

Siegel paramodular forms

Applications to holography and quantum black holes

Based on
arXiv: 1611.04588 [hep-th]
arXiv: 1805.09336 [hep-th]
with Alex Belin, Joao Gomes and Christoph Keller

And work in progress with
Alex Belin, Christoph Keller and Beatrix Mühlmann

Our modern understanding of quantum gravity relies on Holography, in particular AdS/CFT.

Can we build CFTs with holographic features?

We will focus on the difficulties you encounter in $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$. Not universal, but it illustrates the challenges.

[See also talks by Eberhardt and Mazac]

Supergravity description

STRATEGY

1. Inspiration from known examples in String Theory.
2. Exploit holography.
3. Exploit number theory: crafting suitable counting formulas.

Holographic CFTs
Conditions from gravity

Quantum Black Holes
Beyond area law

Holographic CFTs
Conditions from gravity

Necessary conditions on the spectrum of CFT_{2}

Implementing conditions on modular forms.

Restrict the analysis to supersymmetric states.

Why it works so well from the SMF perspective.
What it can teach us about black holes.

Quantum Black Holes

Conditions from gravity

HOLOGRAPHIC CFTS

AdS_{3} Gravity

The theory:

$$
I_{3 \mathrm{D}}=\frac{1}{16 \pi G_{N}} \int d^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)+\text { matter }
$$

The spectrum:

1. Light States: Perturbative states
2. Heavy States: Black holes
3. Other stuff, e.g., multi-centered, conical defects (to be ignored today)

Holographic CFT_{2}

We will impose two conditions

1. Black hole regime
2. Perturbative regime

Holographic CFT_{2}

1. Black hole regime:

$$
A_{H} \gg G_{N} \longrightarrow E \sim c \gg 1
$$

$$
\begin{aligned}
S_{\mathrm{BH}} & =\ln d(c, E) \quad \text { symmetry } \rightarrow E \gg c \\
& =2 \pi \sqrt{\frac{c E}{6}}+\cdots \\
& =\frac{A_{\mathrm{H}}}{4 G}+\cdots
\end{aligned} \quad \text { Holography [Strominger] }
$$

While the Cardy regime correctly accounts the entropy of very large BHs, we want CFTs with an extended Cardy regime that covers the whole range.

Holographic CFT_{2}

2. Perturbative regime:

Light = Energy is $\mathrm{O}(1)$ in Planck units.
Perturbative excitations that do not form a black hole.

- Presence of Hawking-Page transition [Keller; Hartman, Keller, Stoica]
- Extended Cardy regime for BPS BHs [Benjamin, Cheng, Kachru, Moore, Paquette; Benjamin, Kachru, Keller, Paquette]

$$
\ln d(E) \sim E^{\alpha} \quad \alpha \leq 1
$$

But these are too many states for our gravitational needs. We will require
$\ln d(E) \sim E^{\alpha} \quad \alpha<1$

BPS states in SCFT_{2}

Focus on protected quantities: the elliptic genera.

$$
\chi(\tau, z)=\operatorname{tr}_{R R}\left((-1)^{F} q^{L_{0}-\frac{c}{24}} y^{J_{0}} \bar{q}^{\bar{L}_{0}-\frac{\bar{c}}{24}}\right)
$$

Focus on cases when the elliptic genera is a weak Jacobi form.
Focus on symmetric product theories.

$$
\mathcal{Z}(\rho, \tau, z)=\sum_{r} \chi\left(\tau, z ; \operatorname{Sym}^{r}(M)\right) e^{2 \pi i \rho t r}=\prod_{\substack{n, l, r \in \mathbb{Z} \\ r>0}}\left(1-q^{n} y^{l} p^{t r}\right)^{-c(n r, l)}
$$

BPS states in SCFT_{2}

Focus on protected quantities: the elliptic genera.

$$
\chi(\tau, z)=\operatorname{tr}_{R R}\left((-1)^{F} q^{L_{0}-\frac{c}{24}} y^{J_{0}} \bar{q}^{\bar{L}_{0}-\frac{\bar{c}}{24}}\right)
$$

Focus on cases when the elliptic genera is a weak Jacobi form.
Focus on symmetric product theories.

$$
\mathcal{Z}(\rho, \tau, z)=\sum_{r} \chi\left(\tau, z ; \operatorname{Sym}^{r}(M)\right) e^{2 \pi i \rho t r}=\prod_{\substack{n, l, r \in \mathbb{Z} \\ r>0}}\left(1-q^{n} y^{l} p^{t r}\right)^{-c(n r, l)}
$$

Necessary condition on

$$
\ln d(E) \sim E^{\alpha} \quad \alpha<1
$$

BPS states in SCFT_{2}

Focus on protected quantities: the elliptic genera.

$$
\chi(\tau, z)=\operatorname{tr}_{R R}\left((-1)^{F} q^{L_{0}-\frac{c}{24}} y^{J_{0}} \bar{q}^{\bar{L}_{0}-\frac{\bar{c}}{24}}\right)
$$

Focus on cases when the elliptic genera is a weak Jacobi form.
Focus on symmetric product theories.

$$
\mathcal{Z}(\rho, \tau, z)=\sum_{r} \chi\left(\tau, z ; \operatorname{Sym}^{r}(M)\right) e^{2 \pi i \rho t r}=\prod_{\substack{n, l, r \in \mathbb{Z} \\ r>0}}\left(1-q^{n} y^{l} p^{t r}\right)^{-c(n r, l)}
$$

Necessary condition on

$$
\ln d(E) \sim E^{\alpha} \quad \alpha<1
$$

Note: The partition function of symmetric product CFT_{2} has $\alpha=1$. The elliptic genus can display cancellations that capture the spectrum away from the symmetric product point.

BPS states in SCFT_{2}

Focus on protected quantities: the elliptic genera.

$$
\chi(\tau, z)=\operatorname{tr}_{R R}\left((-1)^{F} q^{L_{0}-\frac{c}{24}} y^{J_{0}} \bar{q}^{\bar{L}_{0}-\frac{\bar{c}}{24}}\right)
$$

Focus on cases when the elliptic genera is a weak Jacobi form.
Focus on symmetric product theories.

$$
\mathcal{Z}(\rho, \tau, z)=\sum_{r} \chi\left(\tau, z ; \operatorname{Sym}^{r}(M)\right) e^{2 \pi i \rho t r}=\prod_{\substack{n, l, r \in \mathbb{Z} \\ r>0}}\left(1-q^{n} y^{l} p^{t r}\right)^{-c(n r, l)}
$$

Necessary condition on

$$
\ln d(E) \sim E^{\alpha} \quad \alpha<1
$$

Spoiler!
We can tell you unambiguously which wJFs are holographic, i.e $\alpha<1$. New examples are unveiled.

Good, bad \& promising SMFs
MODULAR FORMS

Exploit our past

- Supersymmetry: we can evaluate at a symmetric product point, although the gravity dual is not in this regime.
- Averaging over theories: analytic continuation in central charge.
- Exchange symmetry: gives us control on the generating functional.

Siegel Paramodular Forms

Implementation: Supersymmetry + Averaging + Exchange Symmetry

$$
\begin{aligned}
& \Phi_{k}(\rho, \tau, z)=\sum_{m} \varphi_{\substack{\text { J.m } \\
\text { Jacobi Form: index }}}(\tau, z) p^{m} \\
& p=e^{2 \pi i \rho} \\
& q=e^{2 \pi i \tau} \\
& y=e^{2 \pi i z}
\end{aligned}
$$

Transformation Properties: paramodular group Γ_{t}^{+}

$$
\Phi_{k}(\rho, \tau, z)=\Phi_{k}\left(t^{-1} \tau, t \rho, z\right)
$$

Generated by:

- SL(2,z)
- Elliptic translations
- Exchange symmetry

Note: $t=1$ corresponds to $\Gamma_{1}^{+}=S p(4, \mathbb{Z})$

It is not (too) difficult to design a SMFs.
Exponential lifts leads to a SMF w.r.t. paramodular group.
[Gritsenko \& Nikulin ('96); Gritsenko ('99)]

$$
\operatorname{Exp}-\operatorname{Lift}(\varphi)(\Omega)=q^{A} y^{B} p^{C} \prod_{\substack{n, l, m \in \mathbb{Z} \\(n, l, m)>0}}\left(1-q^{n} y^{l} p^{t m}\right)^{c(n m, l)}
$$

Data in the SMF

$$
\varphi_{0, t}(\tau, z)=\sum_{n, l} c(n, l) q^{n} y^{l} \quad \text { SEED }
$$

$$
\begin{aligned}
A=\frac{1}{24} \sum_{l} c(0, l), \quad B & =\frac{1}{2} \sum_{l>0} l c(0, l), \quad C=\frac{1}{4} \sum_{l} l^{2} c(0, l) \\
\Omega & =\left(\begin{array}{cc}
\tau & z \\
z & \rho
\end{array}\right)
\end{aligned}
$$

It is not (too) difficult to design a SMFs.
Exponential lifts leads to a SMF w.r.t. paramodular group.
[Gritsenko \& Nikulin ('96); Gritsenko ('99)]

$$
\operatorname{Exp}-\operatorname{Lift}(\varphi)(\Omega)=q^{A} y^{B} p^{C} \prod_{\substack{n, l, m \in \mathbb{Z} \\(n, l, m)>0}}\left(1-q^{n} y^{l} p^{t m}\right)^{c(n m, l)}
$$

Connection to symmetric product theory
$\operatorname{Exp-Lift}(\varphi)(\Omega)=q^{A} y^{B} p^{C} \prod_{(n, l)>0}\left(1-q^{n} y^{l}\right)^{c(0, l)} \times \prod_{\substack{n, l, m \in \mathbb{Z} \\ m>0}}\left(1-q^{n} y^{l} p^{t m}\right)^{c(n m, l)}$ $m>0$
$\mathcal{Z}(\Omega)=\sum_{r=0}^{\infty} p^{t r} \chi\left(\tau, z ; \operatorname{Sym}^{r}(M)\right)=\frac{p^{C} \phi_{k, C}(\tau, z)}{\operatorname{Exp}-\operatorname{Lift}(\chi)(\Omega)}$

$$
\chi(\tau, z)=\operatorname{tr}_{R R}\left((-1)^{F} q^{L_{0}-\frac{c}{24}} y^{J_{0}} \bar{q}^{\bar{L}_{0}-\frac{\bar{\tau}}{24}}\right)
$$

Gritsenko \& Nikulin theorems are powerful.

$$
\operatorname{Exp}-\operatorname{Lift}(\varphi)(\Omega)=q^{A} y^{B} p^{C} \prod_{\substack{n, l, m \in \mathbb{Z} \\(n, l, m)>0}}\left(1-q^{n} y^{l} p^{t m}\right)^{c(n m, l)}
$$

1. Minimal input: for any Jacobi form, we can build a SMF.
2. Zeroes and poles of SMF are known: Humbert surfaces.
3. We can systematically extract the Fourier coefficients. [Ashoke Sen: 0708.1270, 11 104.1498]

$$
d(m, n, l)=\oint_{p=0} \frac{d p}{2 \pi i p} \oint_{q=0} \frac{d q}{2 \pi i q} \oint_{y=0} \frac{d y}{2 \pi i y} \frac{1}{\Phi_{k}(\Omega)} p^{-m} q^{-n} y^{-l}
$$

Promising SMFs

a.k.a. SMFs that meet the two necessary conditions on the BPS spectrum

Five examples of promising seeds in the exponential lift

$$
\begin{gathered}
\phi_{0,1}=y^{-1}+10+y+\left(10 y^{-2}-64 y^{-1}+108-64 y+10 y^{2}\right) q+\left(y^{-3}+108 y^{-2}-513 y^{-1}+808-513 y+108 y^{2}+y^{3}\right) q^{2}+\ldots \\
\phi_{0,2}=y^{-1}+4+y+\left(y^{-3}-8 y^{-2}-y^{-1}+16-y+8 y^{2}+y^{3}\right) q+\left(4 y^{-4}-y^{-3}-32 y^{-2}+y^{-1}+56+y+32 y^{2}-y^{3}+4 y^{4}\right) q^{2}+\ldots \\
\phi_{0,3}=y^{-1}+2+y-\left(2 y^{-3}+2 y^{-2}-2 y^{-1}+4-2 y+2 y^{2}+2 y^{3}\right) q+\left(y^{-5}-2 y^{-4}-6 y^{-3}-4 y^{-2}+5 y^{-1}+12+5 y-4 y^{2}-6 y^{3}-2 y^{4}+y^{5}\right) q^{2}+ \\
\phi_{0,4}=y^{-1}+1+y-\left(y^{-4}+y^{-3}-y^{-1}-2-y+y^{3}+y^{4}\right) q+\left(-y^{-5}-2 y^{-4}-2 y^{-3}+3 y^{-1}+4+3 y-2 y^{3}-2 y^{4}-y^{5}\right) q^{2}+\ldots \\
\phi_{0,6}=y^{-1}+y+\left(-y^{-5}+y^{-1}+y-y^{5}\right) q+\left(-y^{-7}-y^{-5}+2 y^{-1}+2 y-y^{5}-y^{7}\right) q^{2}+\ldots
\end{gathered}
$$

Promising SMFs

What is special about these five examples?

- Location of poles: $\mathrm{H}_{1}(1)$ Humbert surface (z=0)
not crucial $\{$ - Degree of the pole: 2
simplifies analysis . Integral weight k
Needed!

	Seed (φ)	Weight (k)	Group	A	B	C
Φ_{10}	$2 \phi_{0,1}$	10	$S P(4, \mathbb{Z})$	1	1	1
Φ_{4}	$2 \phi_{0,2}$	4	Γ_{2}^{+}	$1 / 2$	1	1
Φ_{2}	$2 \phi_{0,3}$	2	Γ_{3}^{+}	$1 / 3$	1	1
Φ_{1}	$2 \phi_{0,4}$	1	Γ_{4}^{+}	$1 / 4$	1	1
Φ_{0}	$2 \phi_{0,6}$	0	Γ_{6}^{+}	$1 / 6$	1	1

Promising SMFs

What is special about these five examples?

- Location of poles: $\mathrm{H}_{1}(1)$ Humbert surface (z=0)
not crucial $\{$ - Degree of the pole: 2
simplifies analysis $\{$ - Integral weight k

minimal polarity wJF
Today
We have a complete classification up to index $t=4$.
Work in Progress
Quantify all promising SMFs based on the composition of Humbert surfaces.

Good SMFs

a.k.a. SMFs that meet the two necessary conditions on the BPS spectrum, and we know the symm prod CFT_{2} and AdS_{3} supergravity theory.

1. Igusa Cusp form

$$
\begin{aligned}
\Phi_{10}(\Omega) & =\operatorname{Exp}-\operatorname{Lift}\left(2 \phi_{0,1}\right) \quad \text { with } \quad \phi_{0,1}=\frac{1}{2} \chi(\tau, z ; K 3) \\
\frac{1}{\Phi_{10}(\Omega)} & =\frac{\mathcal{Z}(\Omega)}{p \phi_{10,1}(\tau, z)} \stackrel{\text { light states }}{\longrightarrow} \ln d(E) \sim E^{1 / 2}
\end{aligned}
$$

- $1 / 4 \mathrm{BPS}$ dyons in N=4 D=4 string theory [DVV]
- Quantum black hole [sen, Dabholkar, Murthy, Gomes, ...]
- $\mathrm{AdS}_{3} \times S^{3} \mathrm{xK} 3$ supergravity spectrum matches $\mathrm{N}=(4,4)$ SCFT [de Boer]
- CHL generalizations [David, Jatkar, Sen; Paquette, Volpato, Zimet]

Good SMFs

a.k.a. SMFs that meet the two necessary conditions on the BPS spectrum, and we know the symm prod CFT_{2} and AdS_{3} supergravity theory.
2. $\dagger=4$ paramodular form

Seed
$\phi_{0,1}(\tau, 2 z)+4(1+a) \phi_{0,4}(\tau, z)=y^{ \pm 2}+4(1+a) y^{ \pm 1}+14+4 a+\mathcal{O}(q)$
Pole structure
Humbert surfaces are $\mathrm{H}_{4}(2)$ and $\mathrm{H}_{1}(1)$
Perturbative regime
$\ln d(E) \sim E^{1 / 2}$
Holography
$\operatorname{AdS}_{3} \times\left(S^{3} \times \mathbb{T}^{4}\right) / G \longleftrightarrow \mathrm{~N}=(2,2)$ SCFTs [Datta, Eberhardt, Gaberdiel]

Bad SMFs

a.k.a. they don't meet the criteria needed for a holographic CFT_{2}.

There are many of those. My favorite example (although not SUSY) is

$$
\begin{aligned}
\chi_{35} & =\operatorname{Exp}-\operatorname{Lift}\left(\varphi_{0,1}^{(2)}\right)(\Omega) \\
& =q^{3} y p^{2} \prod_{(n, l, m)>0}\left(1-q^{n} y^{l} p^{m}\right)^{f_{1}^{(2)}\left(4 n m-l^{2}\right)}
\end{aligned}
$$

Seed is related to an extremal CFT

$$
\begin{aligned}
\varphi_{0,1}^{(2)} & =\left(T_{2}-2\right) \phi_{0,1} \\
\varphi_{0,1}^{(2)}(\tau, 0) & =q^{-1}+72+196884 q+21493760 q^{2}+\cdots \\
& =72+J(q),
\end{aligned}
$$

Beyond area law
QUANTUM BLACK HOLES

Black holes \& SMFs

The task is to extract the physics content of Fourier coefficients for large (asymptotic) values of the charges.

$$
\begin{array}{r}
d(m, n, l)=\oint_{p=0} \frac{d p}{2 \pi i p} \oint_{q=0} \frac{d q}{2 \pi i q} \oint_{y=0} \frac{d y}{2 \pi i y} \frac{1}{\Phi_{k}(\Omega)} p^{-m} q^{-n} y^{-l} \\
\downarrow \\
\Phi_{k}(\rho, \tau, z)=\Phi_{k}\left(t^{-1} \tau, t \rho, z\right)
\end{array}
$$

Black holes \& SMFs

The task is to extract the physics content of Fourier coefficients for large (asymptotic) values of the charges.

$$
d(m, n, l)=\oint_{p=0} \frac{d p}{2 \pi i p} \oint_{q=0} \frac{d q}{2 \pi i q} \oint_{y=0} \frac{d y}{2 \pi i y} \frac{1}{\Phi_{k}(\Omega)} p^{-m} q^{-n} y^{-l}
$$

Asymptotic behavior of degeneracy

$$
\begin{aligned}
S_{\mathrm{BH}} & =\ln d(c, E) \quad \text { Symmetry } \rightarrow d(E, c)=d\left(t E, t^{-1} c\right) \\
& =2 \pi \sqrt{\frac{c E}{6}}+\cdots \\
& =\frac{A_{\mathrm{H}}}{4 G}+\cdots
\end{aligned}
$$

Exchange symmetry gives us (almost) automatically an extended Cardy regime.

Quantum corrections

For lack of time, focus on logarithmic correction

$$
S_{\mathrm{BH}}=\ln d(c, E, J)=\frac{A_{H}}{4 G}+\# \ln \left(A_{H} / G\right)+\cdots
$$

\(\left.\begin{array}{|c|c|c|c|}\hline Scaling regime \& \tau_{1,2}^{*} \& A_{H}^{2} \& \ln \Lambda

\hline \hline I. E \gg 1 \& \Lambda \& \Lambda^{2} \& -(k+2)

E \sim \Lambda^{2}, c \sim O(1), J \sim \Lambda \& \& \&

\hline II. E \sim c \gg 1 \& \Lambda^{0} \& \Lambda^{2} \& m_{1,1}-2

E \sim \Lambda, c \sim \Lambda, J \sim \Lambda \& \&

\hline \begin{array}{c}III. c \gg E \gg 1

E \sim \Lambda, c \sim \Lambda^{2}, J \sim \Lambda^{3 / 2}\end{array} \& \Lambda^{-1 / 2} \& \Lambda^{3} \& m_{1,1}-3-\frac{k}{2}\end{array}\right\}\)\begin{tabular}{l}
Cardy regime.

Regime relevant for
BPS BHS in 4D \& 5D
ISen et al]

\hline
\end{tabular}

To be explored

1. Logarithmic corrections

$$
S_{\mathrm{BH}}=\ln d(c, E, J)=\frac{A_{H}}{4 G}+\frac{\# \ln \left(A_{H} / G\right)+\cdots}{ร}
$$

Universality of this correction is being tested in gravity. Less is known microscopically.
[Charles, Larsen; AC, Godet, Larsen, Zeng]
[Mukhametzhanov, Zhiboedov]
2. Mock modular forms

Decompose counting formula as quantum degeneracies of singlecentered and multicentered configurations.
[Dabholkar, Murthy, Zagier]

Holographic CFTs
Conditions from gravity

Quantum Black Holes
Beyond area law

THANK YOU!

$$
\begin{aligned}
& y^{-1}+2+y-\left(2 y^{-3}+2 y^{-2}-2 y^{-1}+4-2 y+2 y^{2}+2 y^{3}\right) q \\
& y^{-1}+1+y-\left(y^{-4}+y^{-3}-y^{-1}-2-y^{-1}+y^{3}+y^{4}\right) 9+\left(y^{-5}-2 y^{-}-6 y-3\right.
\end{aligned}
$$

