Progress on AdS Black Holes in String Theory

Alberto Zaffaroni

Milano-Bicocca

Strings 2019
9-13 July

What this talk is about

A major achievement of string theory is the counting of micro-states for a class of asymptotically flat black holes [Vafa-Strominger'96]

- The entropy is obtained by counting states in the corresponding string/D-brane system
- Remarkable precision tests including higher derivatives

No similar results for asymptotically AdS_{4} or AdS_{5} black holes until very recently.

What this talk is about

In this talk, I review recent progress for AdS $_{d}$ black holes in diverse dimensions. Using the AdS/CFT correspondence, the entropy is related to a counting of states in the dual CFT.

Disclaimer I: despite holography, the story is still in its infancy.

- computational tools available for BPS black holes
- most of the comparisons are at large N

Disclaimer II: AdS_{3} is somehow special and well-studied so we will consider $d \geq 4$.

Generalities on AdS Black Holes

Holographic interpretation

Consider a BPS black hole in $\mathrm{AdS}_{d \geq 4}$. The entropy is a function of the charges Q_{I} and a set of angular momenta J_{i}

$$
S_{\mathrm{BH}}\left(Q_{I}, J_{i}\right)=\log n\left(Q_{I}, J_{i}\right)
$$

Holography suggests that the entropy should be recovered by counting states in the dual CFT_{d-1}

$$
\begin{gathered}
d s^{2}=\frac{d r^{2}}{r^{2}}+r^{2} d s_{M_{d-2} \times \mathbb{R}}^{2}+\ldots \quad r \gg 1 \\
\quad \begin{array}{l}
\text { set of charged spinful states } \\
\text { of the } \mathrm{CFT}_{d-1} \text { on } M_{d-2} \times \mathbb{R}
\end{array}
\end{gathered}
$$

Q_{l} become charges under the global symmetries of the CFT_{d-1}

Two interesting string theory classes of BPS black holes, distinguished by supersymmetry algebra and holographic interpretation

- the boundary theory is just the SCFT_{d-1} on $S^{d-2} \times \mathbb{R}$
- the boundary theory on $M^{d-2} \times \mathbb{R}$ is also topologically twisted characterized by non-zero magnetic fluxes for graviphoton/ R-symmetry: $\int_{\Sigma \subset M} F \in 2 \pi \mathbb{Z}$

Most manifest in $\mathrm{AdS}_{4} \mathrm{BH}$ with horizon $\mathrm{AdS}_{2} \times S^{2}$: dichotomy between electrically and magnetically charged BHs first discussed in [Romans 92]

BPS partition function

Counting states with the same susy, charges and angular momenta

$$
Z\left(\Delta_{l}, \omega_{i}\right)=\operatorname{Tr}_{\mathcal{Q}=0}\left(e^{i\left(Q_{l} \Delta_{l}+J_{i} \omega_{l}\right)}\right)=\sum_{Q_{l}, J_{i}} n\left(Q_{l}, J_{i}\right) e^{i\left(Q_{l} \Delta_{l}+J_{i} \omega_{i}\right)}
$$

The entropy $S_{\mathrm{BH}}\left(Q_{I}, J_{i}\right)=\log$ number of states

$$
n\left(Q_{l}, J_{i}\right)=e^{S_{\mathrm{BH}}\left(Q_{l}, J_{i}\right)}=\int_{\Delta, \omega} Z\left(\Delta_{l}, \omega_{i}\right) e^{-i\left(Q_{l} \Delta_{l}+J_{i} \omega_{i}\right)}
$$

in the limit of large charges, by a saddle point, is a Legendre Transform
$S_{\mathrm{BH}}\left(Q_{I}, J_{i}\right) \equiv \mathcal{I}(\Delta, \omega)=\log Z\left(\Delta_{l}, \omega_{i}\right)-i\left(Q_{l} \Delta_{I}+J_{i} \omega_{i}\right), \quad \frac{d \mathcal{I}}{d \Delta}=\frac{d \mathcal{I}}{d \omega}=0$
PROBLEM: we have efficient tools for counting states preserving four real supercharges. AdS black holes preserve two.

Witten index

It is easier to compute the supersymmetric partition function

$$
Z_{M^{d-2} \times S^{1}}^{\text {susy }}\left(\Delta_{l}, \omega_{i}\right)=\operatorname{Tr}\left((-1)^{F} e^{i\left(Q_{l} \Delta_{l}+J_{i} \omega_{l}\right)} e^{-\beta\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}}\right)
$$

- superconformal index for SCFT on $S^{d-2} \times S^{1}$ [Romelsberg 05; Kinney, Maldacena, Minwalla, Raju 05]
- or topologically twisted index for twisted theories [Okuda, Yoshida 12 ;

Nekrasov, Shatashvili 14; Gukov, Pei 15; Benini, AZ 15]

Lower bound on entropy. Index = entropy if there are no large cancellations between bosonic and fermionic ground states. In some cases true at large N.

Magnetically charged black holes

Black holes in $\mathrm{AdS}_{4} \times S^{7}$

Black holes in M theory on $\mathrm{AdS}_{4} \times S^{7}$: [Cacciatori, Klemm 08; Dall'Agata, Gnecchi; Hristov,
Vandoren 10; Katmadas; Halmagyi 14; Hristov, Katmadas, Toldo 18]

- preserves two real supercharges ($1 / 16 \mathrm{BPS}$)
- four electric \mathfrak{q}_{a} and magnetic \mathfrak{p}_{a} charges under $U(1)^{4} \subset S O(8)$, one angular momentum J in AdS_{4}; only seven independent parameters
- entropy scales as $O\left(N^{3 / 2}\right)$

We focus on $J=0$: six-dimensional family of dyonic static black holes with horizon $\mathrm{AdS}_{2} \times S^{2}\left(\right.$ or $\mathrm{AdS}_{2} \times \Sigma_{g}$)

Static black holes in $\mathrm{AdS}_{4} \times S^{7}$

Entropy is a complicated function

$$
\begin{aligned}
& S_{\mathrm{BH}}\left(\mathfrak{p}_{a}, \mathfrak{q}_{a}\right) \sim \sqrt{I_{4}(\Gamma, \Gamma, G, G) \pm} \sqrt{I_{4}(\Gamma, \Gamma, G, G)^{2}-64 I_{4}(\Gamma) I_{4}(G)} \\
& I_{4} \text { symplectic quartic invariant } \\
& \Gamma=\left(\mathfrak{p}_{1}, \mathfrak{p}_{2}, \mathfrak{p}_{3}, \mathfrak{p}_{4}, \mathfrak{q}_{1}, \mathfrak{q}_{2}, \mathfrak{q}_{3}, \mathfrak{q}_{4}\right)[\text { Halmagyi 13] } \\
& G=(0,0,0,0, g, g, g, g)
\end{aligned}
$$

but it can be written as a Legendre transform

$$
\begin{gathered}
S_{\mathrm{BH}}\left(\mathfrak{p}_{a}, \mathfrak{q}_{a}\right)=\log Z\left(\Delta_{a}, \mathfrak{p}_{a}\right)-\left.\sum_{a} i \Delta_{a} \mathfrak{q}_{a}\right|_{c r i t}=\sum_{a} i \mathfrak{p}_{a} \frac{\partial \mathcal{W}}{\partial \Delta_{a}}-\left.i \Delta_{a} \mathfrak{q}_{a}\right|_{c r i t} \\
\text { gauged supergravity prepotential } \mathcal{W} \sim \sqrt{\Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}} \\
\sum \Delta_{a}=2 \pi \text { scalar fields at the horizon }
\end{gathered}
$$

- Attractor mechanism: [Ferrara, Kallosh, Strominger 96; Dall'Agata, Gnecchi 10]
- Example of entropy function. See also [Sen 05]

Dual perspective

Dual to ABJM on $\Sigma_{\mathfrak{g}} \times \mathbb{R}$ with a twist on $\Sigma_{\mathfrak{g}}$ parameterized by \mathfrak{p}_{a}

$$
U(1)^{4} \subset S O(8) \quad \frac{1}{2 \pi} \int_{\Sigma_{\mathfrak{g}}} F^{a}=\mathfrak{p}_{a} \in \mathbb{Z}
$$

- Magnetic background for global symmetries: Landau levels on $\Sigma_{\mathfrak{g}}$
- Twisting condition $\sum_{a=1}^{4} \mathfrak{p}_{a}=2-2 \mathfrak{g}$

$$
\delta \psi_{\mu}=\underbrace{\nabla_{\mu} \epsilon-i \sum_{a=1}^{4} A_{\mu}^{a} \epsilon}_{\text {cancel spin connection }}=0 \quad \epsilon=\text { constant on } \Sigma_{\mathfrak{g}}
$$

The relevant index

Topologically twisted index

$$
Z_{\Sigma_{\mathfrak{g}} \times S^{1}}\left(\Delta_{I}, \mathfrak{p}_{\mathfrak{a}}\right)=\underbrace{\operatorname{Tr}_{\mathcal{H}}\left((-1)^{F} e^{i \sum_{\mathrm{a}=1}^{4} Q_{a} \Delta_{\mathrm{a}}} e^{-\beta H_{\mathfrak{p}}}\right)}_{\sum_{a=1}^{4} \Delta_{\mathrm{a}} \in 2 \pi \mathbb{Z}}
$$

- magnetic charges \mathfrak{p}_{a} enter in the Hamiltonian $H_{\mathfrak{g}}$, electric charges \mathfrak{q}_{a} introduced through chemical potentials Δ_{a}
- number of fugacities equal to the number of conserved charges

The relevant index

Topologically twisted index $=$ QM Witten index

$$
Z_{\Sigma_{\mathfrak{g}} \times S^{1}}\left(\Delta_{I}, \mathfrak{p}_{a}\right)=\underbrace{\operatorname{Tr}_{\mathcal{H}}\left((-1)^{F} e^{i \sum_{a=1}^{4} Q_{a} \Delta_{a}} e^{-\beta H_{\mathfrak{p}}}\right)}_{\sum_{a=1}^{4} \Delta_{\mathfrak{a}} \in 2 \pi \mathbb{Z}}
$$

- magnetic charges \mathfrak{p}_{a} enter in the Hamiltonian $H_{\mathfrak{g}}$, electric charges \mathfrak{q}_{a} introduced through chemical potentials Δ_{a}
- number of fugacities equal to the number of conserved charges

$\rightarrow \mathrm{AdS}_{2}$: reduction to horizon quantum mechanics

Localization formula I

Topologically twisted index \Longrightarrow computable in the UV

$$
Z_{\Sigma_{\mathfrak{g}} \times S^{1}}\left(\Delta_{l}, \mathfrak{p}_{a}\right) \underset{y_{\mathfrak{a}}=e^{i \Delta_{\mathrm{a}}}}{=} \frac{1}{|W|} \sum_{\mathfrak{m} \in \Gamma_{\mathfrak{b}}} \oint_{\mathcal{C}} \frac{d x}{2 \pi i x} Z_{\mathrm{int}}\left(\mathfrak{m}, x ; \mathfrak{p}_{a}, y_{a}\right)
$$

classical piece $Z_{\mathrm{cl}}=\chi^{k m}$
for a chiral multiplet $Z_{1-\text { loop }}=\Pi_{\rho}\left(\frac{\sqrt{x^{\rho} y_{a}}}{1-x^{\rho} y_{a}}\right)^{\rho(\mathfrak{m})-\mathfrak{p}_{a}+1-\mathfrak{g}}$
for a vector multiplet $Z_{1-\text { loop }}=\Pi_{\alpha}\left(1-x^{\alpha}\right)^{1-\mathfrak{g}}$
[Localization formula: Benini, AZ 15; Closset, Kim, Willet 16]

Digression: TQFT and Bethe vacua

reduction to two-dimensional theory (with all KK modes on S^{1})

Massive theory with a set of discrete vacua (Bethe vacua)
[Witten 92; Nekrasov, Shatashvili 09]

$$
\exp \left(\mathcal{W}^{\prime}\left(x^{\star}\right)\right)=1 \quad \mathcal{W}=\sum_{\rho} L i_{2}\left(x^{\rho} y_{a}\right)+\ldots
$$

Many 3d and 4d supersymmetric partition functions can be written as a sum over Bethe vacua [Closset, Kim, Willet 17]

Localization formula II - topological point of view

Sum over Bethe vacua

$$
\begin{aligned}
Z_{\Sigma_{\mathfrak{g}} \times S^{1}}\left(\Delta_{l}, \mathfrak{p}_{a}\right)=\sum_{x^{\star}} Z_{\text {cl+1-loop }}\left(\mathfrak{m}=0, x^{\star} ; \mathfrak{p}_{a}, y_{a}\right)(& \left.\operatorname{det}_{i j} \partial_{i} \partial_{j} \mathcal{W}\left(x^{\star}\right)\right)^{g-1} \\
& \exp \left(\mathcal{W}^{\prime}\left(x^{\star}\right)\right)=1
\end{aligned}
$$

Localization formula II - topological point of view

Sum over Bethe vacua

$$
\begin{aligned}
Z_{\Sigma_{\mathfrak{g}} \times S^{1}}\left(\Delta_{l}, \mathfrak{p}_{a}\right)=\sum_{x^{\star}} Z_{\text {cl+1-loop }}\left(\mathfrak{m}=0, x^{\star} ; \mathfrak{p}_{a}, y_{a}\right)(& \left.\operatorname{det}_{i j} \partial_{i} \partial_{j} \mathcal{W}\left(x^{\star}\right)\right)^{g-1} \\
& \exp \left(\mathcal{W}^{\prime}\left(x^{\star}\right)\right)=1
\end{aligned}
$$

[Okuda, Yoshida 12; Nekrasov, Shatashvili 14; Gukov, Pei 15; Benini, AZ 15; Closset-Kim-Willet 17]

For ABJM:

$$
\mathcal{W}_{x=e^{i u}} \sum_{i=1}^{N} \frac{k}{2}\left(\tilde{u}_{i}^{2}-u_{i}^{2}\right)+\sum_{i, j=1}^{N}\left[\sum_{a=3,4} \operatorname{Li}_{2}\left(e^{i\left(\tilde{u}_{j}-u_{i}+\Delta_{a}\right)}\right)-\sum_{a=1,2} \operatorname{Li}_{2}\left(e^{i\left(\tilde{u}_{j}-u_{j}-\Delta_{a}\right)}\right)\right]
$$

Localization formula II - topological point of view

Sum over Bethe vacua

$$
\begin{aligned}
Z_{\Sigma_{\mathfrak{g}} \times S^{1}}\left(\Delta_{l}, \mathfrak{p}_{a}\right)=\sum_{x^{\star}} Z_{\text {cl+1-loop }}\left(\mathfrak{m}=0, x^{\star} ; \mathfrak{p}_{a}, y_{a}\right)(& \left.\operatorname{det}_{i j} \partial_{i} \partial_{j} \mathcal{W}\left(x^{\star}\right)\right)^{g-1} \\
& \exp \left(\mathcal{W}^{\prime}\left(x^{\star}\right)\right)=1
\end{aligned}
$$

[Okuda, Yoshida 12; Nekrasov, Shatashvili 14; Gukov, Pei 15; Benini, AZ 15; Closset-Kim-Willet 17]

For ABJM:

$$
\mathcal{W}=\sum_{x=e^{i u}} \sum_{i=1}^{N} \frac{k}{2}\left(\tilde{u}_{i}^{2}-u_{i}^{2}\right)+\sum_{i, j=1}^{N}\left[\sum_{a=3,4} \operatorname{Li}_{2}\left(e^{i\left(\tilde{u}_{j}-u_{i}+\Delta_{a}\right)}\right)-\sum_{a=1,2} \operatorname{Li}_{2}\left(e^{i\left(\tilde{u}_{j}-u_{i}-\Delta_{\mathrm{a}}\right)}\right)\right]
$$

Expectation: one Bethe vacuum dominates in the large N limit.

$$
u_{i}=i \sqrt{N} t_{i}+v_{i} \quad \tilde{u}_{i}=i \sqrt{N} t_{i}+\tilde{v}_{i}
$$

\mathcal{I}-extremization for static black holes in $\mathrm{AdS}_{4} \times S^{7}$

In the large N limit [Benini-Hristov-AZ 15]

$$
\mathcal{W}_{\text {on-shell }}=\frac{2}{3} i N^{3 / 2} \sqrt{2 \Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}}
$$

$$
S\left(\mathfrak{p}_{a}, \mathfrak{q}_{a}\right)=\log Z\left(\Delta_{a}, \mathfrak{p}_{a}\right)-\left.\sum_{a} i \Delta_{a} \mathfrak{q}_{a}\right|_{c r i t}=\sum_{a} i \mathfrak{p}_{a} \frac{\partial \mathcal{W}}{\partial \Delta_{a}}-\left.i \Delta_{a} \mathfrak{q}_{a}\right|_{c r i t}
$$

$$
\sum_{a=1}^{4} \Delta_{a}=2 \pi \quad \operatorname{Re} \Delta_{a} \in[0,2 \pi]
$$

- The on-shell superpotential \mathcal{W} coincides with the prepotential of the $\mathcal{N}=2$ gauged supergravity obtained by reducing on S^{7}. The formula above is the attractor mechanism

Generalisations

- Generalized to other black holes in M theory or massive type IIA. [Hosseini, Hristov, Passias; Benini, Khachatryan, Milan; Azzurli, Bobev, Crichigno, Min, AZ 17; Bobev, Min, Pilch 18; Gauntlett, Martelli, Sparks; Hosseini, AZ 19]

$$
\text { general formula } \log Z\left(\Delta_{a}, \mathfrak{p}_{a}\right)=\sum_{a} \mathfrak{p}_{a} \frac{\partial F_{s^{3}}(\Delta)}{\partial \Delta_{a}}
$$

[Hosseini, AZ; Hosseini, Mekareeya '16]

- Including subleading corrections in N [Liu, PandoZayas, Rathee, Zhao; Jeon, Lal 17; Liu, PandoZayas, Zhou 18; Gang, Kim, PandoZayas 19]
- Localization in supergravity [Hristov, Lodato, Reys 17]
- Black holes and black strings in higher dimensions [Hosseini, Nedelin, AZ 16; Hong,

Liu 16; Hosseini, Yaakov, AZ 18; Crichigno,Jain,Willet 18; Hosseini, Hristov, Passias, AZ 18; Suh 18]

- Black hole thermodynamics: $\log Z=$ gravity on-shell action [Azzurli, Bobev, Crichigno, Min, AZ 17; Halmagyi, Lal; CaboBizet, Kol, PandoZayas, Papadimitriou, Rathee 17]
- Case with angular momentum still to be worked out.

Electrically charged and rotating black holes

Rotating black holes in $\mathrm{AdS}_{5} \times S^{5}$

Most famous BPS examples are asymptotic to $\mathrm{AdS}_{5} \times S^{5}$

$$
\begin{array}{ll}
\text { two angular momenta } J_{1}, J_{2} \text { in } \mathrm{AdS}_{5} & U(1)^{2} \subset S O(4) \subset S O(2,4) \\
\text { three electric charges } Q_{1} \text { in } S^{5} & U(1)^{3} \subset S O(6)
\end{array}
$$

with a constraint $F\left(J_{i}, Q_{I}\right)=0$. They must rotate and preserves two supercharges.

$$
S_{\mathrm{BH}}=2 \pi \sqrt{Q_{1} Q_{2}+Q_{2} Q_{3}+Q_{1} Q_{3}-2 c\left(J_{1}+J_{2}\right)} \quad c=\frac{N^{2}-1}{4}
$$

[Gutowski-Reall 04; Chong, Cvetic, Lu, Pope 05; Kunduri, Lucietti, Reall; Kim, Lee, 06]

The boundary metric is $S^{3} \times \mathbb{R}$, no twist. The microstates correspond to states of given angular momentum and electric charge in $\mathcal{N}=4$ SYM.

Recent examples of hairy black holes with more parameters [Markeviciute, Santos 18]

Entropy function for AdS_{5} black holes

- BPS entropy function [Hosseini, Hristov, AZ 17]

$$
\begin{array}{r}
\mathcal{S}_{\mathrm{BH}}\left(Q_{I}, J_{i}\right)=-i \pi\left(N^{2}-1\right) \frac{\Delta_{1} \Delta_{2} \Delta_{3}}{\omega_{1} \omega_{2}}-\left.2 \pi i\left(\sum_{l=1}^{3} Q_{I} \Delta_{I}+\sum_{i=1}^{2} J_{i} \omega_{i}\right)\right|_{\bar{\Delta}_{I}, \bar{\omega}_{i}} \\
\text { with } \Delta_{1}+\Delta_{2}+\Delta_{3}-\omega_{1}-\omega_{2}= \pm 1
\end{array}
$$

- From BH thermodynamics: chemical potentials $\bar{\Delta}_{l}, \bar{\omega}_{i}$ can be obtained in a suitable zero-temperature limit for a family of supersymmetric Euclidean black holes [Cabo-Bizet, Cassani, Martelli, Murthy 18]

$$
-i \pi\left(N^{2}-1\right) \frac{\Delta_{1} \Delta_{2} \Delta_{3}}{\omega_{1} \omega_{2}}=\text { on-shell action }
$$

The critical values $\bar{\Delta}_{l}, \bar{\omega}_{i}$ are complex but, quite remarkably, the extremum is a real function of the black hole charges.

Long standing puzzle

Entropy scales like $O\left(N^{2}\right)$ for $Q_{l}, J_{i} \sim N^{2}$.

- difficult to enumerate all $1 / 16$ BPS states. Not enough of them? [Grant, Grassi, Kim, Minwalla 08; Chang, Yin 13; Yokoyama 14]
- the superconformal index

$$
Z\left(\omega_{i}, \Delta_{l}\right)=\operatorname{Tr}(-1)^{F} e^{-\beta\left\{Q, Q^{\dagger}\right\}} e^{2 \pi i\left(\Delta_{l} Q_{l}+\omega_{i} J_{i}\right)}
$$

number of fugacities equal to the number of conserved charges:

$$
p=e^{2 \pi i \omega_{1}}, q=e^{2 \pi i \omega_{2}}, y_{l}=e^{2 \pi i \Delta_{l}} \quad \prod_{l=1}^{3} y_{l}=p q
$$

[Romelsberg 05; Kinney, Maldacena, Minwalla, Raju 05]
For real fugacities: $\log Z=O(1)$. Large cancellations between bosons and fermions. [Kinney, Maldacena, Minwalla, Raju 05]

Long standing puzzle

Entropy scales like $O\left(N^{2}\right)$ for $Q_{l}, J_{i} \sim N^{2}$.

- difficult to enumerate all $1 / 16$ BPS states. Not enough of them? [Grant, Grassi, Kim, Minwalla 08; Chang, Yin 13; Yokoyama 14]
- the superconformal index

$$
Z\left(\omega_{i}, \Delta_{l}\right) \sim \oint \frac{d z_{i}}{2 \pi i z_{i}} \prod_{1 \leq i<j \leq N} \frac{\prod_{k=1}^{3} \Gamma_{e}\left(y_{k}\left(z_{i} / z_{j}\right)^{ \pm 1} ; p, q\right)}{\Gamma_{e}\left(\left(z_{i} / z_{j}\right)^{ \pm 1} ; p, q\right)}
$$

number of fugacities equal to the number of conserved charges:

$$
p=e^{2 \pi i \omega_{1}}, \boldsymbol{q}=e^{2 \pi i \omega_{2}}, y_{l}=e^{2 \pi i \Delta_{l}} \quad \prod_{l=1}^{3} y_{l}=p q
$$

[Romelsberg 05; Kinney, Maldacena, Minwalla, Raju 05]
For real fugacities: $\log Z=O(1)$. Large cancellations between bosons and fermions. [Kinney, Maldacena, Minwalla, Raju 05]

The importance of being complex

However, the critical values $\bar{\Delta}_{I}, \bar{\omega}_{i}$ of the BPS entropy function are complex. Recent computations for the index

$$
Z\left(\omega_{i}, \Delta_{l}\right)=\operatorname{Tr}(-1)^{F} e^{-\beta\left\{Q, Q^{\dagger}\right\}} e^{2 \pi i\left(\Delta_{l} Q_{l}+\omega_{i} J_{i}\right)}
$$

and related/modified quantities with complex fugacities suggest that

- phases may obstruct cancellations in the index
- Stokes phenomena in the complex plane
[Cardy limit: Choi, Kim, Kim, Nahmgoong] [See Kim's talk]
[Modified index/partition function: Cabo-Bizet, Cassani, Martelli, Murthy]
[Large N: Benini, Milan 18]

The importance of being complex

In various limits, index with complex fugacities consistent with:

$$
\log Z(\Delta, \omega) \sim-i \pi\left(N^{2}-1\right) \frac{\Delta_{1} \Delta_{2} \Delta_{3}}{\omega_{1} \omega_{2}} \quad \Delta_{1}+\Delta_{2}+\Delta_{3}-\omega_{1}-\omega_{2}= \pm 1
$$

The importance of being complex

In various limits, index with complex fugacities consistent with:

$$
\log Z(\Delta, \omega) \sim-i \pi\left(N^{2}-1\right) \frac{\Delta_{1} \Delta_{2} \Delta_{3}}{\omega_{1} \omega_{2}} \quad \Delta_{1}+\Delta_{2}+\Delta_{3}-\omega_{1}-\omega_{2}= \pm 1
$$

- Large N limit (equal angular momenta)

Reduction on T^{2}
Two-dimensional Bethe vacua
[Benini, Milan 18]

The importance of being complex

In various limits, index with complex fugacities consistent with:

$$
\log Z(\Delta, \omega) \sim-i \pi\left(N^{2}-1\right) \frac{\Delta_{1} \Delta_{2} \Delta_{3}}{\omega_{1} \omega_{2}} \quad \Delta_{1}+\Delta_{2}+\Delta_{3}-\omega_{1}-\omega_{2}= \pm 1
$$

- Large N limit (equal angular momenta)

Reduction on T^{2}
Two-dimensional Bethe vacua
[Benini, Milan 18]
- Cardy limit: $\omega_{1}, \omega_{2} \rightarrow 0$ with fixed $\Delta_{/}$. Large black holes:

$$
Q_{l} \sim \frac{1}{\epsilon^{2}} \quad J_{i} \sim \frac{1}{\epsilon^{3}} \quad \omega_{1}, \omega_{2} \sim \epsilon \rightarrow 0
$$

[Choi, Kim, Kim, Nahmgoong 18; Honda; Arabi Ardehali 19] [See Kim's talk]

The importance of being complex

In various limits, index with complex fugacities consistent with:

$$
\log Z(\Delta, \omega) \sim-i \pi\left(N^{2}-1\right) \frac{\Delta_{1} \Delta_{2} \Delta_{3}}{\omega_{1} \omega_{2}} \quad \Delta_{1}+\Delta_{2}+\Delta_{3}-\omega_{1}-\omega_{2}= \pm 1
$$

- Large N limit (equal angular momenta)

Reduction on T^{2}
Two-dimensional Bethe vacua
[Benini, Milan 18]
- Cardy limit: $\omega_{1}, \omega_{2} \rightarrow 0$ with fixed Δ_{l}. Large black holes:

$$
Q_{I} \sim \frac{1}{\epsilon^{2}} \quad J_{i} \sim \frac{1}{\epsilon^{3}} \quad \omega_{1}, \omega_{2} \sim \epsilon \rightarrow 0
$$

[Choi, Kim, Kim, Nahmgoong 18; Honda; Arabi Ardehali 19] [See Kim's talk]
Other saddles at smaller charges/other black holes? [See Kim's talk]

Generalisations

- With a modified index, Cardy limit generalizes to other 4d theories. Finite N corrections. For equal charges:

$$
\log Z_{3 \Delta-\omega_{1}-\omega_{2}= \pm 1}^{\sim} 2 \pi i \frac{\Delta^{3}}{\omega_{1} \omega_{2}}(3 c-5 a)+2 \pi i \frac{\Delta}{\omega_{1} \omega_{2}}(a-c)+O(1)
$$

[Generalize DiPietro-Komargodski 14][Kim, Kim, Song; Cabo-Bizet, Cassani, Martelli, Murthy; Amariti, Garozzo, LoMonaco 19]

- Entropy functions for electrically charged and rotating BH also in AdS_{4}, AdS_{6} and AdS_{7} [Hosseini, Hristov, AZ; Choi, Hwang, Kim, Nahmgong 18; Cassani, Papini 19]
- Some index computations in higher dimensions [Choi, Kim, Kim, Nahmgoong 18;

Choi, Kim; Kantor, Papageorgakis, Richmond 19]

- Near BPS entropy functions [Larsen, Nian, Zeng 19]

Some general comments

Entropy controlled by anomalies?

- Asymptotically flat black holes in string theory [strominger, Vafa 96]

$$
\log Z \sim \frac{\pi^{2}}{6 \beta} c_{\mathrm{CFT}} \quad \underset{\text { Legendre }}{\Longrightarrow} \quad S_{\mathrm{BH}}=2 \pi \sqrt{\frac{n c_{\mathrm{CFT}}}{6}}
$$

- AdS_{5} black holes also controlled by anomalies both at large N and in Cardy limit. For $\mathcal{N}=4$ SYM

$$
\log Z=\underbrace{-4 \pi i \frac{\left(\omega_{1}+\omega_{2} \pm 1\right)^{3}}{27 \omega_{1} \omega_{2}} \mathrm{a}_{\mathrm{CFT}}}_{\text {equal charges }}
$$

- same quantity appears as supersymmetric Casimir energy. Hidden modularity? [Hosseini, Hristov, AZ 17; Cabo-Bizet, Cassani, Martelli, Murthy 18]

Some more universality?

We can embed BPS black holes in all maximally supersymmetric AdS $_{d \geq 4}$ backgrounds

- M theory on $\mathrm{AdS}_{4} \times S^{7}$
- type IIB on $\mathrm{AdS}_{5} \times S^{5}$

ABJM theory
$\mathcal{N}=4 \mathrm{SYM}$

- massive IIA on $\mathrm{AdS}_{6} \times{ }_{W} S^{4}$
- M theory on $\mathrm{AdS}_{7} \times S^{4}$

	ABJM theory
$\Longrightarrow \quad$	$\mathcal{N}=4$ SYM

5d UV fixed point
$(2,0)$ theory

Entropy controlled by anomalies in even dimensions and sphere partition functions in odd dimensions
electrically charged and rotating BH

$\mathrm{AdS}_{4} \times S^{7}$	$\mathcal{F}\left(\Delta_{a}\right)=\sqrt{\Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}}$	$\log \mathcal{Z}\left(\Delta_{a}, \omega_{i}\right)=\frac{4 \sqrt{2} N^{3 / 2}}{3} \frac{\sqrt{\Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}}}{\omega_{1}}$
$\Delta_{1}+\Delta_{2}+\Delta_{3}+\Delta_{4}=2$	$\Delta_{1}+\Delta_{2}+\Delta_{3}+\Delta_{4}+\omega_{1}=2 \pi$	
$\mathrm{AdS}_{5} \times S^{5}$	$\mathcal{F}\left(\Delta_{a}\right)=\Delta_{1} \Delta_{2} \Delta_{3}$	$\log \mathcal{Z}\left(\Delta_{a}, \omega_{i}\right)=-i \frac{N^{2}}{2} \frac{\Delta_{1} \Delta_{2} \Delta_{3}}{\omega_{1} \omega_{2}}$
$\Delta_{1}+\Delta_{2}+\Delta_{3}=2$	$\Delta_{1}+\Delta_{2}+\Delta_{3}+\omega_{1}+\omega_{2}=2 \pi$	

[Disclaimer: normalizations and signs for sake of exposition]
[See "Generalisations" slides for refs]

magnetically charged BH and black strings

$$
\begin{array}{lll}
\mathrm{AdS}_{4} \times S^{7} & \mathcal{F}\left(\Delta_{a}\right)=\sqrt{\Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}} & \log \mathcal{Z}=-\frac{2 \sqrt{2} N^{3 / 2}}{3} \sum_{a=1}^{4} \mathfrak{p}_{a} \frac{\partial \mathcal{F}(\Delta)}{\partial \Delta_{a}} \\
& \Delta_{1}+\Delta_{2}+\Delta_{3}+\Delta_{4}=2 & \Delta_{1}+\Delta_{2}+\Delta_{3}+\Delta_{4}=2 \pi \\
\hline \mathrm{AdS}_{5} \times S^{5} & \mathcal{F}\left(\Delta_{a}\right)=\Delta_{1} \Delta_{2} \Delta_{3} & \log \mathcal{Z}=-\frac{N^{2}}{2 \beta} \sum_{a=1}^{3} \mathfrak{p}_{a} \frac{\partial \mathcal{F}(\Delta)}{\partial \Delta_{a}} \\
& \Delta_{1}+\Delta_{2}+\Delta_{3}=2 & \Delta_{1}+\Delta_{2}+\Delta_{3}=2 \pi
\end{array}
$$

$\mathrm{AdS}_{6} \times{ }_{W} S^{4} \quad \mathcal{F}\left(\Delta_{a}\right)=\left(\Delta_{1} \Delta_{2}\right)^{3 / 2} \quad \log \mathcal{Z} \sim N^{5 / 2} \sum_{a, b=1}^{2} \mathfrak{p}_{a} \tilde{\mathfrak{p}}_{b} \frac{\partial^{2} \mathcal{F}(\Delta)}{\partial \Delta_{a} \partial \Delta_{b}}$

$$
\Delta_{1}+\Delta_{2}=2 \quad \Delta_{1}+\Delta_{2}=2 \pi
$$

$$
\begin{array}{cl}
\mathrm{AdS}_{7} \times S^{4} & \mathcal{F}\left(\Delta_{a}\right)=\left(\Delta_{1} \Delta_{2}\right)^{2} \\
\Delta_{1}+\Delta_{2}=2 & \log \mathcal{Z} \sim \frac{N^{3}}{\beta} \sum_{a, b=1}^{2} \mathfrak{p}_{a} \tilde{\mathfrak{p}}_{b} \frac{\partial^{2} \mathcal{F}(\Delta)}{\partial \Delta_{a} \partial \Delta_{b}} \\
\Delta_{1}+\Delta_{2}=2 \pi
\end{array}
$$

Similar results for more complicated CFTs at large N suggest:

- 3d: $\mathcal{F}(\Delta) \sim F_{S^{3}}(\Delta)$
- 4d: $\mathcal{F}(\Delta) \sim a(\Delta) \sim \operatorname{Tr} R(\Delta)^{3} \quad$ trial a-central charge
[Hosseini, Nedelin, AZ 16; Hosseini, Hristov, AZ 18; Kim, Kim, Song; Amariti, Garozzo, LoMonaco 19]
$\mathcal{F}(\Delta)$ can be also related to
- the twisted superpotential on the dominant Bethe vacuum
- the prepotential of the relevant gauged supergravity and similarly for higher dimensions. [See "Generalisations" sides for refs]

Conclusions

Puzzles remain

- Many different approaches and intricate structure of saddles in AdS_{5}; other black holes?
- Comparison for general $\mathrm{AdS}_{4} \times S E_{7}$ black holes. Large N limit not always known.
and a long way to go
- finite N corrections
- extremal non-supersymmetric and near-BPS black holes?

But the main message of this talk is that there is still a lot of interesting physics in AdS black holes.

