by
gluing a three-holed sphere Σ onto a simpler surface Y ′:

𝑌'
𝑌'𝑌'

There are infinitely many choices of Σ, but there is a sum rule

1 =
∑

Σ

f (Σ),

where f (Σ) is a certain function of the moduli of Σ. (The earliest
version of this formula is due to McShane.)
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By inserting the identity 1 =
∑

Σ f (Σ) in the integral that defines
the volume of the moduli space, Mirzakhani was able to get a
recursion relation expressing the volume of the moduli space of
hyperbolic structures on Y in terms of the analogous volume for a
simpler surface Y ′.

Eynard and Orantin observed that her
recursion relation is the one associated to a hermitian matrix
model with a certain density of states, which at the time looked
rather random. The starting point of Saad-Shenker-Stanford was
the observation that the relevant density of states is precisely the
one that comes from the Schwarzian path integral.
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the observation that the relevant density of states is precisely the
one that comes from the Schwarzian path integral.
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All this has a superanalog: by imitating the purely bosonic proof,
one can get an identity 1 =

∑
Σ f (Σ) in the supersymmetric

context.

Inserting this identity in the integral that defines the
volumes of supermoduli spaces, one gets a recursion relation for
those volumes that turns out to be exactly the recursion relation
that comes from the Altland-Zwirnbauer ensemble with the density
of states derived from the super-Schwarzian. So this proves the
equivalence of JT supergravity to the matrix model.
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We can also consider JT supergravity with time-reversal symmetry.

It turns out that there are actually 8 variants of this theory
because of the possibility to include a bulk topological field theory.
These 8 models can be matched with 8 different random matrix
ensembles (always with the same density of states that comes from
the super-Schwarzian). The 8 ensembles are the 6
Altland-Zwirnbauer ensembles that have not been mentioned so
far, and the 2 T-invariant Dyson ensembles, which return for an
“encore.” On an unorientable manifold, JT supergravity is only
1-loop exact, not tree-level exact, so again one has to compute a
1-loop correction. In all 8 cases, one can match the JT
supergravity path integral with its 1-loop correction with what one
finds from the topological expansion of the matrix model. (In 6 of
the 8 cases, there is a “small cross-cap” divergence, as in bosonic
JT gravity with T symmetry.)
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As is usual in holographic duality, a topological field theory in the
bulk description must be matched to an anomaly in the realization
of global symmetries in the boundary.

That is true here, but
unfortunately there is not much time to explain it. I will only point
out that actually the super Schwarzian mode itself carries an
anomaly (because it contains an odd number of Majorana
fermions, namely 1) so the correct relation between the anomaly
coefficient of the topological field theory (TFT) and the matrix
model anomaly is

Matrix model anomaly = super Schwarzian anomaly
+ TFT anomaly coefficient.
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In summary, I have tried to give an overview of the fact that the
relation of JT gravity to a matrix model can be generalized to
include time-reversal, fermions, and supersymmetry.


